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Abstract

Background: Environmental Enteropathy (EE), characterized by alterations in intestinal structure, function, and
immune activation, is believed to be an important contributor to childhood undernutrition and its associated
morbidities, including stunting. Half of all global deaths in children < 5 years are attributable to under-nutrition,
making the study of EE an area of critical priority.

Methods: Community based intervention study, divided into two sub-studies, 1) Longitudinal analyses and 2) Biopsy
studies for identification of EE features via omics analyses. Birth cohorts in Matiari, Pakistan established: moderately or
severely malnourished (weight for height Z score (WHZ) < − 2) children, and well-nourished (WHZ > 0) children. Blood,
urine, and fecal samples, for evaluation of potential biomarkers, will be collected at various time points from all
participants (longitudinal analyses). Participants will receive appropriate educational and nutritional interventions;
non-responders will undergo further evaluation to determine eligibility for further workup, including upper
gastrointestinal endoscopy. Histopathological changes in duodenal biopsies will be compared with duodenal
biopsies obtained from USA controls who have celiac disease, Crohn’s disease, or who were found to have
normal histopathology. RNA-Seq will be employed to characterize mucosal gene expression across groups.
Duodenal biopsies, luminal aspirates from the duodenum, and fecal samples will be analyzed to define microbial
community composition (omic analyses). The relationship between histopathology, mucosal gene expression, and
community configuration will be assessed using a variety of bioinformatic tools to gain better understanding of
disease pathogenesis and to identify mechanism-based biomarkers. Ethical review committees at all collaborating
institutions have approved this study. All results will be made available to the scientific community.

(Continued on next page)

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: sean.moore@virginia.edu; asad.ali@aku.edu
†Najeeha T. Iqbal and Sana Syed are Co-first authors
†Sean R. Moore and S. Asad Ali contributed equally to this paper and are
Co-corresponding authors
3Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
1Department of Paediatrics and Child Health, Aga Khan University, Karachi,
Pakistan
Full list of author information is available at the end of the article

Iqbal et al. BMC Pediatrics          (2019) 19:247 
https://doi.org/10.1186/s12887-019-1564-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12887-019-1564-x&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:sean.moore@virginia.edu
mailto:asad.ali@aku.edu


(Continued from previous page)

Discussion: Operational and ethical constraints for safely obtaining intestinal biopsies from children in resource-poor
settings have led to a paucity of human tissue-based investigations to understand and reverse EE in vulnerable
populations. Furthermore, EE biomarkers have rarely been correlated with gold standard histopathological confirmation.
The Study of Environmental Enteropathy and Malnutrition (SEEM) is designed to better understand the pathophysiology,
predictors, biomarkers, and potential management strategies of EE to inform strategies to eradicate this debilitating
pathology and accelerate progress towards the 2030 Sustainable Development Goals.

Trial registration: Retrospectively registered; clinicaltrials.gov ID NCT03588013.

Keywords: Childhood undernutrition, Low- middle income countries, Environmental enteropathy, Gut barrier function,
Endoscopy, Duodenal biopsies, Small intestinal microbiota, Mucosal gene expression

Background
Environmental Enteropathy (EE), an acquired small in-
testinal condition, is a consequence of the continuous
burden of immune stimulation by fecal-oral exposure to
enteropathogens leading to a persistent acute phase re-
sponse and chronic inflammation [1, 2]. First described
in the 1960s and 1970s [3–5] in studies from Asia, Af-
rica and Central America, morphological changes or
functional signs of EE were identified in a high propor-
tion of apparently healthy adults and children [6–9]. EE
can be characterized histologically by villus shortening,
crypt hyperplasia and resultant decrease in the surface
area of mature absorptive intestinal epithelial cells which
leads to macro- and micronutrient malabsorption [1,
10]. Concomitant intestinal leakage or permeability can
be estimated by dual sugar absorption tests which have
been widely used as a surrogate for biopsy based diagno-
ses [11, 12]. Permeability can lead to translocation of mi-
crobes or microbial products which along with the
intestinal inflammatory nidus, can produce systemic im-
mune activation. This chronic inflammation along with
malabsorption are postulated to be the mechanisms
through which EE contributes to undernutrition, espe-
cially linear growth faltering [13, 14]. Undernutrition is
implicated in 45% of the 5 million annual deaths in chil-
dren under 5 years of age [15] and linear growth failure
(stunting, length-for-age Z score < − 2) is a common
manifestation of undernutrition, afflicting ~ 155 million
under-fives worldwide [16]. Stunting serves as a clinical
marker for lifelong impairments in physical, neurocogni-
tive, vaccine immunological response, and socioeco-
nomic potential [17–20]. Our current understanding of
EE is limited, in large part, because the tissue affected,
the gastrointestinal tract of malnourished children, has
been difficult to obtain in resource limited settings. Fur-
ther, a comprehensive approach incorporating longitu-
dinal surveillance of affected children to identify the
impact of EE from other co-morbid conditions is needed
to fully capture risk factors for EE. Therefore, we
propose a comprehensive study approach which com-
bines longitudinal surveillance of children from birth

until 2 years of age, capturing known and postulated risk
factors of EE and applying the most advanced tools for the
analysis of the intestinal tissue samples. The Study of En-
vironmental Enteropathy and Malnutrition in Pakistan
(SEEM Pakistan), is a follow up to our phase 1 study titled
‘Identification of Novel Biomarkers for Environmental En-
teropathy in Children Using an Evidence Based Approach’
[14, 21–23], in which we have studied patterns of malnu-
trition and prevention in a cohort of children in Matiari,
Pakistan and looked at potential biomarkers of EE and at
the ethical feasibilities of conducting biopsies in a low-
and middle income country (LMIC) setting. Building on
our experience from this study and related works [14, 21–
23], our SEEM Pakistan study is designed to better under-
stand the pathophysiology, predictors, biomarkers, and
potential management strategies of EE. This report de-
scribes the SEEM Pakistan study design, including the ma-
terials that are being collected along with proposed
analysis including use of machine learning methods.

