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Pathogenic impact of transcript 
isoform switching in 1,209 cancer 
samples covering 27 cancer 
types using an isoform‑specific 
interaction network
Abdullah Kahraman1,2,3, Tülay Karakulak1,2,3, Damian Szklarczyk1,3 & 
Christian von Mering1,3*

Under normal conditions, cells of almost all tissue types express the same predominant canonical 
transcript isoform at each gene locus. In cancer, however, splicing regulation is often disturbed, 
leading to cancer-specific switches in the most dominant transcripts (MDT). To address the pathogenic 
impact of these switches, we have analyzed isoform-specific protein–protein interaction disruptions 
in 1,209 cancer samples covering 27 different cancer types from the Pan-Cancer Analysis of Whole 
Genomes (PCAWG) project of the International Cancer Genomics Consortium (ICGC). Our study 
revealed large variations in the number of cancer-specific MDT (cMDT) with the highest frequency 
in cancers of female reproductive organs. Interestingly, in contrast to the mutational load, cancers 
arising from the same primary tissue had a similar number of cMDT. Some cMDT were found in 100% 
of all samples in a cancer type, making them candidates for diagnostic biomarkers. cMDT tend to 
be located at densely populated network regions where they disrupted protein interactions in the 
proximity of pathogenic cancer genes. A gene ontology enrichment analysis showed that these 
disruptions occurred mostly in protein translation and RNA splicing pathways. Interestingly, samples 
with mutations in the spliceosomal complex tend to have higher number of cMDT, while other 
transcript expressions correlated with mutations in non-coding splice-site and promoter regions of 
their genes. This work demonstrates for the first time the large extent of cancer-specific alterations 
in alternative splicing for 27 different cancer types. It highlights distinct and common patterns of 
cMDT and suggests novel pathogenic transcripts and markers that induce large network disruptions in 
cancers.

Cells express on average around four alternatively spliced transcripts per gene (see Ensembl database v97). The 
expression values follow an extreme value distribution1, where a single or a few transcripts show significantly 
higher expression than the remaining alternative transcripts. In the majority of the cases, the Most Dominant 
Transcript (MDT) of a gene is shared between different tissue types2,3. In cancer, however, splicing regulation 
is often disturbed, with alternative transcripts being more dominantly expressed than in normal tissues4. The 
resulting MDT switches are known to contribute to tumor progression, metastasis, therapy resistance, and other 
oncogenic processes that are part of cancer hallmarks5. Exon skipping events, intron retention, or alternative 
exon usage can produce transcripts and proteins whose transactivation or binding domains, localization signals, 
active sites, stop codons or untranslated regions (UTR) are altered6,7. Other transcripts can even be marked for 
nonsense-mediated decay8. For example, in gliomas, prostate and ovarian cancers a short Epidermal Growth Fac-
tor Receptor (EGFR) splice variant has been described to lack exon 4. The exclusion of exon 4 removes 45 amino 
acids from the extracellular domain of EGFR, causing elevated levels of cell proliferation by ligand-independent 
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activation and constitutive downstream signaling9. Alternative splicing of the BCL-X gene generates two iso-
forms, where the shorter isoform BCL-XS is a tumor suppressor and downregulated in prostate cancer, while 
the longer isoform BCL-XL is an oncogene blocking apoptosis10. Furthermore, melanoma tumors often develop 
drug resistance to BRAF (V600E) inhibitors by expressing a shorter isoform of mutated BRAF that lacks the RAS 
binding domain and allows BRAF (V600E) proteins to dimerize and signal in a RAS independent manner11,12.

Fundamentally, these phenotypes can arise through alterations in interaction networks13 in which alternative 
splicing changes the interaction capabilities of gene products by disrupting protein binding domains or protein 
availability14. The interaction landscape of alternatively spliced isoforms is often distinct from the canonical 
isoform, allowing cells to widely expand their protein interaction capabilities15. Earlier studies showed that 
tissue-specific exons were often found in unstructured protein regions, peptide-binding motifs or phosphoryla-
tion sites16. At the same time, such exons were often part of hub genes in interaction networks, whose differential 
expression disrupted and promoted new protein interactions17. The Eyras lab discovered in a recent study in over 
4,500 cancer samples from 11 cancer types from The Cancer Genome Atlas (TCGA)18, significant alterations in 
alternative splicing and MDT switches19. In their analysis, they were able to show an association between recur-
rent functional switches in MDT and the loss of protein functions while those gaining functional capabilities 
were mostly found in oncogenes. Furthermore, they observed that genes often mutated in various cancers were 
also those frequently altered in their alternative splicing patterns but often in a mutually exclusive manner. By 
mapping the isoform switches onto protein–protein interaction modules, they were able to show that disruptions 
of protein interactions mostly occurred in apoptosis-, ubiquitin-, signaling-, splicesome- and ribosome-related 
pathways. In a similar analysis of over 5,500 TCGA samples from 12 cancer types, Vitting-Seerup et al. discovered 
that 19% of multiple transcript genes were affected by some functional loss due to isoform switching20. They 
identified 31 switches that had prognostic biomarker qualities, predicting patient survival in all cancer types.

Cancer-specific MDT are believed to be fundamentally caused by genomic mutations. Splicing Quantitative 
Trait Loci (sQTL) calculations in which exon expression is linearly correlated with mutations in nearby cis-
regions or distant trans-locations are supporting this hypothesis. For example, over half a million sQTLs were 
measured in whole blood samples of which 90% were located in intergenic and intronic regions21. Over 520 
sQTLs were associated with disease phenotypes from previous Genome-Wide Association Studies (GWAS). Inter-
estingly, 395 GWAS associated SNPs overlapped with cis-sQTLs whose genes were not differentially expressed, 
giving additional insights into the functional mechanism of GWAS results. An independent Pan-Cancer Analysis 
of Whole Genomes (PCAWG) analysis group that focused on cancer transcriptomes found over 1,800 splicing 
alterations, which correlated with nearby mutations in intronic regions22. They identified over 5,200 mutations 
mostly located in or near splice-sites which had a major impact on the expression of cassette exons. Interestingly, 
only 4% of these mutations increased splicing efficiency, while the large majority had negative effects on splicing.

