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Abstract
We present a new type of local image descriptor which yields binary patterns from small

image patches. For the application to fingerprint liveness detection, we achieve rotation

invariant image patches by taking the fingerprint segmentation and orientation field into

account. We compute the discrete cosine transform (DCT) for these rotation invariant

patches and attain binary patterns by comparing pairs of two DCT coefficients. These pat-

terns are summarized into one or more histograms per image. Each histogram comprises

the relative frequencies of pattern occurrences. Multiple histograms are concatenated and

the resulting feature vector is used for image classification. We name this novel type of

descriptor convolution comparison pattern (CCP). Experimental results show the useful-

ness of the proposed CCP descriptor for fingerprint liveness detection. CCP outperforms

other local image descriptors such as LBP, LPQ andWLD on the LivDet 2013 benchmark.

The CCP descriptor is a general type of local image descriptor which we expect to prove

useful in areas beyond fingerprint liveness detection such as biological and medical image

processing, texture recognition, face recognition and iris recognition, liveness detection for

face and iris images, and machine vision for surface inspection and material classification.

1 Introduction
Local image descriptors comprise and encode pieces of information in a local neighborhood
ranging from only few pixels to small image patches. These descriptors are very useful in a mul-
titude of applications in pattern recognition and computer vision [1], like e.g. texture recogni-
tion [2, 3], optical character recognition, biological or medical image analysis (e.g. virus
recognition [4]), machine inspection of surfaces [5] or biometric recognition. Examples of
local image descriptors are local binary patterns (LBP) [6], gray-level co-occurrence matrices
(GLCM) [7], Gabor filters (GFs) [8], scale-invariant feature transform (SIFT) [9], Weber local
descriptor (WLD) [10], intensity-domain spin images [11] and rotation-invariant feature
transform (RIFT) [11]. Many further descriptors are discussed in [1, 12]. Often, these local
descriptors are summarized by a single histogram per image (e.g. LBP or WLD) which can be
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used as a feature vector for image classification (e.g. by support vector machines [13]), signa-
tures [11] are classified by the earth mover’s distance [14], or joint probability density functions
of patterns are described by Gaussian mixture models [15].

In this manuscript, we introduce a new local image descriptor based on the discrete cosine
transform (DCT) which obtains a binary pattern from a comparison of DCT coefficients. We
denote this novel descriptor as convolution comparison pattern (CCP) and we study the appli-
cation of the proposed CCP descriptor for fingerprint liveness detection. The discrete cosine
transform has been introduced in 1974 [16]. An in-depth discussion of the DCT and many
additional references can be found in [17]. The DCT is well-known for its use in image com-
pression (JPEG) and video compression (MPEG, Daala, and Theora) [18]. In the context of fin-
gerprint recognition, the DCT has been considered for fingerprint matching [19], for
fingerprint image enhancement [20], for fingerprint image compression [21] and for estimat-
ing the quality of fingerprint images captured by smartphone cameras [22].

1.1 Fingerprint Liveness Detection
Hundreds of millions of people use fingerprint recognition in their daily life, especially for
unlocking their smartphone, and increasingly, for authorizing financial transactions. As a con-
sequence, attacking fingerprint recognition systems is becoming more and more attractive for
criminals. Two important types of attacks are resembling impostor attacks [23] and spoof
attacks [24, 25]. Spoofs are fake fingers produced from material such as gelatin, wood glue or
silicone. These artificial fingers intend to fake the presence of real finger to a sensor. Several
scenarios are conceivable how spoof fingers can be created. For example, a fingerprint can be
lifted from a glass or another object previously touched. The image can be automatically
enhanced using typical fingerprint preprocessing steps [26] like segmentation, orientation field
estimation, ridge frequency estimation [8] and fingerprint enhancement [8, 27]. Finally, the
enhanced image can be printed to obtain a mold [24]. Another possibility is the reconstruction
of a fingerprint image from a stolen minutiae template. First, the segmentation and orientation
field is reconstructed [28]. Next, image reconstruction can be achieved e.g. using amplitude-
and frequency-modulated (AM-FM) functions [29]. A survey of fingerprint reconstruction
methods is given in [30].