Methods
SEEM Pakistan is a multi-institutional collaboration be-
tween the Aga Khan University Hospital (AKUH), Pakistan,
University of Virginia (UVa), Cincinnati Children’s Hospital
Medical Center (CCHMC) and Washington University in
St. Louis (WUSTL) in the USA, with funding by the Bill
and Melinda Gates Foundation (2016 through 2019).
Enrollment has been completed and a cohort of 400
children has been established (350 malnourished chil-
dren and 50 well-nourished healthy controls).

Objectives
This study aims to (i) establish a cohort of 350 malnour-
ished and 50 well-nourished children in Matiari, Pakistan
aged zero to 6 months; (ii) assemble serum, fecal, and
urine samples for assessment as biomarkers of EE; (iii)
provide educational and nutritional interventions accord-
ing to the level of malnutrition of the child; (iv) evaluate
the subset of malnourished children who fail to respond
to educational and nutritional interventions by upper
gastrointestinal (UGI) endoscopy to identify treatable
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causes of malnutrition; (v) use the UGI biopsy specimens
obtained for detailed assessment of histopathology, gene
expression and immune profiling to better characterize
the pathophysiology of EE, validate current candidate bio-
markers, and discover novel biomarker candidates. Im-
portantly, this study provides a unique opportunity to
examine whether there are identifiable relationships be-
tween histologically-diagnosed EE and the configuration
of the proximal small intestinal and fecal microbiota.
Moreover, preclinical tests of causality will be performed
by transplanting bacterial communities recovered from
children with EE into gnotobiotic mice and assessing the
degree to which these communities transmit histopatho-
logic, transcriptional, proteomic and immunologic fea-
tures of the children’s gut barrier dysfunction phenotypes.
With these goals in mind, SEEM is comprised of two pri-
mary sub-studies: 1) Longitudinal analyses of growth in
birth cohort members and 2) Correlating ‘omic phenotyp-
ing with biopsy analysis, including correlating gut micro-
bial community features with features of duodenal
mucosal gene expression profile and immune phenotypes.
Table 1 further describes these two primary sub-studies,
including objectives covered under each study, their hy-
potheses, and the patient population selected for each
objective.

Patient and public involvement
Our enrollment population consists of children under
the age of 2 years. Therefore, not the patients themselves
but their parents were indirectly involved in certain as-
pects of SEEM’s study design. Our field study staff has
ongoing routine feedback and evaluation with the par-
ents of the patients, and the current design was evolved
based upon our and patient/parental experience from
our phase 1 EE study [14]. For example, due to a parent-
reported increase in their child’s diarrhea after consump-
tion ready-to-use therapeutic food, we replaced it with a
locally made supplement (Acha Mum) in the current
study. Furthermore, feedback from the parents is en-
couraged, and all issues and comments are communi-
cated to the study team during weekly community
meetings. We plan to disseminate results to each partici-
pant/parent at the Matiari field-site office at the end of
the study.

Study settings and participants
The basic framework for the SEEM Pakistan study is de-
scribed in Figs. 1 and 2. The Department of Paediatrics
and Child Health at AKUH has an established field site
at Matiari, Pakistan, which is a rural district about 3
hours drive north of Karachi, Pakistan. We anticipated
enrolling 350 children from ages 0 to 6months with
weight for height Z score (WHZ) < − 2 at the time of en-
rollment. We also anticipated enrolling 50 children of the

same age with healthy ponderal and linear anthropometric
assessments based on consistent WHZ > 0 and height for
age Z score (HAZ) > − 1 on two consecutive visits between
3 to 6months, to serve as healthy controls. Administra-
tion of routine rotavirus vaccine will be facilitated as a part
of our study, and other Expanded Program on Immuniza-
tions (EPI) vaccines will also be facilitated as part of other
ongoing research activities.
Blood, urine, and fecal samples will be collected from

all participants between 3 and 6, and at 9 months of age
as well as at the time of endoscopy for those who
undergo the procedure (Table 2). Lastly, feces will be
collected from participants eligible for nutritional inter-
vention at 10 months of age (pre-intervention) and then
again at around 14 months of age (post-intervention).
Duodenal aspirates will also be collected at the time of
endoscopy; a dry aspirate (pre-saline lavage) as well as a
wet aspirate (post-saline lavage) will be attempted.
After enrollment, the parents/caregivers of all partici-

pants will undergo a series of rehabilitative interventions
to improve the child’s nutritional status. Those partici-
pants who remain moderately or severely malnourished
(WHZ < − 2 or < − 3, respectively) despite interventions
will then be eligible for medical evaluation to assess if s/
he merits further clinical workup of malnutrition, in-
cluding UGI endoscopy, to identify a secondary cause.
Those who qualify for UGI endoscopy will also undergo
a biopsy workup as described in Table 3.
Because UGI endoscopies are rarely performed in chil-

dren under 2 in Pakistan and due to ethical and cultural
considerations, it is not possible to obtain duodenal bi-
opsies from national healthy children that could serve as
a control in our analysis. This is one of the major limita-
tions of our study and as the results from Campbell et
al. [10] support the utility of healthy age-matched chil-
dren from high-income countries for identifying key gut
pathogenic pathways in low-income settings, we are pro-
posing to use age-matched controls from the United
States for comparison.
Therefore, we plan to enroll 3 different control groups,

all comprising of children under the age of 11 years, with
a preference to enroll children under the age of 5 years.
Our first control group will comprise of 30 healthy chil-
dren, who will undergo endoscopy at CCHMC as part of
a diagnostic workup for digestive symptoms, but whose
biopsies and diagnoses are not supportive of eosinophilic
esophagitis, celiac disease, or inflammatory bowel dis-
ease, and who were not treated with antibiotics ≤4 weeks
prior to endoscopy.
As EE and celiac disease share some shared histo-

pathological features [24, 25], we will focus on celiac dis-
ease as an enteropathy control group. We plan to enroll
30 children with newly diagnosed celiac disease per en-
doscopy at CCHMC to assess the extent to which gene
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signatures and associated biologic pathways for children
with celiac disease or EE overlap or differ. Lastly, while
we recognize that duodenal and ileal histopathology in
the majority of Crohn’s cases differ from celiac disease
and EE, the differentially expressed ileal gene signature
in Crohn’s patients bears remarkable similarities to indi-
vidual gene expression patterns reported for EE [10, 26],
i.e. induction of IFNγ, REG1B. Therefore, our third con-
trol group will be 30 children with newly diagnosed
Crohn’s disease per endoscopy at CCHMC.