Building further on these studies, we are presenting here as an analysis group member of the PCAWG 
project23–25 from the International Cancer Genomics Consortium (ICGC) the most comprehensive functional 
assessment of alternatively spliced transcripts to date, covering the transcriptome and matched whole-genome 
sequences of 1,209 cancer samples from 27 different cancer types (Fig. 1). Our work extends the aforementioned 
studies by an additional 16 cancer types from ten primary tissues most notably cancers of the brain, blood, female 
reproductive organs, and melanoma. These additional cancer types have however particularly interesting alterna-
tive splicing deregulation patterns. For example, we observed only little deregulation for cancers of brain tissue. 
Similarly, melanoma showed little changes in alternative splicing despite having the highest mutational burden. 
In contrast, uterus, ovary, and cervix cancers had the highest number of splicing alterations. We based our study 
on the hypothesis that alternative transcripts are particularly pathogenic when they disrupt protein interactions 
and pathways. To test this, we focused on cancer-specific switches in MDT and assessed the extent to which 
these rewire isoform-specific protein–protein interactions networks. Our analyses revealed a large diversity in 
the number of cMDT between cancer types, most of which were tissue-specific. Some cMDT were found in all 
samples of a cancer type but not in any sample of a matched normal cohort, which makes them ideal candidates 
for diagnostic biomarkers. We show large scale disruptions of protein–protein interactions that are enriched in 
enzyme signaling, protein translation, and splicing pathways. We provide evidence that some cMDT were likely 
pathogenic, given their proximity to cancer-related genes and their location in densely populated PPI network 
regions. Finally, we present correlation data between somatic mutations and transcript expressions.

Methods
Scripts, input files and step-by-step instructions to reproduce the presented analyses can be found at https​://
githu​b.com/abxka​/CanIs​oNet.

Accessing pan‑cancer analysis of whole genomes data.  All PCAWG related dataset files were down-
loaded from Synapse (https​://www.synap​se.org/) and are listed in the following with their Synapse accession 
identifier synXXXXX. To get access to the data the reader must apply to the TCGA Data Access Committee 
(DAC) via dbGaP and the ICGC Data Access Compliance Office (DACO). However, a copy of the files is also 
available without restrictions at the ICGC PCAWG Data Release page (https​://dcc.icgc.org/relea​ses/PCAWG​) in 
the sections: transcriptome/transcript_expression, transcriptome/metadata, consensus_snv_indel and drivers/
metadata/genomic_intervals_lists The files include the transcript isoform-specific expression levels for 1,393 
Pan-Cancer Analysis of Whole Genomes (PCAWG) samples (syn7536587) and 3,249 Genotype-Tissue Expres-
sion (GTEx, V4)26 samples (syn7596599). Expression levels were given in Transcript Per Million (TPM) counts 
computed for all known transcripts in Ensembl version 75 using Kallisto (v.0.42.1)27 with default parameters (see 
“Methods” section in PCAWG Transcriptome Core Group paper22, for more details). 1,209 PCAWG samples 
remained after selecting those labeled as whitelisted and as a tumor in the RNAseq metadata file (syn7416381). 

https://github.com/abxka/CanIsoNet
https://github.com/abxka/CanIsoNet
https://www.synapse.org/
https://dcc.icgc.org/releases/PCAWG
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2,232 GTEx samples remained after selecting those matching primary tumor tissues from PCAWG RNAseq 
cancer samples using metadata on GTEx samples (syn7596611) (see Table S1).

Coding and non-coding mutation calls from the independent PCAWG working group “Novel somatic muta-
tion calling methods” were downloaded from Synapse (syn7118450). Only mutations located in functional 
regions (i.e. promoter core, promoter domain, 5′UTR, coding sequence, splice site, 3′UTR) were taken into 
consideration. Information on the genomic location of functional regions was also downloaded from Synapse 
(syn7345646).

Figure 1.   Overview of methodology to assess the impact of cancer-specific Most Dominant Transcripts 
(cMDT) using an isoform-specific interaction network. The top shows the steps and filters for cMDT detection. 
The bottom describes the methods and databases of the isoform-specific interaction network CanIsoNet. The 
central section depicts the combination of cMDT information with data from CanIsoNet to assess the functional 
impact of alternatively spliced isoforms.
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Constructing an isoform‑specific protein–protein interaction network.  The implementation of 
an isoform-specific protein–protein interaction network is primarily based on the integration of functional 
interaction from the STRING database28 with physical domain-domain interactions from the 3did database29 
and known alternatively spliced protein isoforms from the Ensembl database30 (see Fig. 1). For the integration, 
we downloaded all human functional protein–protein interactions and the FASTA sequences of all canonical 
isoforms from the STRING database (version 10.0)28. To identify physical interactions, we downloaded the 3did 
database (version 2018_04)31, which lists pairs of PFAM domains32 that are physically interacting with each 
other in the Protein structure Data Bank (PDB)33. For integrating the STRING database with 3did, we received 
PFAM domain annotations for each STRING protein from the STRING developer team, which we extended 
with PFAM information for humans from the PFAM database itself (version 32.0). To guarantee that no PFAM 
assignment was missed, we additionally ran the pfam_scan.pl script (available on the PFAM FTP server) on all 
Ensembl protein isoforms. STRING proteins whose sequences were not identical to their sequence in Ensembl 
were discarded. STRING interactions with proteins having interacting PFAM domains in 3did were considered 
to be of physical nature. Only high-confidence interactions with a STRING combined score of ≥ 0.9 were used 
in this study. To assess whether an alternative isoform forms the same protein interaction as its canonical iso-
form counterpart, the sequence of the interacting PFAM domains were extracted from the canonical isoform 
sequence in the STRING FASTA file. If the same sequence existed in an alternative isoform, the interaction was 
assumed to persist, otherwise, we assumed the interaction to be lost due to alternative splicing. A table represent-
ing a database of human isoform-specific protein–protein interaction with information which interactions are 
lost, and which persist for alternatively spliced isoforms and transcripts, can be found in Table S2.

Identifying most dominant transcripts.  For assessing the impact of disrupted alternative splicing in 
cancer, we chose to focus on the most extreme alteration events, namely on those cases in which the identity of 
the Most Dominant Transcript (MDT) in a PCAWG sample is unique and not known to exist in matched cohorts 
of GTEx normal samples. We call these transcripts cancer-specific MDT (cMDT). Note, that in this study the 
term transcript and protein isoform is interchangeable as we only worked with transcripts that had a protein ID 
(ENSP) in the Ensembl database (see “Constructing an isoform-specific protein–protein interaction network”).

To identify MDT in any PCAWG and GTEx sample, Kallisto counts in Transcripts per Million (TPM) were 
extracted for each Ensembl transcript from files provided by the PCAWG Transcriptome Core group (see “Access-
ing pan-cancer analysis of whole genomes data”). For each gene, all transcripts were ordered by their TPM 
counts. The transcript with the highest TPM count was designated as MDT if its expression was at least twice as 
high as the TPM count of the second-ranked transcript. Transcripts having an NA value were assigned a TPM 
of 0. PCAWG MDT were required to have a minimum TPM value ≥ 2, which corresponded to the maximum 
expression value of 99% of olfactory receptor proteins. As the expression of olfactory transcripts is known to 
be limited to nasal tissue only, we used their expression as a threshold for separating background noise in the 
PCAWG RNAseq data34. For GTEx samples, a minimum TPM value of 0.2 was required to allow the detection 
of PCAWG MDT with low GTEx expression.