Software-based liveness detection is a very suitable countermeasure against spoof attacks. An
acquired fingerprint image is not only used for fingerprint verification (e.g. unlocking a smart-
phone) or fingerprint identification (e.g. watch list search at border control), but the same image
is classified by a software module as ‘live’ or ‘spoof’. So called static methods perform this classi-
fication based on a single image, whereas so called dynamic methods require a series of images
as input. Approaches for liveness detection employ general image descriptors which are used
e.g. in texture recognition and other areas of application, as well as fingerprint specific features
like the ridge frequency [31] or finger pores [32]. Currently, state-of-the-art performance in soft-
ware-based liveness detection is achieved by local image descriptors and by deep convolutional
networks [33, 34]. An overview of approaches which apply local image descriptors for liveness
detection is given in [35]. However, drawbacks of deep convolutional networks are the computa-
tional complexity and runtime, and recently it has been shown that deep neural networks are
vulnerable to attacks with artificial images [36]. More references to software-based fingerprint
liveness detection methods can be found in Section 3 and in [24, 25, 37].

2 Comparison of DCT Coefficients
An overview over the CCP feature computation is given in Fig 1 and the DCT basic elements
for n = 9 (patch width in pixels) are visualized in Fig 2. Here, fingerprint images are used as
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examples of image classification by CCP. The following framework is applicable to other types
of images, like e.g. microscopy images in biomedical applications or texture recognition:

1. Preprocessing

2. Learning stage (Training)

3. Classification (Test)

2.1 Preprocessing
The two preprocessing steps are image segmentation and orientation field estimation (see Fig 3
for an illustration). We perform fingerprint segmentation by the FDB method [38]. A Matlab
implementation of the FDB method is available for download at http://dx.doi.org/10.6084/m9.
figshare.1294210. The goal of this step is to consider only those regions of an image which con-
tain relevant information and to exclude the background area. Segmentation should also be
performed for other applications like medical image classification, if some parts of the image
are irrelevant for the classification task.

The second step is estimating an orientation field by averaging squared image gradients [27,
39]. We use the Sobel operator [40] for approximating gradients. The window size is set to
33×33 pixels and gradients are weighted by a Gaussian with σ2 = 10. Fingerprints are oriented
patterns with one dominant orientation [41] at each location (with the exception of singular
points, e.g. a delta is a location where three different orientations meet). The estimated local

Fig 1. Overview over the proposed feature vector computation. Every foreground pixel of a fingerprint (A) is considered as the center of a small image
patch. Instead of using the original patches (B) and their DCT coefficients (C), we take the local orientation into account to obtain rotation invariant patches
(D) and their DCT coefficients (E). We compute the binary pattern (F) by comparing selected pairs of two DCT coefficients from (E), see Eq (2). The pattern
(F) is converted intoa bin number (G), see Eq (3). A histogram (H) summarizes the relative frequency of occurrence of all local patterns for an image. (For
illustrative purposes only, patch sizes are here 17×17 pixels, and coefficients with index = 1 are set to zero in (C) and (E), and (F-H) show example
descriptors.)

doi:10.1371/journal.pone.0148552.g001
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orienation is used to compute a rotation invariant image patch (see column D in Fig 1) by
bilinear interpolation [40].

2.2 Learning stage
The proposed descriptor computes a binary pattern of b bits by comparing pairs of DCT coeffi-
cients. Every of the b comparisons involves two coefficients and the output is either a ‘0’ or a
‘1’. In order to select those comparisons which have the greatest discriminative power, we start

Fig 2. Visualization of DCT coefficients for n = 9 (left) and corresponding index numbers (right).Negative values are depicted in black or dark gray and
positive coefficients are shown in white or light gray.

doi:10.1371/journal.pone.0148552.g002

Fig 3. The preprocessing steps for an input fingerprint image (a) are segmentation (b)and orientation field (OF) estimation (c,d). Foreground pixels
in (b) are shown in black, background pixels in white. The OF is visualized in (c) by red lines for every 16th pixel. In (d), orientations in degrees are encoded
by gray values between 0 and 179, where 0 corresponds to x-axis and angles increase clock-wise.

doi:10.1371/journal.pone.0148552.g003
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by computing coefficient statistics, e.g. for n = 9, there are n2 = 81 DCT coefficients (see Fig 2),
hence there are n2�(n2−1) = 6480 possible comparisons of two DCT coefficients, if we restrict
ourselves in Eq (2) to a “greater than” (“>”) comparison.

We are interested in a small number, e.g. the 8 or 24 ‘best’ comparisons.
For illustrative purposes, let us consider the Biometrika database of LivDet 2013 [42] which

consists of t = 2000 images for training and 2000 images for testing. Each set contains tlive =
1000 live and tspoof = 1000 spoof samples. For each training image, we select p = 2000 pixel
locations independently and uniformly at random from the foreground. For these
t�p = 4,000,000 rotation invariant image patches of size n×n pixels, we compute DCT coeffi-
cients. Let be di the i-th DCT coefficient (i = 1, . . ., 81 in our example) and ai = |di| the absolute

value of the respective coefficient. Let be �ai the mean value of all ai, i.e. �ai ¼ 1
t�p
P

t;pai, Vi ¼
1
t�p
P

t;pðai � �aiÞ2 the variance and si ¼
ffiffiffiffiffi
Vi

p
the standard deviation. Next, we compute normal-

ized coefficients ci ¼ ðai� �ai Þ
si

.