Sample size
Participants will be recruited from our prospective co-
hort. Based on our phase 1 cohort [14], we anticipated
that the cohort of 50 SEEM patients, with duodenal
samples collected by endoscopy, will include at least 20
without a single identified treatable infection, i.e. identified
Giardia or H. pylori infection. The primary endpoint guid-
ing our sample size estimate will be the anticipated

differences in duodenal IFNγ and APOA1 gene expression
between subjects with EE and healthy controls. We antici-
pate that induction of IFNγ gene expression will be associ-
ated with a reduction in APOA1 gene expression as per a
recent study on Crohn’s disease [27] and that of Bragde et
al. on celiac disease [28]. In the Crohn’s study, the mean
(SD) Reads Per Kilobase per Million Mapped reads
(RPKM) IFNγ gene expression at diagnosis was equal to
1.86(2.7) in patients with Crohn’s, and 0.33(0.38) in
healthy controls. The mean (SD) RPKM APOA1 gene ex-
pression at diagnosis was 927(1469) in patients with
Crohn’s, and 3012(3080) in healthy controls. We antici-
pate similar differences between EE and healthy controls
in our study. Based on these results, 30 healthy controls
and 25 EE subjects without a specific treatable infection
will provide 90% power to detect such a difference with
α = 0.05. The secondary endpoint will be to perform an
undirected analyses to capture the overall gene and signa-
tures that are different between described groups. Based

Table 1 Objectives, hypotheses, and study population of the primary SEEM sub-studies
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on previously published data for RNA-Seq samples size
estimation [29], if we estimate a coefficient of variation of
counts of 0.4 as was observed in 90% of the genes in a
range of human studies, alpha of 0.05 and power of 0.8, a
sample size of 20 per group will be needed.

Educational and nutritional interventions, and steps
following failure
Upon enrollment at age < 6months, infants will be started
in a 4-week home delivered educational program that will
focus on breast feeding and complimentary feeding.
Counseling will be performed by the study staff using
standardized teaching materials. Compliance to the in-
struction will be recorded during weekly home visits.
If the WHZ remains < − 2 by 9 months of age despite

the initial educational counseling, s/he will be enrolled
in the second phase of nutritional and educational
intervention. Families will be shown a 10 min educa-
tional video that details the best practices with re-
spect to complimentary feeding best practices on a
fortnightly basis, and compliance to the instructions
will be recorded during the weekly home visits. If the
child remains at WHZ < − 2, s/he will undergo the
third phase of rehabilitation management according

to Pakistan’s Community Management of Acute Mal-
nutrition protocol [30]. This will include provision of
Acha Mum for the treatment of moderate and severe
acute malnutrition to the child at home with close
follow up. Utilization of the food supplement will be
monitored closely by weekly home visits.
For those children who fail to respond to nutritional

rehabilitation and in whom no apparent cause of malnu-
trition can be identified after basic laboratory workup,
we will conduct a more thorough investigation to iden-
tify the cause of undernutrition. It is important to note
that this nutritional rehabilitation program is immensely
supervised, with study staff allowed to visit homes more
than once a week to ensure compliance if required.
Additionally, our Phase 1 study had a 90.5% compli-
ance for nutritional intervention, and we will there-
fore be able to identify which children fail to respond
to rehabilitation due to biological reasons vs the unlikely
event of failing due to a lack of compliance. If the child re-
mains at WHZ < − 2 despite all the above interventions,
then s/he will undergo medical evaluation (including a
core standardized laboratory panel which includes celiac
screening, complete blood count, complete metabolic
panel, international normalized ratio, erythrocyte

Fig. 1 Conceptual framework for hypothesis testing in SEEM. The severity of clinical phenotypes in Matiari children with wasting and suboptimal
response to nutritional rehabilitation will highly correlate with the histopathological appearance of duodenal biopsies; duodenal and fecal dysbiosis;
perturbation of duodenal gene expression profiles; systemic biochemical profiles; and children’s genotypes. The image in the top right panel
demonstrates the histological changes observed in the small intestine as environmental enteropathy progresses. Note: L:R lactulose:rhamnose ratio,
EE environmental enteropathy, GI gastrointestinal, HLAHuman Leukocyte Antigen
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sedimentation rate, and C-reactive protein, additionally,
the pediatric gastroenterologist will not be limited to this
panel and may order any additional tests as clinically indi-
cated) to assess if there is a clinical indication for further
workup to identify a secondary cause of the malnutrition,
including UGI endoscopy at AKUH. Diagnostic evalu-
ation, including the UGI endoscopy, will be used to guide
further management. For example, dietary management of
celiac disease counseling (i.e. initiation of gluten free diet
[31]), will be provided to the families of affected children
in the local language, and identified infections will be
treated according to the standard of care (as was per-
formed in our Phase 1 study for n = 1 child diagnosed
with celiac disease [14]). Follow-up will be continued to

facilitate treatment and ensure the best possible outcomes
depending on the pathology identified.