Identifying cancer‑specific most dominant transcripts.  Once all MDT in each PCAWG and GTEx 
sample were determined, we next checked whether the MDT in the cancer samples were unique and specific to 
PCAWG, in which case we designated them as cancer-specific MDT (cMDT). To qualify as a cMDT, an MDT 
must

(1)	 be unique to PCAWG (see Table S1)
(2)	 derive from a gene that has an MDT in at least 50% of samples from the matched GTEx cohort
(3)	 have a significantly different relative expression than in GTEx
(4)	 have a relative expression higher than its median relative expression in the matched GTEx cohort

Note that the significance in criteria 3 was measured using a sign-test for which we counted the number of 
times the relative expression of an MDT in a cancer sample was higher or lower to all relative expression values in 
the samples from the matched GTEx cohort. The resulting positive and negative counts were put in a two-sided 
binomial test and the p-value was calculated. After the p-values for all MDT in a cancer type were determined, 
they were subjected to a Benjamini–Hochberg FDR correction. An MDT that fulfilled all the four criteria above 
and had a q-value of < 0.01 qualified as a cancer-specific MDT (cMDT).

Predicting the pathogenic impact of cancer‑specific MDT (cMDT).  To predict the pathogenic 
impact of cMDT, we assessed their proximity to 723 genes from the COSMIC gene census list (version 89) in 
the STRING interaction network and checked whether they were located in densely populated network regions, 
following the idea that cMDT might interact with known cancer genes or their interaction partners and effect 
numerous network interactions. For the cancer gene proximity calculations, we computed the shortest path in 
the STRING interaction network between a cMDT and all known genes in the COSMIC Cancer Gene Census 
(CGC) using a breadth-first-search algorithm35.

For assessing the interaction density at each node A of the STRING network, we computed a Network Density 
Score (NDS) using the following equation:
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where a is the protein of interest, b is an interactor being s interaction nodes apart, int() is the number of interac-
tors of b and score() is the STRING combined interaction score between b and its interaction partners. B is the 
maximum number of interactors of a. To put a meaning to raw NDS values, we ordered all STRING proteins by 
their NDS value and assigned each value a relative rank position (0–1.0) within the ordered list.

STRING gene ontology enrichment analysis.  A hypergeometric test was used to determine the 
enrichment of disrupted interactions in biological processes from Gene Ontology (GO)36. The statistical test 
was performed using the STRINGdb R package (version 1.22) with a score threshold of 0, STRING database 
version 10.0, the isoform-specific interaction network as a background, species identifier 9,606, the category GO 
biological processes, FDR multiple testing correction and the parameter Inferred from Electronic Annotations 
set to true. The test was performed for each subnetwork of disrupted interactions of a PCAWG cancer sample. 
A subnetwork contained proteins of disrupted interactions that were overlapping with one or both interaction 
partners. Only the most significant biological process was selected for each subnetwork. The remaining pro-
cesses were ignored.

Correlation between somatic mutations and transcript expression.  Similar to expressed quan-
titative trait loci calculations, in which the expression of a gene is correlated with mutations in the proximity 
or distance, we performed a correlation analysis between transcript expression and mutations located within 
the associated gene. The correlation analysis was conducted only within a cancer-type, to reduce biases from 
confounders. Thus, all GTEx samples were ignored. The expression of a transcript was assigned to the group 
Mutated if its gene was found to carry a mutation in cis, i.e. the promoter, 5′UTR, coding sequence, 3′UTR and 
splice sites. Otherwise, the expression of the transcript was added to the group Wildtype. All transcripts having 
any expression were taken into consideration but with the requirement that ≥ 5 samples had to have a mutation 
in cis. A non-parametric Wilcox-rank sum test was used to test the difference in the expression values between 
both groups. Once the difference was tested for all transcripts with expression values in both groups, the p-values 
were corrected using the Benjamini–Hochberg FDR method. The significance threshold for q-values was set to 
≤ 0.01.

Results
The goal of this study was to identify common patterns in the choices of “Most Dominant Transcripts (MDT)” 
of 27 different cancer types while testing for their pathogenicity and disruptive nature via protein–protein inter-
action networks (Fig. 1). On a median average, 37 samples per cancer type were available with Kidney Renal 
Cell Carcinomas (Kidney-RCC) having most samples (117x) and Cervix adenocarcinoma (Cervix-AdenoCA) 
and undifferentiable Lymphoma (Lymph-NOS) having only two samples each (see Fig. 2). The latter two cancer 
types were discarded for in-depth analysis due to their small cohort size. A detailed data file listing all detected 
cancer-specific MDT, the disrupted interactions and a rich set of annotations is available in Table S3.

PCAWG samples with cancer‑specific most dominant transcript switches.  In each of the 1,209 
PCAWG samples, cancer-specific MDT (cMDT) were determined. In total, we detected 11,040 unique cMDT 
from 7,143 genes that underwent a total of 122,051 most dominant transcript switches in all 1,209 PCAWG 
samples, with a median average of 58 cMDT per sample (see Fig. 2A and Table S1). The highest number of 
cMDT was detected in cancers of female reproductive organs with a mean number of 322, 129 and 101 cMDT 
per sample for uterus adenocarcinoma (Uterus-AdenoCA), ovarian adenocarcinoma (Ovary-AdenoCA) and 
cervix squamous-cell carcinoma (Cervix-SCC), respectively (see Fig. 2B). On the other side, none of the 42 Head 
and Neck Squamous Cell Carcinoma samples (Head-SCC) showed any cMDT, while B-cell Non-Hodgkin Lym-
phomas (Lymph-BNHL) had only 6 cMDT per case. Interestingly, melanoma samples had only 10 cMDT on a 
median despite having generally the highest mutational burden (see Figure S1). In contrast, Pancreas-AdenoCA 
had only a few mutations, while having the second highest number of cMDT in the dataset. Another observa-
tion we made is that the cMDT load, i.e. the number of cMDT in a cancer sample, was tissue-specific. Cancer 
types originating from the same primary tissue, e.g. CNS-GBM and CNS-Oligo, Lung-AdenoCA and Lung-SCC 
or Lymph-BNHL and Lymph-CLL, tended to have a similar cMDT load. Interestingly, the tissue specificity 
manifested itself mainly for cMDT and not for the mutational load (median Kruskal–Wallis p-value 0.06 vs 
p-value 0.0001 for cancers of blood, brain, breast, kidney, liver and lung). This is not surprising as gene expres-
sion programs, especially those defining tissue-identity, are thought to persist through neoplastic progressions 
in cancer cells37. Furthermore, in about 50% of cases, it was the same cMDT that was overexpressed in different 
cancer types. For those cMDT affecting known cancer genes, 34% were only tumor suppressor genes followed by 
20% fusion genes and 16% oncogenes following the distribution of the COSMIC Cancer Gene Census (χ2 test p 
value = 0.647). Genes with multiple annotation were excluded.