After this preparation, we compute the following statistic for both classes (‘live’ and ‘spoof’)
in the training set separately:

f ði; j; dÞ ¼
1 ifðci þ dÞ > cj

0 otherwise
i 6¼ j; d 2 R:

(

Now, we select i, j and δ according to the following criterion:

max
i;j;d

1

tlive � p
�
X
tlive

X
p

fliveði; j; dÞ �
1

tspoof � p
�
X
tspoof

X
p

fspoofði; j; dÞ
������

������: ð1Þ

In our experiments, we let δ vary in the range from −1 to 1 in steps of size 0.02, and we find
the best i, j and δ by exhaustive search. By computing these coefficient statistics, we learn for
the Biometrika database that for i = 1, j = 11 and δ = −0.48, there is a difference of relative
occurrence frequencies of 23.6% between the two classes ‘live’ and ‘spoof’. The difference of rel-
ative occurrence frequencies for i = 11, j = 72 and δ = −0.4 amounts to 21.1% (see Fig 2 for a
visualization of the index numbers i, j and the corresponding DCT basis elements). To obtain a
pattern with b bits, we choose the first x = 0, . . ., b−1 comparisons with ix, jx and δx according
to Eq (1) such that each combination of i and j is unique.

qðix; jx; dxÞ ¼
1 ifðcix þ dxÞ > cjx

0 otherwise
ð2Þ

(

y ¼
Xb�1

x¼0

ð2x � qðix; jx; dxÞÞ ð3Þ

Hence, for b comparisons, the dimension of the resulting feature vector is 2b. In the next sec-
tion and in Table 1, we report results for b = 8 which leads to a histogram with 28 = 256. Addi-
tionally, we consider a feature vector obtained from the concatenation of four histograms with
b = 6. The dimension of the vector for this choice is 4�26 = 4�64 = 256 is the same as before. For
b = 8, we model the joint distribution of 8 comparisons. In the alternative case, we model four
times the joint distribution of 6 comparisons.

Next, each individual histogram is normalized. We divide by the number of patches in the
image to obtain the relative frequency of occurrence. In doing so, we achieve invariance with
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regard to the size of the foreground area. This area varies depending on the amount of surface
area of the finger or spoof that touches the sensor and the CCP descriptor should not be influ-
enced by this factor.

Finally, we compute the CCP feature vectors for all images of the training set and we train a
machine learning algorithm for prediction or classification. As described in the next section, in
this work we use support vector machines (SVM) for learning a model separating the two clas-
ses ‘live’ (y = 1) and ‘spoof’ (y = 0).

We remark that we considered a number of conceivable alternatives which include: (i) using
the original, signed coefficients instead of their absolute value for the comparison in Eq (2), (ii)
considering the leading sign of coefficients, i.e. relative frequencies that e.g. two coefficients are
simultaneously positive, (iii) normalizing the rotation invariant image patches to a mean value
of zero and a standard deviation of one before computing the discrete cosine transform. All
these alternatives produce binary patterns which are also useful for classification. However, we
have found that the afore described computation of the CCP descriptor has clearly the greatest
discriminative power in the context of fingerprint liveness detection.

2.3 Classification
For classifying test set images, we compute the CCP feature vector in the way we have learned
on the training set and we classify an input image as ‘live’ (y = 1) or ‘spoof’ (y = 0) by the
trained SVMmodel.

2.4 Connection to Decision Trees and Fisher’s Linear Discriminant
The proposed criterion in Eq (1) at the learning stage shares commonalities with two well-
known methods in machine learning and statistics: decision trees [43, 44] and the computation
of Fisher’s linear discriminant (see Chapter 3 in [45]).

For constructing a decision tree, a standard approach is choose in each iteration the attri-
bute which achieves the best split the set of training examples into separate sets. Here, “best”
can be formalized by choosing a criterion like e.g. information gain [43]. Intuitively, it means
that after the split each separate set tends to have clear majority and minority classes. In this

Table 1. Comparison of liveness detectionmethods in terms of accuracy in percent for LivDet 2013 databases [42]. Further results can be found in
Table 7 of [42]. The description of CCP n×b bit can be found in Section 3.1.

