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Introduction: The study of Alzheimer’s disease investigates topographic patterns of
degeneration in the context of connected networks comprised of functionally distinct
domains using increasingly sophisticated molecular techniques. Therefore, obtaining
high precision and accuracy of neuropathologic tissue sampling will enhance the
reliability of molecular studies and contribute to the understanding of Alzheimer’s disease
pathology. Neuroimaging tools can help assess these aspects of current sampling
protocols as well as contribute directly to their improvement.

Methods: Using a virtual sampling method on magnetic resonance images (MRIs)
from 35 participants (21 women), we compared the precision and accuracy of
traditional neuropathologic vs. neuroimaging-guided sampling. The impact of the
resulting differences was assessed by evaluating the functional connectivity pattern of
regions selected by each approach.

Results: Virtual sampling using the traditional neuropathologic approach had low
neuroanatomical precision and accuracy for all cortical regions tested. Neuroimaging-
guided strategies narrowed these gaps. Discrepancies in the location of traditional
and neuroimaging-guided samples corresponded to differences in fMRI measures of
functional connectivity.

Discussion: Integrating neuroimaging tools with the neuropathologic assessment
will improve neuropathologic-neuroimaging correlations by helping to ensure specific
functional domains are accurately sampled for quantitative molecular neuropathologic
applications. Our neuroimaging-based simulation of current sampling practices provides
a benchmark of precision and accuracy against which to measure improvements
when using novel tissue sampling approaches. Our results suggest that relying on
gross landmarks alone to select samples at autopsy leads to significant variability,
even when sampled by the same neuropathologist. Further, this exercise highlights
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how sampling precision could be enhanced if neuroimaging were integrated with
the standard neuropathologic assessment. More accurate targeting and improved
biological homogeneity of sampled brain tissue will facilitate the interpretation of
neuropathological analyses in AD and the downstream research applications of brain
tissue from biorepositories.

Keywords: Alzheimer’s disease, neuropathology, neuroimaging, functional connectivity, accuracy, precision

INTRODUCTION

Much of our current understanding of Alzheimer’s disease
(AD) pathophysiology is derived from the neuropathologic
comparison of brains from individuals diagnosed with AD
dementia in life with brains from cognitively normal individuals.
Neuropathologic evaluation allows for a deep characterization
of the pathology at the tissue, cellular, and molecular levels,
but is typically limited, for pragmatic reasons, to a few small
samples of each brain. Current, widely practiced guidelines for
the neuropathologic assessment of AD recommend sampling
four regions of cerebral cortex [middle frontal gyrus (MFG),
inferior parietal lobule (IPL), superior/middle temporal gyri, and
calcarine cortex] from coronal brain slices for histopathologic,
biochemical, and molecular assessments (Montine et al., 2012).
Together these samples constitute a miniscule fraction of the
total brain volume. Gross anatomical landmarks guide sampling
of these regions. For example, the MFG and superior/middle
temporal gyri are sampled on the coronal slice containing
the anterior commissure. This approach provides some degree
of consistency, but the degree to which the sampled regions
correspond to the same structural and functional brain area
across individuals is unknown.

Providing complimentary information, neuroimaging studies
have been essential for understanding the impact of the AD
pathological cascade on the brain. Magnetic Resonance Imaging
(MRI) and Positron Emission Tomography (PET) have been
integral in generating the current model of disease progression
and determining the relevance of associated biomarkers (Jack
and Holtzman, 2013). Although at a lower resolution than the
neuropathologic examination, structural neuroimaging enables
visualization of the entire brain, providing highly quantitative
volumetric assessments of structural changes. Standard brain
models, such as the Montreal Neurological Institute 152 non-
linear 6th Generation Stereotaxic Registration Model, provide
a population-based template for brain anatomy (MNI space
template) that is widely used in neuroimaging for registering
information across participants into a common coordinate
system (MNI space) (Grabner et al., 2006; Evans et al., 2012).
Functional neuroimaging studies have identified functional
alterations in vivo, quantifying correlated activity in networked
cortical regions of the brain, or “functional connectivity,” and
how that connectivity changes with disease (Ibrahim et al., 2021).
These analyses have revealed how specific networks may be
selectively vulnerable to specific neurodegenerative processes,
and demonstrated that diseases such as AD can selectively impair
systems of cortico-cortical connectivity (Raichle et al., 2001;

Buckner et al., 2009; Seeley et al., 2012; Dai et al., 2015; Jones
et al., 2016). Such neuroimaging studies have driven an increasing
appreciation for the heterogeneity of AD in the patterns of
cortical and subcortical involvement (Grabowski, 2004; Gorno-
Tempini et al., 2011; Murray et al., 2011; Crutch et al., 2017;
Ossenkoppele et al., 2020).