In summary, these results highlight large variations in the cMDT load in different cancer types, which were 
tissue-specific and difficult to predict using genomics data only.

Most dominant transcript switches as diagnostic biomarkers.  In our analyses 22 cMDT stood out 
as transcripts that were primarily expressed in all samples of a cancer type (see Table S4). After manual checking 
against the exon expression pattern in the latest GTEx database (v8) and removing cases with no GTEx expres-
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Figure 2.   Overview of the PCAWG dataset. (A) Left: Table for mapping PCAWG code to cancer type. Right: 
The top plot shows the number of samples with RNAseq and WGS data in PCAWG per cancer type colored 
according to PCAWG specifications. The bottom plot displays the number of samples per matched GTEx tissue 
type. (B) Number of cancer-specific Most Dominant Transcript (cMDT) per sample, grouped by cancer type 
and ordered according to the median number (red lines) of cMDT. The top axis displays the sum of all cMDT 
per cancer type. (C) Scatter plot showing for every 1,209 PCAWG samples the number of cMDT vs the number 
of short nucleotide variants. Points were colored according to the PCAWG color code as in (A).
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sion or altered gene structures, 10 cMDT (from the genes C1QBP, CDC25B, HAPLN3, HIPK1, KIF22, NDUFS2, 
SLC25A3, USP46, WDR74, and ZNF511) remained forming a group of cMDT with potential diagnostic bio-
marker qualities (see Table 1). Of those, three were even cancer-type-specific as they were unique to cancer type 
(see Table 1 and Table S9). As potential diagnostic biomarkers these cMDT could help to identify a patient’s can-
cer type. It remains open whether these cMDT could also serve as prognostic or predictive biomarkers, which 
would require additional survival data or drug response data, respectively.

The large majority (≥ 75%) however were cMDT in ≤ 10% of samples of a cancer type. Due to the omnipres-
ence of the ten transcripts, they were likely playing an important role in the seven cancer types in which they 
occurred and could serve as a diagnostic biomarker20,38. One of the ten transcripts was the full-length 1,210 AA 
long transcript (ENST00000369558) of the Homeodomain-interacting protein kinase 1 (HIPK1), which was 
expressed in all Pancreas-AdenoCA samples (and mostly in Stomach-AdenoCA (76%) and Breast-LobularCA 
(67%), while in matched normal tissues a 491 AA short transcript (ENST00000361587) was mostly found (see 
Fig. 3A). As its name suggests, functional copies of HIPK1 phosphorylate homeodomain transcription factors 
but also substrates in the Wnt/ß-catenin pathway or apoptosis pathway via p5339. However, the short tran-
script is most likely non-functional, as it lacks the N-terminal kinase domain of the full-length alternative tran-
script. Interestingly, it also lacks four out of five sumoylation sites (Lys-25, Lys-317, Lys 440, Lys-556, Lys-1202), 
which are important for the translocation of HIPK1 to the cytosol and the subsequent activation of oncogenic 
MAPK and JNK pathways40. Thus, the presence of the kinase domain and all sumoylation sites in the cMDT 
of HIPK1, as well as the fact that HIPK1 is known to be mostly expressed in proliferating cells41 point towards 
ENST00000369558’s important role in Pancreas-AdenoCA.

Another highly interesting cMDT among the ten transcripts was the 178 AA long transcript 
(ENST00000574444) of the “Complement component 1, Q subcomponent-Binding Protein” (C1QBP), which 
is a ubiquitously expressed, multi-ligand-binding, multicompartmental cellular protein often over-expressed 
in bladder, breast, lung and colon cancer42. The transcript was the cMDT in 100% of Bladder-TCC and 57% of 
Uterus-AdenoCA (57%) samples. In contrast, in associated GTEx normal tissues a longer 282 AA transcript 
(ENST00000225698) that possessed the signal sequence in its N-terminus, which was missing in the cMDT, was 
mostly transcribed (see Fig. 3B). The signal sequence (1–73 AA) is essential to target C1QBP to the mitochon-
dria and must be cleaved for activation43,44. Thus, the lack of the N-terminus in the cMDT for Bladder-TCC and 
Uterus-AdenoCA points towards an oncogenic role of C1QBP outside the mitochondria in both cancer types. 
One such role could be lamellipodia formation during metastasis where C1QBP is known to enhance ligand-
dependent activation of receptor tyrosine kinases45 or the translocation of splicing factors from the cytoplasm 
to the nucleus, where C1QBP is known to bind to nuclear localization signals splicing factors46. In particular, 
the latter role could give a partial explanation for the relatively high load of cMDT in Bladder-TCC and Uterus-
AdenoCA (see Fig. 2B) (see “Supplementary Results” for other interesting potential biomarker cMDT).

In prostate cancer, we identified the transcript ENST00000361518 of Zink Finger Protein 511 (ZNF511) as 
a cMDT in all 19 PCAWG samples, while the 10 AA longer alternative transcript ENST00000359035 was found 
as MDT in normal prostate GTEx samples (see Fig. 3C). Both protein isoforms differ only in their C-terminal 
region. Interestingly, ZNF511 was already previously found to be differently expressed in prostate cancer, where 
it was part of NF-kB-activated cancer recurrence predictors47. Our analysis confirms their findings and extents 
it further with the identification of ENST00000361518 as a Prost-AdenoCA specific transcript of ZNF511.

In summary, our analysis highlights the existence of cancer-specific transcripts whose dominant expression 
could serve as a diagnostic biomarker in clinical applications.

Cancer‑specific most dominant transcripts disrupting protein–protein interactions.  To analyse 
the impact of cMDT on protein interactions, we mapped cMDT to a STRING interaction network with 428,101 
high-quality Protein–Protein Interactions (PPI) (combined score ≥ 0.9). Of the aforementioned 7,143 genes with 

Table 1.   Cancer-specific Most Dominant Transcripts (cMDT), which could be potential diagnostic 
biomarkers due to their overexpression in all samples of a cancer type. Cancer-type-specific MDT that 
appear only in one cancer type are highlighted in green. Most cMDT lack Protein–Protein Interaction (PPI) 
information as indicated in the rightmost column.