Collection, preparation, storage and transport of biologic
samples
Blood, urine, feces, biopsy tissues, and aspirates will be
collected, prepared, preserved, and transported accord-
ing to the standard operating procedures prepared for
this protocol. Samples will be collected at the time
points aforementioned.
Community health workers (CHWs) will be respon-

sible for the collection of fecal and urine samples
(Additional file 1: Figure S1). Urine samples will be
aseptically collected into 100 mL pediatric urine

Fig. 2 SEEM Data Collection Process. Note: CHW community health workers, UGI upper GI, WHZweight for height Z score
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collector bags using a suprapubic tap, 2 mL of urine
will be aliquoted in a 4.5 mL cryovial and stored at
-2 °C or -8 °C during transport to the Matiari lab and
then to the Pediatric Infectious Diseases Research La-
boratory (IDRL) at AKUH, once at the IDRL the
urine samples will be stored at − 80 °C.
Fecal samples will be collected and cryopreserved

within 30min of production and then transported to the
Matiari lab. At the lab, cryovials will be placed into a
-80 °C freezer prior to shipping on dry ice to Washing-
ton University in St. Louis (WUSTL), USA. Approxi-
mately 1 g of fecal material per unique sample/time-
point is required. No additives, preservatives or media
will be added to the fecal samples.
For blood samples, trained phlebotomists will collect

3-5 mL of venous blood in a labeled blood collection
tube (neutral vacutainer tube) after following all aseptic
precautions. After collection, the labeled tube will be
held upright in a test tube rack for 30 min to allow the
blood to clot at room temperature. Each sample will be
centrifuged for serum separation and then after success-
ful separation will be pipetted into labeled cryovials. This
initial processing will be done at our field site research
lab. The vials will be stored in a cooler maintained at 2-
8 °C during transportation to the Pediatric IDRL at
AKUH, where they will be stored at − 80 °C freezers.
Screening for celiac disease will be performed via test-

ing for serum TTG-IgA. We will also screen for the

most important determinant of genetic susceptibility for
celiac disease i.e. the presence of human leukocyte
antigen-DQ (HLA-DQ) heterdimers DQ2 and DQ8
using Genome Wide Association Studies (GWAS). For
participants undergoing UGI endoscopy, gastric biopsies
(from the antrum and body) will only be obtained at the
discretion of the pediatric gastroenterologist performing
the endoscopy. These biopsies will be microscopically
assessed for Helicobacter pylori associated gastritis on
hematoxylin and eosin (H&E) stain, and a duodenal bi-
opsy will also be microscopically assessed for the pres-
ence of Giardia on H&E stain. The plan for the biopsy
workup is detailed in Table 3.

Environmental enteric dysfunction biopsy initiative
(EEDBI) consortium and EE score
The EEDBI Consortium [32] has been assembled from Bill
and Melinda Gates Foundation EE biopsy funded projects
with cohorts in Zambia [33], Bangladesh [34], and Pakistan.
Recently a preliminary EE score, which incorporates acute
and chronic inflammation, the presence of inflammatory
cells, villus architecture, secretory cells, enterocyte injury,
and epithelial detachment, is under development by the
consortium, and a preliminary construct was used in our
Phase 1 work [22]. The final biopsy scoring system is being
developed by a team of pathologists and will be an exten-
sion of this preliminary scoring system. We will be using

Table 2 Description of sample collection
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this score on our duodenal biopsies to assess the spectrum
of EE.

Biomarkers
In our Phase 1 work, we noted significant associations be-
tween several biomarkers and longitudinal Z scores for
subsequent child height and weight [17, 21, 26]. These
biomarkers in addition to an expanded biomarker panel
have been selected to test for intestinal barrier structure
and function in SEEM. Data will be collected in a longitu-
dinal fashion; monthly anthropometric measurements
over 18months, and biomarker assessment at the afore-
mentioned time points. The biomarkers to be tested in
blood and feces are listed in Table 2.

Fecal calorimetry
In those children who undergo endoscopy at AKUH, fecal
calorimetry (6200 Isoperibol Calorimeter; Parr Instrument
Company, Moline, IL, USA) will be performed to obtain
macronutrient specific determination of fecal energy [35].
Total protein, fat, and carbohydrate energy content of a
single fecal aliquot will be compared against the child’s
clinical phenotype (including severity of wasting), fecal
and duodenal enteropathogen burden, endoscopic inflam-
mation, and histologic severity.

Fecal intestinal epithelial cells
Isolation and characterization of intestinal epithelial cells
(IEC) from feces as a “liquid biopsy” for epigenetic-
based detection of colorectal cancer has become an area
of intense study [36, 37]. We have adapted these emer-
ging technologies to EE, such that the isolation and
preservation of exfoliated IECs from fecal specimens
(fecal samples taken at 3–6 and 9months, and

additionally from children undergoing UGI endoscopy
48 h prior to the procedure) is currently in process to
allow for assessment of targeted IEC DNA methylation
as a function of age, growth, microbiome and enteric
illnesses.

Lactose/Rhamnose (L:R) test
The L:R test is a promising functional test that reflects
gut permeability and absorptive capacity [38, 39]. This
test is currently being validated in multiple field settings
via the EEDBI Consortium [40] and has shown to be
more advantageous compared to the lactulose/mannitol
test (more often reported dual sugar permeability test in
the past two decades) due to lack of pre-dose urinary
rhamnose in comparison to mannitol which is used as
an inactive ingredient in some oral vaccines and in foods
[41]. Dual sugar permeability testing has been used as a
surrogate marker of EE [42, 43]. Since our study pro-
vides an objective, histology-based diagnosis of EE, we
will perform the L:R test in all children (malnourished as
well as healthy controls) at approximately 13 months of
age. The goal of this is to assess in children who fail to
respond to nutritional intervention, whether this failure
is associated with an alteration in their intestinal perme-
ability. We will then correlate the findings of the L:R test
with the histology of UGI mucosa in malnourished
children.

Gut microbiota/microbiome
Recent work that combines (i) culture-independent ana-
lyses of fecal samples collected from healthy members of
birth cohorts living in Bangladesh and Malawi with (ii)
machine learning algorithms have defined a normal pro-
gram of gut microbial community development [44–46].