Biometrika Italdata Crossmatch Average

WLD 93.9 90.9 50.0 78.3

LBP 98.9 96.3 49.5 81.6

MLPQ 98.2 97.9 50.2 82.1

WLD+MLPQ 99.0 97.7 44.5 80.4

LBP+MLPQ 98.6 97.7 45.4 80.6

UniNap1 [42] 95.3 96.5 68.8 86.9

Pore Analysis [47] 97.8 99.0 65.1 87.3

HIG [37] 96.1 98.3 71.2 88.5

Proposed convolution comparison pattern (CCP)

CCP 1 × 8 bit 96.9 98.4 76.8 90.7

CCP 4 × 6 bit 97.9 98.5 82.5 93.0

CCP 2 × 8 bit 97.2 99.3 82.5 93.0

CCP 8 × 6 bit 98.0 99.3 76.5 91.3

doi:10.1371/journal.pone.0148552.t001
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analogy to decision trees, imagine that the criterion in Eq (1) simultaneously chooses the attri-
bute for branching (indices i and j for the comparison), the splitting threshold value δ and it
maximizes the differences between the two classes ‘live’ and ‘spoof’ for each branch.

For Fisher’s linear discriminant analysis, we assume that we are given a set of n d-dimen-
sional samples x1, . . ., xn. Each sample point belongs to one of two classes and we consider the
scalar dot project y ¼ wtx. Fisher’s criterion is defined as

JðwÞ ¼ j ~m1 � ~m2j2
~s21 þ ~s22

; ð4Þ

where ~m1 and ~m2 are the sample means of the projected points and ~s1 and ~s2 are estimates of
their standard deviations. Fisher’s linear discriminant enables an optimal choice ofw which
maximizes the expression in Eq (4), see Chapter 3, Section 3.8.2 in [45] for more details.

For the above described discriminant analysis n d-dimensional samples are already given as
input, whereas in the situation of designing a binary pattern from scratch, each choice of a
comparison defines one additional dimension. We can still shape our data based on their statis-
tics on the whole training set, i.e. we can select the e.g. 8 most discriminative dimensions out of
6480 possibilities for n = 9. Fisher’s linear discriminant analysis maximizes the inter-class vari-
ability and minimizes intra-class variability. Here, with only two possible values arising from
each comparison, we are interested only in maximizing the difference between the relative fre-
quencies between the two classes as defined in Eq (1). As described in Section 2.2, we add the
best comparison according to Eq (1) in each step. Therefore, Eq (1) maximizes the inter-class
differences.

3 Experimental Results
For comparability with results of the LivDet 2013 competition [42], we follow the identical
evaluation protocol. SVMs with a linear kernel (C = 1.0) have been used for all methods and
features have been rescaled to the range from −1 to 1. Experiments have been performed using
LIBSVM [46] for the three databases acquired on optical sensors from Biometrika, Crossmatch
and Italdata. Example images are depicted in Fig 4. The images of the swipe sensor database
have a dimension of 208×1500 pixels and they would require sensor-specific, special prepro-
cessing before basic steps like fingerprint segmentation and orientation field become possible.
Therefore, the swipe sensor database has not been considered in these experiments.

The liveness detection accuracy reported in Table 1 has been computed as follows: a ¼ D
N
,

where D is the number of correct decisions (classifying an image of an alive finger as ‘alive’ and
classifying an image of a fake finger as ‘spoof’) and N is the number of all decisions. Further
metrics considered in the literature are the normal presentation classification error rate
(NPCER) which is the proportion of live fingerprints incorrectly classified as spoofs. This rate
is called ‘FerrLive’ in [42]. Correspondingly, the attack presentation classification error rate
(APCER) (or ‘FerrFake’ [42]) is the proportion of spoof fingerprints incorrectly classified as
live. The half total error rate (HTER) is defined as HTER ¼ NPCERþAPCER

2
. Please note that the

accuracy a = 1−HTER, if there the number of live and spoof samples in the test set is identical
which is the case for the Biometrika and Italdata databases listed in Table 1.

The comparison includes the best algorithm from LivDet 2013, a pore analysis based
approach [47], histograms of invariant gradients (HIG) [37], Weber local descriptor (WLD)
[10], local phase quantization (LPQ) [48] and local binary patterns (LBP) [6].

In 2008, LBP has been applied for liveness detection by Nikam and Agarwal [49] in form of
rotation invariant uniform LBP which leads to a 54-dimensional feature vector. To improve
the liveness detection performance, Ghiani et al.[50] proposed a fusion of LBP and LPQ by
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feature concatenation. WLD, LPQ and LBP, and combinations of LBP+LPQ and WLD+LPQ
have been considered by Gragnaniello et al.[51]. These two feature combinations have also
been evaluated for the LivDet 2013 databases as reported in Table 1. Combining elements from
WLD and LPQ by considering their joint distribution (instead of feature concatenation) has
been proposed in [52]. A Wavelet-Markov local descriptor has been suggested in [53].