GTEx tissue/PCAWG 
cancer type Gene name

ENSEMBL transcript ID 
in PCAWG cancer type

ENSEMBL transcript ID 
in GTEx tissue

Total number of 
PCAWG cases

Frequency in PCAWG 
cancer type (%)

Percent PPI disrupted 
(%)

Bladder/Bladder-TCC​ C1QBP ENST00000574444 ENST00000225698 23 100 –

Uterus/Uterus-AdenoCA CDC25B ENST00000439880 ENST00000245960 44 100 –

CervixUteri/Cervix-SCC HAPLN3 ENST00000359595 ENST00000558770 18 100 –

Pancreas/Panc-AdenoCA HIPK1 ENST00000369558 ENST00000361587 75 100 –

Pancreas/Panc-AdenoCA KIF22 ENST00000160827 ENST00000568312 75 100 –

Prostate/Prost-AdenoCA NDUFS2 ENST00000367993 ENST00000392179 19 100 –

Muscle/Bone-Leiomyo SLC25A3 ENST00000552981 ENST00000551917 34 100 –

Breast/Breast-LobularCA USP46 ENST00000451218 ENST00000441222 6 100 100

Pancreas/Panc-AdenoCA WDR74 ENST00000538098 ENST00000278856 75 100 100

Prostate/Prost-AdnoCA ZNF511 ENST00000361518 ENST00000359035 19 100 –
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a cMDT, 2,573 had at least one PPI in the network (median: four), while the rest lacked any PPI data. For 853 
of the 2,573 genes, we detected a loss of all interactions for the cMDT. For another 557 genes, we observed the 
loss of about 50% of all interactions (see Fig. 4A). The high number of total PPI losses can be explained by the 
fact that proteins often interact via the same binding domain48, which when lost, lead to a complete loss of all 
interactions.

The most frequent cMDT disrupting interactions in over 90% of samples of a cancer type were those from 
the genes USP46, WDR74, RPS19, BOLA2B, NDUFA9, and LAMA3 (see Table S5). Three of the genes whose 
protein products have a PDB structure available with their interaction partner are shown in Fig. 4. Most of the 
disrupted interactions were found in Uterus-AdenoCA, which had on average 86.2 disrupted interactions per 
sample, followed by Eso-AdenoCa and Cervix-SCC with 45.1 and 44.1 disrupted interaction, respectively. In 
contrast, cancers of the central nervous system and Lymph-BNHL had on average less than a single disrupted 
interaction per sample (see Table 2).

For the Ubiquitin carboxyl-terminal hydrolase 46 (USP46) that plays a role in neurotransmission, histone 
deubiquitination and tumor suppression47, the most frequent transcript in cancer cells was ENST00000451218 
with 137 occurrences, which lacked the second exon of the GTEx transcript ENST00000441222. The exon skip-
ping event removes a beta-strand from an N-terminal two-strand beta-sheet in the palm motif of USP46 (see 
Fig. 4B), which has dramatic effects on the protein conformation49. Besides, the spliced-out beta-strand is part 
of the interaction interface with the Polyubiquitin-B (UBB) protein. UBB stabilizes the finger motif of USP46, 
which is used by USP46 to interact with its allosteric activator WD repeat-containing protein 48 (WDR48)50 and 
other proteins (see Fig. 4B). Thus, the cancer-specific expression of the transcript ENST00000451218 is disabling 
the tumor suppressor function of USP46.

In another example, an alternative promotor region in the ribosomal protein S19 (RPS19) gene induced 
the expression of the cancer-specific 71 AA short cMDT ENST00000221975 in 100% of Panc-AdenoCA, 98% 
of Uterus-AdenoCA and 93% of Stomach-AdenoCA (see Fig. 4C). The 145 AA long alternative transcript 
ENST00000593863 was mainly expressed in matched GTEx tissues. The alternative promoter caused an elonga-
tion of the 5′UTR region, which led to the removal of the first 74N-terminal AAs in the cancer-specific isoforms. 
The N-terminal region of RPS19 holds the entirety of the interaction interface with RPS16. Thus, the interaction 

Figure 3.   Gene structure and frequency of cancer-specific Most Dominant Transcripts (cMDT) in PCAWG. 
(A) cMDT of HIPK1 and its MDT in matched GTEx normal tissue. The cMDT is mostly found in Pancreas 
cancers, Stomach-AdenoCA and Breast-LobularCA. cMDT of KIF4A in comparison to the MDT in matched 
GTEx normal tissues. Note the high frequency of the cMDT in Breast cancers, Bladder-TCC, Ovary- and 
Uterus-AdenoCA. (B) cMDT of C1QBP in comparison to the MDT in matched GTEx normal tissues. Both 
transcripts encode the MAM33 PFAM domain, but the cMDT lacks the N-terminal domain with a signal 
sequence (light grey bar) for mitochondrial sublocalization. (C) cMDT of ZNF511 and its MDT in matched 
GTEx normal tissues. In contrast to HIPK1 and C1QBP, ZNF511′s cMDT was exclusively found in pancreas. 
(Gene structure and PFAM domain graphs were downloaded from Ensembl v75).
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between RPS19 and RPS16 as well as RPS5, RPS18, MRPS7, and MRPS9 was lost in the effected 240 PCAWG 
samples. A fully functioning RPS19, however, is required for the E-site release of tRNA and the maturation of 
40S ribosomal subunits51. Truncating mutations in ribosomal proteins are known to cause cancer52 or syndromes 
like the autosomal inherited Diamond-Blackfan anemia51 (see “Supplementary Results” for other examples).

An enrichment analysis on the disrupted interactions using Gene Ontology biological processes revealed for 
most cancer types disruptions in protein translation and transcription, nucleotide biosynthesis, protein folding, 
and RNA splicing processes (see Fig. 4E). The majority of the disruptions were due to losses of Protein-kinase 
domains, WD40 repeat domains and Pleckstrin homology domains, which were also the most frequent in our 
isoform-specific interaction network. The ribosomal proteins RPS19, RPLP0, and RPL13 were among the top-
most frequent proteins whose cMDT disrupted interaction in 181–240 different samples, most often in Uterus-
AdenoCA (82×), Panc-AdenoCA (75×), Kidney-RCC (69×), and ColoRect-AdenoCA (58×) (see Table S6).

In summary, our results highlight extensive PPI network disruptions by cMDT mainly impacting signaling, 
translational and RNA splicing pathways.