Table 3 Plan of biopsy work up on children selected for UGI endoscopy
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This program is manifested by temporal changes in the
representation of ‘age-discriminatory’ bacterial strains.
Applying this microbial signature of normal community
assembly (maturation) to children diagnosed with severe
acute malnutrition (SAM) revealed that their microbiota
appear younger than those of their chronologically age-
matched healthy counterparts living in the same locale
[44, 45]. Moreover, transplantation of microbiota from
healthy and undernourished children into young germ-
free mice has provided preclinical evidence that gut
microbiota immaturity is causally related to many of the
manifestations of undernutrition [44–46].
To date, studies of the role of the gut microbiota in

the pathogenesis of environmental enteropathy (EE)
have been limited by challenges in obtaining well-
preserved upper GI communities from individuals whose
disease status has been confirmed by endoscopic evalu-
ation. To define the relationship between the configur-
ation of the fecal microbiota and histopathologically-
defined EE in the SEEM cohort, we will first generate
Random Forests-derived models of normal gut microbial
community development; this will be done using bacter-
ial V4-16S rDNA and shotgun sequencing datasets of
community DNA respectively, generated from monthly
fecal samples collected for the first 2 years of life from
well nourished children (WHZ > 0 and HAZ > -1) of the
Matiari birth cohort. These culture independent
methods will be applied to duodenal biopsies and aspi-
rates collected at endoscopy from children who failed to
respond to nutritional intervention in order to identify
bacterial strains (and members of other domains of life
and their viruses) in the proximal small intestine whose
representation/abundance are correlated with severity of
EE (as assessed by histologic grading [22]). Bacterial
strains will be cultured and their genomes sequenced.
BugFACS [47] will also be performed on fecal samples
obtained from children at the time of endoscopy to iden-
tify bacterial strains whose targeting by mucosal IgA is
correlated with pathologic features of disease. These re-
sults will be further contextualized using data obtained
from (i) multi-omics analysis of duodenal specimens
from the same children that will be performed at
CCHMC and WUSTL (RNA-Seq, metabolomics/proteo-
mics), plus (ii) results of EE biomarker analyses per-
formed on contemporaneously collected plasma and
fecal specimens.
A follow-on component of this work will involve

transplantation of duodenal microbial community mem-
bers collected from children with varying degrees of EE
severity into germ-free mice fed a prototypic diet con-
sumed by children living in Matiari. The objective will
be to test the hypothesis that these communities trans-
mit enteropathy to recipient animals and the relation-
ship between enteropathy features and growth faltering/

undernutrition. These assessments include measure-
ments of (i) lean body mass gain (quantified by whole
body magnetic resonance), (ii) bone growth (measured
by micro-computed tomography and by serum bio-
markers of osteoblastic and osteoclastic activity), (iii) gut
barrier function (histochemical and immunohistochemi-
cal markers such as EpCAM, claudin-2/− 4, tight-
junction protein-1, functional assays such as Fluorescein
Isothiocyanate (FITC)-labelled dextran permeability,
transcriptional (RNA-Seq)/proteomic analyses of differ-
ent gut segments, and (iv) immune phenotypes (FACS
sorting of intestinal and extra-intestinal tissues). If
preclinical proof of concept is established for a causal
role of the small intestinal microbiota in the patho-
genesis of EE, these gnotobiotic models will permit a
search for key effector microbes, the mechanisms
through which they operate and ultimately tests of
therapeutic concepts.

Histopathologic, immunohistochemistry and transcriptomic
work up of biopsy specimens
We hypothesize biopsies from children whose endo-
scopic workup does not reveal a clear malabsorptive
pathology, such as celiac disease, will likely demonstrate
advanced features of EE. Previous studies suggest at least
two factors contribute to EE: (i) chronic T-cell mediated
intestinal damage and (ii) perturbations in microbial
community structure/function [13, 48]. Recognizing that
our sample will be restricted to children whose wasting
(WHZ ≤ − 2) is refractory to nutritional intervention, we
will comprehensively assess biopsy specimens to better
understand the pathology of the proximal small intes-
tinal mucosa in EE.
One such previous attempt utilizing duodenal biopsies

compared malnourished children in Gambia with
healthy UK age-matched children to better understand
the pathogenesis underlying this disorder [10]. This
study was, however, restricted to morphometric and tar-
geted immunohistochemical analyses for immune cell
markers, and did not investigate gene expression associ-
ated with the absorptive epithelial layer more broadly.
The authors concluded that cell-mediated Th1 response
might impair mechanisms of oral tolerance and drive
progressive growth failure despite intensive nutritional
intervention [10]. Therefore, we propose to supplement
routine clinical histologic morphometric analyses with
(i) targeted staining to characterize immune cells and
the epithelial layer (working with the UVa Biorepository
and Tissue Research Facility (BTRF) we have recently
established a protocol for triple color immunohisto-
chemical staining), (ii) RNA-Seq analyses to capture a
more inclusive EE gut gene expression signature, (iii) gut
biopsy DNA-based 16S rDNA characterization of the
biopsy-adherent bacterial communities, and (iv) perform
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microbe:gene association studies (Fig. 3). We hope that
these data will provide new insights into both disease
pathogenesis and treatment, as well as gut-derived circu-
lating biomarkers for disease severity, which may be
assayed in future studies using the banked sera from the
larger 400 patient SEEM cohort.
Recently, RNA-Seq and 16S rDNA characterization

has been employed to characterize the global pattern of
ileal gene expression and the ileal microbial community
in treatment-naïve pediatric patients with Crohn’s dis-
ease, disease controls with ulcerative colitis, and healthy
control individuals. [27] This was followed by a previ-
ously established multivariate approach (MaAsLin)
[49, 50] to test for associations between selected genes
and the microbial taxa. The resultant analyses showed a
significant association between expression of components
of the APOA1 module and specific Firmicutes and Bacter-
iodetes [27].
Furthermore, a multivariate analysis which included

disease severity and treatment exposures, showed that
Crohn’s patients with the greatest reduction in
APOA1 expression at diagnosis were the least likely
to achieve clinical remission with current therapies.
This suppression of the anti-oxidant lipoproteins in
Crohn’s could hence serve as a potential target for fu-
ture therapies [27].
Similar to the above findings in Crohn’s patients, gene

expression studies of duodenal biopsies comparing age-
matched controls and celiac patients likewise demon-
strate reduction of APOA1 coupled with induction of
IFNγ [28]. Together with results described by Campbell
et al. [10] showing induction of IFNγ expressing T cells
in children with EE in Gambia, these data suggest that
this IFNγ/APOA1 gene co-expression signature may rep-
resent a common pathway of chronic small bowel in-
flammation and malnutrition.
We plan to test this novel concept by including ana-

lysis of duodenal gene expression from disease controls
with celiac disease and Crohn’s, together with healthy
age-matched controls enrolled at CCHMC. This will
provide critical insight into shared and unique features
of host epithelial and immune pathogenesis, relative to
what are likely to be distinct microbial shifts, across
these three disorders in undernourished Pakistani and
US children. We anticipate that the induction of IFNγ

in EE will in turn be associated with a reduction in
apolipoproteins and enterocyte lipid metabolism path-
ways similar to Crohn’s [27], and celiac disease [28].
Different types of APOA1 interventions are in pre-
clinical development for atherosclerosis and inflamma-
tory bowel disease. If we identify a reduction in
APOA1 and associated enterocyte lipid metabolic
pathways in EE, such treatment may benefit children
with EE as well.