In our implementation of the WLD descriptor [10], we used α = 3, β = 5, 120 bins for differ-
ential excitation and 8 orientation bins. Therefore, the dimension of the WLD vector is
8�120 = 960. We have implemented LBP as described in [49] which results in a feature vector
of dimension 54. Our implementation of LPQ is denoted as modified LPQ (MLPQ) in Table 1.
In comparison to the original LPQ, we have made the following modification: we consider the
estimated orientation field and we compute rotation invariant image patches as described in
Section 2. We perform the short time Fourier transform (STFT) for each rotation invariant
image patch and compute the LPQ descriptor with a dimension of 28 = 256. The implementa-
tion of the histograms of invariant gradients (HIG) [37] in Table 1 uses an orientation field
estimation by the line sensor method [41] which has recently been adopted for detecting fila-
ment structures in microscopy images of human stem cells [54].

Fig 4. Example images from LivDet 2013 [42] after background removal by the FDBmethod[38]. The
first row depicts images acquired on a Biometrika sensor, the second row from a Crossmatch sensor and the
third row from an Italdata sensor. The leftmost three columns show images of real, alive fingers and rightmost
three columns images of fake fingers (spoof material indicated in legend).

doi:10.1371/journal.pone.0148552.g004
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3.1 CCP Histogram Concatenation
We have evaluated four versions of CCP. As described in the previous section, a version with
b = 8 comparisons and a histogram dimensionality of 28 = 256. This CCP histogram comprises
the joint distribution of b = 8 comparisons and is denoted as CCP 1 × 8 bit in Table 1.

Alternatively, we selected 24 comparisons which are grouped into four groups. The first
b = 6 comparisons are used to compute the first histogram with 26 = 64 bins. The next b = 6
comparisons (number 7 to 12 in the list from 1 to 24) are utilized to construct the second histo-
gram with 64 bins. The third and fourth histogram are computed correspondingly from com-
parisons 13 to 18 and from comparisons 19 to 24. Finally, all four histograms with 64 bins are
concatenated to form a feature vector with dimensionality 256. This feature vector is referred
to as CCP 4 × 6 bit in Table 1.

Additionally, we have considered 16 comparisons sorted into two histograms (b = 8). By
concatenation, we obtain a feature vector of length 2�28 = 512. The fourth version involves
eight times b = 6 comparisons. Hence, we concatenate 8 descriptors of length 26 = 64 to a final
feature vector of size 512.

3.2 Computational Complexity
A typical fingerprint recognition system (FRS) performs fingerprint segmentation [55], orien-
tation field estimation, image enhancement, minutiae extraction and fingerprint matching
[56–60]. Methods for fingerprint liveness detection and fingerprint alteration detection [61]
can be considered as add-on modules to a FRS which aim to protect against these two types of
presentation attacks [24]. The mean computational runtime for computing a CCP histogram
with n = 9 pixels patch size and b = 8 comparisons is 0.7 seconds per image for the Biometrika
database and 0.8 seconds per image for the Crossmatch and Italdata databases. for a not opti-
mized Java implementation using one core of an Intel Core i7 CPU with 3.20 GHz. For a CCP
descriptor of b = 8 comparisons, a rotationally invariant patch and 16 DCT coefficients are to
be computed (or less than 16 if some coefficients appear in multiple comparisons). The compu-
tationally least expensive descriptor is LBP which involves 8 comparisons of two pixel values.
The computation of the LPQ descriptor requires a short time Fourier transform for each image
patch and its runtime depends on the patch size and efficiency of the Fourier transform imple-
mentation. Basically, all compared descriptors are suitable for real-time applications.

4 Conclusion
The experimental results reported in the previous section show that the proposed novel
descriptor provides a very useful feature for fingerprint liveness detection. We intend to inves-
tigate the combination of several local descriptors for further improvements of the fingerprint
liveness detection performance.

Possibilities for future work include the application of the proposed CCP descriptor in other
areas like e.g. biological and medical image processing, texture recognition, face recognition
and iris recognition, as well as liveness detection for face and iris images.

Moreover, fingerprint image compression is a topic which deserves further research. We
plan to explore how the rotation invariant image patches can improve the DCT based compres-
sion in comparison to [21] and in comparison to the AM-FM based compression [29]. The
required orientation field can be compressed to an extremely high degree. Existing methods for
reconstructing an OF from a minutiae template face problems only in the area around singular
points [28].
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