Pathogenic disruptions of protein interactions due to alternative splicing.  An indication that the 
cMDT in the PCAWG dataset were pathogenic to various degrees, came from an analysis wherein we assessed 
the edgetic distances of cMDT to the closest COSMIC Cancer Gene Census (CGC) gene in the STRING interac-
tion network. The distance distribution of cMDT was compared to a random distribution that was generated by 
selecting randomly an expressed protein (≥ 2 TPM) with multiple isoforms in a cancer type. Figure 5A shows a 
clear preference (Wilcox-Rank sum test p-value < 2.2e − 16) for cMDT to be located close to CGC genes. 58% of 
cMDT were CGC genes themselves or direct interaction partners. The preference even increased for cMDT that 
disrupted protein interactions and found its maximum with cMDT that are located at densely populated regions 

Figure 4.   Protein–protein interactions (PPI) disrupted due to overexpression of cancer-specific Most 
Dominant Transcripts (cMDT). (A) Overview of the number of cMDT genes in PCAWG, the number of 
associated PPI, and the number of PPI losses. (B–D) STRING interactions and structural representation of PPI 
and their disruptions due to cMDT. Disrupted interactions in the STRING network are highlighted with thick 
black-colored lines. Protein structures were rendered using PyMOL. (B) Ubiquitin carboxyl-terminal hydrolase 
46 (USP46) (shown in lavender color) whose interaction with WD repeat-containing protein 48 (WDR48) 
(shown in green color) and Polyubiquitin-B (UBB) (shown in orange color) is likely disrupted due to the cMDT 
of USP46 lacking an N-terminal exon (red-colored segment) encoding part of a beta-sheet. The loss of the beta-
strand has likely major impact on the structure of USP46, disrupting its interaction with UBB (shown as sphere) 
and the finger motive that interacts directly with WDR48 (Structure from Protein Data Bank (PDB) ID: 5cvn, 
USP46: chain B, WDR48: chain A, UBB: chain D). (C) Complex of 40S ribosomal protein S19 (RPS19) and S16 
(RPS16) extracted from the electron microscopy 40S ribosome structure (PDB ID: 5flx, RPS19: chain T, RPS16: 
chain Q). The cMDT of RPS19 lacks a large portion of the N-terminus which usually forms an interface with 
RPS16 (shown as spheres). (D) The mitochondrial NADH dehydrogenases NDUFA9 and NDUFS7 are shown 
in complex. The coordinates were extracted from the electron microscopy structure of the human respiratory 
complex PDB ID: 5xtb (NDUFA9: chain J, NDUFS7: chain C). The interface between NDUFA9 and NDUFS7 
is highlighted with spheres. Spliced exons are shown in red color. (E) Heat map showing the number of PPI 
disrupting cMDT and the Gene Ontology biological processes that are mostly affected by these disruptions. 
Dendrograms were calculated using the complete linkage method on binary distances between cMDT numbers.
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of the STRING interaction network. The last observation is expected as PPI networks are biased towards disease-
associated genes that are generally more studied than non-disease causing genes53.

Nonetheless, cMDT that lead to the disruption of many protein–protein interactions are likely more patho-
genic than cMDT that disrupt few interactions. To test this hypothesis, we computed for canonical isoforms a 
network density score (NDS) within the STRING interaction network, which estimated the density of interactions 
of a protein and its local neighborhood. Plotting the ranked NDS values for all cMDT showed, reassuringly, a 
tendency of CGC proteins to be located at denser network regions than non-CGC genes (see Fig. 5B).

Next, we analyzed interesting CGC genes with an NDS in the top 30%. One of the most disrupted interactions 
in the PCAWG dataset was between the regulatory and scaffolding subunit of the PP2A complex. This interaction 
is located within the 16% of densest network regions in the STRING interaction network. In 75% of Uterus-
AdenoCA, 39% of Cervix-AdenoCA, 24% in Colon-AdenoCA and 17% of Ovary-AdenoCA a shorter isoform of 
regulatory PP2A subunit PPP2R5D (ENST00000230402) was expressed that lacked the first N-terminal 80 AA 
and 18 AA within the B56 binding domain of the GTEx-specific isoform (ENST00000485511) (see Fig. 5C). The 
B56 binding domain, however, is central to the interaction of the regulatory subunit with the scaffolding subunit 
PPP2R1A and the catalytic subunit PPP2CA. The B56 binding domain is build up by ankyrin repeats; a common 
protein–protein binding motif in nature56. The deletion of an ankyrin repeat segment is likely destabilizing the 
domain57, which would disrupt the structure and binding capability of PPP2R5D. The disruption has likely an 
oncogenic effect given that PP2A is known as a tumor suppressor and any disruptions in the function of PP2A 
can lead to cell motility, invasiveness, and loss of cell polarity58.

The most frequent cMDT among the COSMIC cancer genes were observed for the E3 ubiquitin-protein 
ligases FBXW7 and MDM2, and the Cyclin-Dependent Kinase CDK4. The F-box/WD repeat-containing protein 
7 (FBXW7) is part of the Skp, Cullin, F-box (SCF) complex and is known to be a tumor suppressor. It ranks 
in the top 25% of the densest STRING network regions. In 37% of Panc-AdenoCA, we found a short isoform 
(ENST00000604872) mostly expressed that only consisted of the N-terminal region of the canonical isoform, 
lacking the F-box and WD40 repeat domains. The SCF complex without a functioning FBXW7 protein is unable 
to degrade cyclin E, which causes sustained proliferation and genome instability59.

The human homolog of Murine Double Minute-2 (MDM2) resides in the top 11% of densest network regions 
in the STRING database and was found to have cMDT in 33% of Cervix-SCC, 25% of Uterus-AdenoCA and 13% 
in Bladder-TCC with the transcript ENST00000428863 being mostly expressed. Compared to the GTEx normal 
isoform ENST00000462284, ENST00000428863 lacks the N-terminal domain which contains the SWIB domain 
that is essential for binding tumor suppressors like TP53, the ubiquitin proteins like RPS27A, UBA52, UBB, 

Table 2.   Number of disrupted Protein–Protein-Interactions (PPI) due to cancer-specific Most Dominant 
Transcript (cMDT) per cancer type.

GTEx tissue/PCAWG cancer type Total number of disrupted PPI due to cMDT Total number of samples in cancer type
Mean number of PPI disrupted due to 
cMDT per sample