Data analysis plan
This study will result in a vast dataset containing socio-
demographic and anthropometric information, as well as
biomarkers found in urine, stool, and blood, and endo-
scopic biopsy results highlighting histopathologic fea-
tures of both diseased and healthy gastrointestinal tracts.
The WHO Child Growth Standards (WHO Anthro,

Geneva, Switzerland) [51] will be used to calculate z-
scores, and assess growth both as continuous measures
of height-for-age z-score (HAZ), weight-for-age z-score
(WAZ) and weight-for-height z-score (WHZ); and as
categorized variables of stunting as HAZ < − 2 SD
(standard deviation), underweight as WAZ < − 2 SD and
wasting as WHZ< − 2 SD. Participant descriptive statistics
will be presented as means (standard error, SE) and as fre-
quencies (percentages) for continuous and categorical out-
comes, respectively. We will also perform simple linear
regression for a specific time point and mixed-effects
modeling analysis for repeated measurements to study
change in growth trends over the follow-up period.
Mass spectrometry will be used to determine serum

and urine bile acid profiles and serum non-essential fatty
acid levels, and amino acid profiles. In addition, the cel-
lular fraction of the obtained blood will be utilized for
DNA extraction and high-throughput genotyping using
Infinium HumanOmniExpressExome [52]. Genotyping
will also be used to determine HLA typing of the indi-
vidual and their associated genetic ethnicity. Given the
similarities between EE and celiac disease, it will be of
interest to determine whether there is also a common
HLA genotype associated with EE [53]. Both environ-
mental and genetic factors [54], play roles in gut micro-
bial composition, therefore, we will control for genetic
variants (i.e. HLA [55], FUT2 [56]) in some of the
planned microbial and gene expression analyses.
We will use a variety of computational/statistical ap-

proaches to assess the extent to which expression of
various genes and their associated metabolic/signaling
pathways in duodenal biopsies in children with celiac
disease, Crohn’s disease, and EE overlap or differ. We
will approach this using several statistical methods; PCA
plots; Venn diagrams of the differently expressed genes
between celiac disease vs. controls, EE vs. controls, and
Crohn’s disease vs. controls; and associated pathway ana-
lyses. A significant overlap in pathways could provide in-
sights into pathogenesis and new treatment approaches,
such as tight junction modulation, which are in develop-
ment for celiac disease [57]. Gene signatures distinct for
EE would further provide a promising source of future
therapeutic targets and initial tissue-level validation of
promising biomarkers that would be useful for predict-
ing growth and powering studies to test future interven-
tions against EE. We also plan to compare proximal
small intestinal duodenal biopsies with distal ileal
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biopsies in the Crohn’s cohort to determine how well
the duodenal pattern of gene expression reflects the
ileum.
Analyses of biopsies from both Crohn’s disease and ce-

liac disease patients will also provide us the opportunity
to test for the relationship between the microbial com-
munity and gene expression signatures. We will test for
associations between taxa of the duodenal microbial
community and specific clinical and gene expression
metadata using Multivariate Analysis by Linear Models
(MaAsLin) as has been described in prior studies
[27, 49, 50]. A comprehensive description of this analysis
method has been published online [58]. In short, for each

arcsine square root transformed microbial feature, a
model is selected from metadata using gradient boosting
(gbm package [59]). Covariates in the selected model are
then evaluated controlling for potential confounders using
a general linear model. Additionally, confounders will also
be assessed via construction of a causal pathway. Multiple
comparisons over factor levels will be adjusted using a
Bonferroni correction, and multiple hypothesis tests over
all clades and metadata will be adjusted with a false dis-
covery rate [60].
All significant (α < 0.05) associations will be investi-

gated in the analysis: clinical phenotype (including sever-
ity of wasting), stool and duodenal enteropathogen

Fig. 3 SEEM transcriptome/genetics/biomarkers/microbiome framework at the time of endoscopy. a Is a detailed description of how samples will
be collected throughout the study process from the birth cohorts; b Shows the groups, samples, and planned analyses at the time of endoscopy.
Note for a: WHZWeight-for-Height Z score, RF Random Forest, EGD Esophagogastroduodenoscopy, infants* = 0 — 3 months old. Note for b:
SEEM Study of Environmental Enteropathy and Malnutrition, CCHMC Cincinnati Children’s Hospital Medical Center, IBD Inflammatory Bowel Disease,
CBC complete blood count, CRP C-Reactive Protein, EE Environmental Enteropathy, * = with a preference to enroll children under 5 years of age

Iqbal et al. BMC Pediatrics          (2019) 19:247 Page 11 of 17



burden, endoscopic inflammation, histologic severity,
and selected duodenal differentially expressed genes
such as IFNγ and APOA1. We plan to control for age,
gender, and body mass index (as a measure of nutritional
status) in our analysis. These analyses will identify spe-
cific duodenal microbial taxa associated with differences
in IFNγ and/or APOA1 gene expression across the three
disorders tested; EE, Crohn’s disease, and celiac disease.
Next, analyses of mRNAseq performed on biopsy

tissues will be carried out using polyA-RNA selection,
fragmentation, cDNA synthesis, adaptor ligation, and
library preparation with TRUSeq RNA Sample prepar-
ation (Illumina, San Diego, CA, USA). Paired-end 75
bp sequencing will be performed using the Illumina
HiSeq 2000 in the CCHMC NIH-supported Digestive
Health Center with a minimum depth of 20 million
reads per sample. Reads will be aligned using TopHat
[61]. The aligned reads will be quantified by Avadis
NGS software (Version 1.3.0, Build 163,982 Strand
Scientific Intelligence, Inc., San Francisco, CA, USA)
using Hg19 as the reference genome and RPKM as
an output. The DESeq algorithm will be used for
RPKM normalization within Avadis NGS software.
Two more recently applied alternative approaches for
quantification will also be assessed using kallisto [62]
and eXpress [63].
For RNA-Seq expression and gene enrichment analysis

samples will be stratified into specific clinical subgroups
including control, EE, celiac disease, and Crohn’s disease.
For some analyses the EE group will be further sub-di-
vided into those with an identified infection (e.g.
Giardia, H. pylori) and those without an identified in-
fectious etiology. In addition, we plan to stratify the
Crohn’s patient samples by their location to assess ex-
pression differences between proximal (duodenal) and
distal (ileum) small bowel expression.
Other potential sub-stratification of the EE group will

be based on CRP level, histologic severity, response to
rotavirus infection (by measuring rotavirus IgA levels),
and weight/height outcomes. Differentially expressed
genes of the above stratified groups will be determined
by the Audic Claverie method using the Benjamini-
Hochberg false discovery rate correction (FDR 0.05) and
analyzed for fold change differences. Normalized inten-
sity values will be used for patterns of gene expression.
Pearson correlation based on trend and rate of change
will be performed for IFNγ and APOA1 gene expression
across defined groups for correlation coefficient of
0.98 < |r| < 1.
ToppGene [64], ToppCluster [65], and IPA (Ingenuity

Systems) software will be used to test for functional an-
notation enrichment analyses of upstream regulators,
immune cell types, pathways, phenotype, and biologic
functions. Functional annotation enrichment analyses

for immune cell type enrichments will be characterized
using the Immunological Genome Project data series
through ToppGene. Visualization of the functional net-
works will be obtained using Cytoscape v.3.02 [66].
Lastly, an anticipated challenge in interpreting clinical

biopsies from EE and celiac disease will be the possible
histopathological overlap between these distinct but re-
lated enteropathies [10, 22]. In light of this, we propose
to use duodenal biopsy data (converted to whole slide
images using Leica SCN400 slide scanner [Meyer Instru-
ments, Houston, TX] and Olympus VS120 Virtual Slide
Microscope [Olympus Corporation Inc., Center Valley,
Pennsylvania]) from EE, celiac disease and normal
healthy biopsy from patients recruited in SEEM and
archival duodenal biopsies from the UVa BTRF as data
input for a deep learning image analysis algorithm. Deep
learning, or machine learning, has been said to be the
natural extension to our current statistical analysis [67]
especially in the context of multiomic data as in SEEM,
and is at the forefront of advances in both technology
and medicine [68]. We will use a subtype of deep learn-
ing known as Convolutional Neural Networks (CNNs)
[69], to detect morphological distinguishing histological
features between disease phenotypes. We will also couple
our CNN layers with a deconvolution layer [70, 71], and a
Gradient Class Activation Map layer [72], which will allow
us to trace back high activation features to the correspond-
ing biopsy. This will allow us to enhance the detection of
pathologic morphological features that can help distinguish
between celiac disease and EE, both when compared to
each other and also when compared to healthy duodenal
tissue. Furthermore, in addition to applying the EEDBI
scoring system, we will use this deep learning driven
approach to correlate high activation features to iden-
tify multiomic patterns not identified by traditional
pathology scoring.
The overall schedule for enrolment, interventions and

assessments, including UGI endoscopy and biopsies, is
described in Fig. 3; and the data transfer between each
collaborating institution is outlined in Fig. 4. To ensure
optimal outcomes from this ambitious undertaking, we
designed SEEM with monitoring and quality control
measures, timelines for milestones, anticipation of chal-
lenges, and consideration of ethics and data dissemination.

Safety measures and preparation for adverse events
One of our major goals was to optimize safety for UGI
endoscopies, especially given our LMIC study setting.
Although never without elements of risk during the pro-
cedure and anesthesia, endoscopy is a very safe proced-
ure when conducted by trained experienced personnel in
a well-equipped facility. We have safety data from our
own pilot EE phase 1 study in which we successfully per-
formed endoscopy on 11 children with a median (Q1 –
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Q3) age of 22 (20–23) months (14). There is also data
from studies conducted in Gambia [10] where children
underwent endoscopy under anesthesia, and Zambia [73]
where malnourished children underwent endoscopies with
collection of duodenal biopsy samples under anesthesia.
Neither of these studies reported any endoscopy-related
adverse events during or after the procedures.
Additionally, several questions arose in the develop-

ment and implementation of our Phase 1 EE study and
subsequently in SEEM, all of which were reviewed by
the Ethical Review Committee (ERC) at AKUH for dis-
cussion and resolution. For example, adverse events that
may arise during endoscopy were a major concern; to
mitigate issues, investigators have developed a priori def-
initions, assessment criteria and action guidelines in-
cluding an overnight stay in Karachi prior to return to
the subject’s village Matiari. Endoscopy of eligible chil-
dren will be performed at the AKUH (accredited by the
Joint Commission International, IL, USA since July 2006
[74, 75]) where the highest safety standards at par with
hospitals in high-income country settings are met in-
cluding access to a pediatric intensive care unit, pediatric
surgeons and dedicated clinical dieticians. Of note, chil-
dren who fail to respond to nutritional rehabilitation are
evaluated by a team of physicians including a trained
pediatric gastroenterologist (KS). A qualified anesthetist
attends every endoscopy procedure to assess and admin-
ister steps as required for sedation. The participant’s
oxygen saturation level, pulse rate and blood pressure
are continuously monitored throughout the procedure.
Resuscitation measures and complete pediatric Intensive
Care Unit (ICU) support remain available during the
procedure for immediate resuscitation if necessary. Clin-
ical findings from the biopsies (e.g. presence of gastritis,
H pylori infection, Giardiasis or diagnosis of celiac dis-
ease) are made available as soon as possible so that ap-
propriate treatment can be undertaken. Additionally,
morbidity and poor appetite also represent a big chal-
lenge; by providing close follow-up, proper counseling
and by practicing supportive feeding techniques, this
issue can be resolved. Our field team in Matiari is led by
two physicians registered by the Pakistan Medical and
Dental Council (PMDC), who will oversee these chal-
lenges, along with access to a panel of North American
trained pediatric subspecialists (SAA - pediatric infec-
tious disease; KS, SS, and SRM - pediatric gastroenter-
ology) for additional expertise as needed.
Other expected adverse events for this protocol are