Uterus/Uterus-AdenoCA 3,792 44 86.2

Esophagus/Eso-AdenoCA 316 7 45.1

CervixUteri/Cervix-SCC 794 18 44.1

Colon/ColoRect-AdenoCA 1651 51 32.4

Bladder/Bladder-TCC​ 637 23 27.7

Ovary/Ovary-AdenoCA 2,788 110 25.3

Kidney/Kidney-RCC​ 2,328 117 19.9

Pancreas/Panc-AdenoCA 1,059 75 14.1

Liver/Biliary-AdenoCA 243 18 13.5

Muscle/Bone-Leiomyo 415 34 12.2

Thyroid/Thy-AdenoCA 482 47 10.3

Liver/Liver-HCC 841 100 8.4

Breast/Breast-AdenoCA 626 85 7.4

Stomach/Stomach-AdenoCA 169 29 5.8

Blood/Lymph-CLL 360 68 5.3

Lung/Lung-AdenoCA 190 37 5.1

Breast/Breast-LobularCA 30 6 5.0

Kidney/Kidney-ChRCC​ 194 43 4.5

Lung/Lung-SCC 206 47 4.4

Prostate/Prost-AdenoCA 71 19 3.7

Skin/Skin-Melanoma 74 36 2.1

Blood/Lymph-BNHL 74 103 0.7

Brain/CNS-Oligo 5 18 0.3

Brain/CNS-GBM 6 28 0.2

SalivaryGland/Head-SCC 0 42 0
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Figure 5.   Assessing the pathogenicity of cancer-specific Most Dominant Transcript (cMDT). (A) cMDT and their shortest distance 
to a COSMIC Cancer Gene Census (CGC) gene in the STRING interaction network. Relative frequencies of all cMDT are shown 
in orange, while cMDT disrupting protein interactions are shown in red and dark red. Frequencies of randomly selected transcripts 
showing expression and having alternative transcripts are highlighted in grey. The difference between each frequency distribution is 
significant (Wilcox-Rank sum test p-value < 2.2e − 16). (B) A protein Network Density Score (NDS) was computed for all genes in the 
PCAWG dataset based on the number of interactions of a gene and its neighborhood. The histogram shows the distribution of NDS for 
genes from the COSMIC Cancer Gene Census (CGC) and their interaction partners vs. remaining genes. (C–E) Shown are exemplary 
structures of protein complexes whose integrity is lost due to cMDT lacking important residues of the binding interface (shown in 
sphere representations). The spliced-out regions in the cMDT are shown in red color. Next to the protein structures are the STRING 
interactions shown for the cMDT with all interaction partners that could be identified in CanIsoNet. Interactions that are lost due 
to a cMDT are highlighted with thick black lines. Protein structures were rendered using PyMOL. (C) Trimeric Protein Phosphatase 
2A (PP2A)—Shugoshin 1 (SGO1) complex, with an 18 AA long segment in the ankyrin repeat domain that is spliced out in various 
cancer types. This short segment is not directly involved in the interaction with the other PP2A subunits. However, its removal by 
alternative splicing is likely distorting the structure of PPP2R5D and its interactions. The 80 AA long N-terminus of PPP2R5D, which 
is also spliced out, has no structural coordinates, why the atoms of the first N-terminal amino acid in the structure (Phe92) are shown 
as spheres to indicate the location of the N-terminus of PPP2R5D. The inset figure shows the same complex rotated horizontally by 
− 90º. The structure of PPP2R5D is a homology model mapped on the PP2A complex of the Protein Data Bank entry PDB-ID: 3fga54. 
The STRING interaction map indicates that all known interactions in the CanIsoNet network were lost due to this cMDT. (D) X-ray 
crystal structure (PDB-ID 1ycr) of a small section from the MDM2–TP53 complex that shows the interface between MDM2 and 
TP53. The entirety of the MDM2 segment was lost in the cMDT. Nevertheless, not all known interactions in CanIsoNet were affected. 
The interactions with the ubiquitin-conjugating enzymes likely remained despite the cMDT. (E) Structure showing the cryo-Electron 
Microscopy (EM) image of a dimeric microtubule element assembled from human TUBA1A and TUBB6. TUBB6 is a homology 
model from SWISS-MODEL55 mapped on the location of TUBB3, which was the original protein in the cryo-EM complex. All known 
interactions in the CanIsoNet database are lost in 23 PCAWG samples expressing the TUBB6 cMDT.
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UBC, the ribosomal protein RPL11, and MDM460 (see Fig. 5D). As a result, the transcript ENST00000428863 
is unable to ubiquitinate and inhibit p53. Interestingly, 11 of the affected 24 samples carry besides the MDM 
splice variant various TP53 mutations. The cMDT of MDM2 could enhance in these cases the gain-of-function 
effect of mutated TP53 genes61 by dimerizing and withdrawing full-length canonical MDM2 from interacting 
with p5362. Thus, ENST00000428863 likely induces a gain-of-function effect on TP53 by breaking the negative-
feedback loop between wildtype MDM2 and p53.

Our analysis shows that many cMDT are located in the direct neighborhood of known cancer relevant genes 
within densely populated PPI network regions.

Discovering novel pathogenic genes via cancer‑specific most dominant transcripts.  All genes 
and cMDT discussed above were known to have a role in cancer. To discover new cancer-associated genes 
driving neoplasm via cancer-specific alternative splicing, we searched for cMDT in the top 30% of the densest 
regions in the STRING database that were not CGC genes or interactors of CGC genes.

The cMDT with the highest number of disrupted interactions located in the top 15% of densest network 
regions was the Natriuretic Peptide receptor 2, NPR2. In 57% of Uterus-AdenoCA, 19% Ovary-AdenoCA, 15% 
Bone-Leiomyo, and 14% ColoRect-AdenoCA cases, NPR2 expressed a cMDT (ENST00000448821), which is 
predicted to undergo nonsense-mediated decay (see Ensembl entry of transcript). The loss of NPR2 disrupts 
interactions of the canonical transcript ENST00000342694 with the hormone Natriuretic peptide type A, B, 
and C (NPPA, NPPB, and NPPC). Disrupted interactions between NPR2 and NPPC have been shown to cause 
disorganized chromosomes in mouse oocytes63. Given that the chromosome structure is often altered in cancer, 
the cMDT of NPR2 could hint towards a role of NPR2 in cancer. Interestingly, we find potential deleterious 
mutations along the NPR2 gene in 113 PCAWG samples that support this hypothesis.

In 41% of Uterus-AdenoCA, 17% of Bladder-TCC and one of Eso-AdenoCA PCAWG samples, the short 
transcript ENST00000591909 of Tubulin beta-6 chain (TUBB6) was mainly expressed. The short transcript 
lacked most of the central and C-terminal sequence of the canonical isoform (ENST00000317702), which con-
tains both of the tubulin domains. The canonical isoform is located in the top 29% of densest STRING network 
regions. Thus, the cMDT would have disrupted interactions not only to other Tubulin family members (1, 1A, 
1B, 1C, 2A, 2B, 3C, 3E, 4A, 4B) and the dynein 1 and 2 heavy chains but also would have far-reaching impact 
beyond the direct interaction partners (see Fig. 5E). The loss of specific Tubulin functions was associated with 
more aggressive forms of cancer tumors and resistance formation upon tubulin-binding chemotherapy agents64.

In summary, our analysis on cMDT and their location in dense network regions suggests clear candidates for 
novel driver genes (previously non-cancer associated) that might play an important role in tumor progression.