those related to the endoscopy/biopsy procedure that do
not qualify as a serious adverse event (SAE) and those as-
sociated with phlebotomy and ingestion of lactulose/
rhamnose solution. Both serious and non-SAEs are
assessed for their severity, their relationship to study par-
ticipation and the actions taken and their outcomes. All

SAEs are being reported to the AKUH ERC within 24 h of
the site’s awareness of the event. In the event that medical
care is required outside of the protocol, all necessary and
available treatments are provided, free of cost.

Monitoring and quality control
With regards to monitoring and quality control, we took
several measures to ensure best practices for identifying
mislabeling of data. Sample mislabeling has been known
to occur, for example mislabeling gender. Such mislabel-
ing was identified when we found that the inferred gen-
der based on genotype did not correlate with actual
gender reported on clinical metadata. In light of this
samples were rechecked and re-labeled correctly by our
study team. A quality control algorithm was developed
that combines base calling from the biopsy mRNAseq
data and tests its genetic concordance with genotyping
of the DNA extracted from the blood [76]. In order to
automate this mislabeling, it will be important to apply a
similar quality control approach in our study, where in-
correct linkage of duodenal expression data to clinical
data could result in significant variation in the results.
This work will be supported by the same infrastructure
at CCHMC currently being used for multi-center in-
flammatory bowel disease cohort studies. This includes
Gene and Protein Expression and Bioinformatics cores
of the National Institute of Health (NIH) – supported by
CCHMC Digestive Health Center.

Ethical clearance
The SEEM study protocol has been approved by the
AKUH ERC (Protocol 3836-Ped-ERC-15), which is an
independent regulatory authority equivalent to Institu-
tional Review Board (IRB). SEEM has also previously re-
ceived ethical approval from the Cincinnati Children’s
Hospital Medical Center (CCHMC, Study ID 2016–
0387), and met ethical standards during an audit con-
ducted by the Aga Khan University for an ethical com-
pliance review (Study ID 2446). Collection of specimens
for studies on the gut microbiome was approved by the
Washington University Human Research Protection Of-
fice (IRB ID 201111065). The University of Virginia
Institutional Review Board has also approved SEEM
(UVa-IRB, Study ID 19856) for the purpose of intes-
tinal tissue triple color immunohistochemistry via the
UVa BTRF.
All medical and research ethics will be followed during

the interaction with each participant enrolled in SEEM, and
also for any and all data collected from them. After
complete disclosure, a signed informed consent (Additional
file 2) will be obtained from each participant’s parent
or legal guardian. The consent will be obtained, pref-
erably, where the participant resides. If the parent(s)/
guardian agree to participate in the study, the consent
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form must be signed or an impression of their thumb
must be provided. The investigator and a witness will
also sign the form. For endoscopy, a separate consent
form is used and the same procedure is followed. The
consent form for endoscopy will clearly and fully de-
scribe all aspects of the process, including the risks
related with the procedure. No information is remained
withheld from the participant.

Discussion
Given the operational and ethical limitations for
safely obtaining intestinal biopsies from children in
resource-poor settings, there have been few detailed
investigations of human tissue in this vulnerable
group for whom reversal of EE would be extremely

beneficial [14, 17–21]. Furthermore, EE biomarkers
studied in different settings have not been corre-
lated with the gold standard of histopathology [17,
18, 21]. SEEM is designed to better understand the
pathophysiology, predictors, biomarkers, and poten-
tial management strategies of EE to inform strat-
egies to eradicate this debilitating pathology. SEEM
will help define EE, however this definition will po-
tentially be biased by the presumption of EE in
children in whom we do not identify an acute or
chronic gut infection or other GI pathology. Hence,
it will be important to compare our results with
those of other biopsy-based EE studies currently
underway (which have used different enrolment
criteria, but equivalent histopathological assessment
and scoring) and to provide an improved or

Fig. 4 Framework of data flow in SEEM. Description of how data will be transferred between institutions and a summary of the samples/analyses
conducted at each institute. Note: AKU Aga Khan University, L:R Lactulose:Rhamnose ratio, Bx biopsy, EE Environmental enteropathy, CCHMC
Cincinnati Children’s Hospital Medical Center, HLA Human Leukocyte Antigen, UVA University of Virginia, ‘omicsmultiomics, H&E
Haemotoxylin and Eosin, IHC Immunohistochemistry, EEDBI Environmental Enteric Dysfunction Biopsy Initiative, WUPAXWashington University
Digital Pathology Exchange, GFGerm Free
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modified definition of EE that captures the full
spectrum of the disease.
The data, results and other findings resulting from this

study will be published only after approval by a commit-
tee consisting of the investigators of the protocol. The
International Committee of Medical Journal Editors
guidelines will be used to establish authorship on papers
[77]. As of September 2018, participant enrollment has
been completed.

Additional files

Additional file 1: Figure S1. Urine and fecal sample collection protocol.
Panel A describes the urine collection protocol followed by the community
health workers (CHWs), and Panel B describes the fecal collection protocol
followed by the CHWs for instant transport of fecal samples in a dry shipper
for long term storage and preservation for microbiome analysis. Please note:
L:R Lactose Rhamnose ratio, mL milliliter, CHW Community Health Worker,
AKU Aga Khan University, IDRL Infectious Diseases Research Laboratory.

Additional file 2: Informed consent forms for recruitment of healthy
and malnourished children.
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