Non‑coding mutations associated with cancer‑specific most dominant transcripts.  Plotting 
the sum of all single (SNVs) and multi-nucleotide variants (MNVs; joining of adjacent SNVs), and insertion and 
deletions (indels) against the number of cMDT in the PCAWG dataset, revealed for the entirety of the dataset 
no correlation, R = − 0.06 (Spearman’s rank correlation) (see Fig. 2C and Table S7). This somewhat contradicts 
the results of Eduardo and co-workers, who found a significant inverse correlation between protein-affecting 
mutations and functional MDT19.

Next, we compared the mutations in the PCAWG dataset with the expression values of the transcripts to 
identify potential causative mutations for the cMDT in this study. To minimize confounder effects, we compared 
the expression values between mutated and wildtype transcripts from the same cancer type only. In total, we 
were able to identify an association between mutations in cis and the expression of 20 transcripts (see Table S8). 
Interestingly, none was a cMDT. It seems that the dramatic alternations of cMDT are not caused by mutations 
in cis-regions but rather by other alternative mechanisms (see “Discussion”).

Figure S2 shows transcripts whose expression significantly correlated with mutations in cis in at least six 
samples of the same cancer type. The transcripts whose expression most significantly correlated were those of 
the apoptosis regulator Bcl-2 in Lymph-BNHL (see Figure S2A). In total 44 of 103 samples had mutations that 
correlated with transcript expression either in the promoter region, 5 and 3′UTR, splice-site, intronic or exonic 
region of the gene. Interestingly, the expression of three out of four transcripts [ENST00000333681 (FDR cor-
rected Wilcox test = 2.4e − 08), ENST00000589955 (FDR corrected Wilcox test = 1.6e − 07), ENST00000398117 
(FDR corrected Wilcox test = 3.6e − 05)] of Bcl-2 showed a high correlation with the mutations (see Figures S2A 
and S3), hinting towards a general upregulation of the gene due to the detected mutations (see “Supplementary 
Results” for additional transcripts in Lymph-BNHL, Panc-AdenoCA, Thy-AdenoCA).

In summary, these results indicate that mutations in cis may change the expression of transcripts but are for 
the most part not driving the large-scale changes observed with cMDT.

Discussion
We have performed (as of today) the most comprehensive analysis of the pathogenic consequences of alterna-
tive splicing alterations in 27 different cancer-types. To perform the analysis, we introduced the concept of 
cancer-specific most dominant transcripts (cMDT) and have developed a novel isoform-specific protein–protein 
interaction network to assess their functional and pathogenic impact. We demonstrated large variations in the 
number of cMDT but also showed that the cMDT load is tissue-specific, in contrast to the mutational load in 
the same samples. We identified some cMDT as candidate diagnostic biomarkers which were found in 100% of 
cancer samples but not in any sample of the matched normal cohort. 20% of disrupted protein–protein inter-
actions were due to cMDT which were mostly related to transcription, protein translation, and RNA splicing. 
When disruptive, cMDT destroyed in most cases all known interactions of a given protein. The large majority of 
cMDT were interaction partners of cancer-associated genes. Based on the density of local network regions, we 
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predicted CHMP7, NPR2, and TUBB6 as novel pathogenic genes whose splice variants impact the interaction 
network similarly as splice variants of cancer-associated genes. And finally, we didn’t find evidence of genomic 
alterations explaining the large extent of cMDT but identified transcripts whose expression correlated with 
various somatic mutations in cis.

Despite the large extent of functional and pathogenic consequences that were detected and predicted for all 
the different cancer types, two main problems remain with our assessments. Firstly, the RNAseq data on which 
we based our MDT measurements were collected with short-read sequencing technologies, which have an 
intrinsic limitation to detect and quantify long transcripts65. Several benchmarks of alignment-free transcript 
quantification methods like Kallisto have however shown that these methods are among the most accurate 
quantification tools for known transcripts66,67. Nevertheless, as Kallisto only quantifies known transcripts, we 
might have underestimated the impact of altered alternative splicing by not considering novel transcripts. Long-
read sequencing68 in bulk or on single cells69,70 are ideal methods to overcome these problems. Their application 
on large cohorts like PCAWG will certainly advance our understanding of the true extent of cMDT in cancer.

Secondly, there remains the possibility that the detected cMDT are not translated into proteins, in which 
case predicted consequences on the interaction networks might not be realized. However, there is currently 
no technology for measuring protein isoform expression on a proteome-wide scale. Mass-spectrometry (MS) 
based methods which are most widely used to probe the proteome of cancer cells suffer from similar limitations 
as short-read sequencing technologies. MS-based methods often quantify proteins based on a single or a few 
identified peptides. In most cases, however, these peptides are shared between different isoforms and cannot 
be uniquely assigned. For example, in a recent study by the Aebersold lab, only 65 peptides could be measured 
that were unique to an isoform from a whole proteome measurement71. Consequently, the small number of MS 
detectable isoform-specific peptides makes it currently unfeasible to perform a proteome-wide judgment on 
the translation of cMDT.

We also noticed that the identification of cMDT is somewhat dependent on method parameters, which forced 
us to be conservative with our choices of fold-change thresholds, interaction score confidences, p-values and the 
exclusion of any normal cohort matches. Despite the restrictive parameters, we failed to identify any causative 
mutations in cis that could explain the observed overexpression of the cMDT. There are multiple reasons why 
this might be the case. Firstly, even though we had over 1,209 samples available for our study, on a cancer-type 
level we had only 37 cases on a median average. Also, most mutations were unique and found at various loca-
tions within a gene’s structure. To counteract the data sparsity we combined different mutations which however 
further reduced the power of our correlation analysis22. Secondly, the causative mutations could lie outside the 
cMDT genes like in splicing factors72. And indeed, samples with mutations in the spliceosomal complex tend to 
have more cMDT than wildtype samples (Wilcox-Rank Sum test, p-value = 1.08e − 06) (see Figure S4). 97 samples 
have mutations in one of the RNA Polymerase II proteins (RBP1-12), which can also lead to aberrantly spliced 
products73,74. Thirdly, epigenetic regulations by histone modifications and DNA methylations could have led to 
some of the observed deregulations in alternative splicing75,76. And finally, more recently a connection between 
glucose metabolism and splicing efficacy was demonstrated77, which could also have contributed to aberrant 
splicing in our cancer samples. Further in-depth analyses are required to fully understand the genomic, epigenetic 
and metabolic causes behind the observed cMDT pattern.

The functional and pathogenic impact that we demonstrated for cMDT emphasizes the importance of alter-
native splicing in tumorigenesis and cancer progression. Future work will show which of the presented findings 
can be corroborated at the proteome level and whether these findings can be applied—in the form of diagnostic 
biomarkers—for precision oncology in the clinic.
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