Despite the complementary capabilities of neuroimaging
and neuropathological studies, the two are rarely integrated
systematically, limiting our ability to relate changes in structure
to function in the context of neurodegenerative diseases.
The published studies leveraging neuroimaging tools in the
neuropathologic assessment of central nervous system diseases
have largely focused on the identification of lesions visible in
structural imaging that cannot be seen in gross specimens. In
particular studies of neurotrauma, vascular brain injury, and
multiple sclerosis have successfully employed this approach
(Black et al., 2009; Bigler and Maxwell, 2011; Keene et al.,
2018; Filippi et al., 2019). There have also been attempts to
correlate the neuropathologic features of AD to structural brain
changes identified on MRI. In general, these studies correlate
broad structural changes (i.e., regional volumetrics) with overall
neuropathologic assessments of AD pathology (i.e., Braak stage
for neurofibrillary tangle distribution) and the methods and
results have been well described in a recent review (Dallaire-
Théroux et al., 2017). Nevertheless, the literature overall is lacking
in systematic approaches that leverage neuroimaging tools for the
precise and accurate sampling of structurally and/or functionally
distinct brain regions.

In the context of brain sampling, precision refers to
consistently targeting the same region, while accuracy refers to
correctly targeting the intended region. Precision and accuracy
in brain tissue sampling across subjects is critical to ensure the
quality of brain biorepository resources for research. Standard
baseline protocols for sampling brain tissue based on common
landmarks are deployed across neuropathology cores of U.S.
Alzheimer’s Disease Research Centers and other brain tissue
banks. It is critical to implement procedures that maximize the
neuroanatomical precision and accuracy of brain tissue sampling
at autopsy, but it is currently unknown whether the current
sampling approaches are sufficiently precise and accurate for
the rapidly advancing downstream molecular technologies that
utilize this tissue. Understanding limitations in this arena is
essential for future progress.

Here, we establish quantitative measures of precision and
accuracy of current best practice neuropathologic sampling
strategies by implementing a virtual AD neuropathologic
sampling protocol. Using traditional anatomic landmarks aligned
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with the latest NIA-AA guidelines for assessing Alzheimer’s
disease neuropathologic change (Hyman et al., 2012; Montine
et al., 2012), we identified four standard cortical regions
of interest (ROIs) on anatomical magnetic resonance images
(MRIs). We registered the results to a common stereotaxic
brain space and assessed the degree of overlap between subjects
(precision). We also sampled the same brain regions using
a neuroimaging-guided approach. We compared the location
of these subject-specific samples with the intended targets
(accuracy) to demonstrate how a neuroimaging-guided approach
could improve accuracy. Finally, we evaluated the functional
connectivity patterns associated with the intended target and the
subject-specific samples to assess the functional impact of the
observed discrepancies.

MATERIALS AND METHODS

Overview
We virtually sampled ROIs on MR images, simulating human
brain autopsies in silico. This approach is diagramed in Figure 1
and described in further detail below. Briefly, using the MRI
scans we generated digital coronal slices of 4 mm thickness
from anterior to posterior, analogous to the brain-cutting
protocol of the University of Washington (UW) Biorepository
and Integrated Neuropathology (BRaIN) lab and Precision
Neuropathology Core. A neuropathologist (CSL) identified the
regions of the brain that would routinely be sampled for
neuropathologic assessment by placing appropriately sized masks
(see section “Virtual Slicing and Sampling”) on the coronal
MR images. The ROIs included middle frontal gyrus (MFG),
middle and superior temporal gyri (MSTG), inferior parietal
lobule (IPL), and primary visual (calcarine) cortex (V1). Masks
placed on each subject’s native space MRI scan, i.e., subject-
specific samples, emulate traditional neuropathologic sampling.
Precision (consistently targeting the same region) was measured
by registering each subject-specific sample to the MNI space
template and computing the overlap among all such MNI-
registered samples. Since the MNI space template represents
stereotypical brain anatomy, a mask on this standard brain
represents a target sample, the portion of brain tissues intended
to be sampled across subjects. To determine the location of these
intended regions in each subject, the four target samples from
the MNI space template were then registered to each subject’s
brain MRI, generating the reference samples. Accuracy (correctly
targeting the intended region) was measured by comparing
overlap between the reference and subject-specific samples in each
subject. We also estimated potential improvements in accuracy
that could be obtained with neuroimaging-guided samples. To
do so, we translated subject-specific samples across each slice
to maximize overlap with the reference region. This simulated
process corresponds to a hypothetical, but realistically achievable,
process of generating reference samples on MRI images and using
them to guide sampling on actual tissue slices in the postmortem
sampling process. Finally, to assess the potential implications of
inaccuracy, we compared functional connectivity patterns of the
subject-specific and reference samples due to the success of the

method in delineating functional brain regions as demonstrated
by high-resolution imaging studies (Glasser et al., 2016).

Subjects
All subjects, or their designated power of attorney or legal
next of kin as appropriate, consented to research, including
neuroimaging studies, through protocols approved by the
University of Washington (UW) Institutional Review Board. The
study included 35 subjects from the UW Alzheimer’s Disease
Research Center (ADRC) who underwent an MRI scan. This
cohort included 14 men and 21 women, with a mean age
of approximately 70 years, ranging from 54 to 91 years. The
cognitive status of each individual was assessed according to
clinical research criteria in the Clinical Core of the UW ADRC
through structured interviews and standardized psychometric
assessments. It was then determined at consensus whether the
individual met criteria for cognitively normal (n = 21), mild
cognitive impairment (n = 6), or dementia (n = 8).

MRI Acquisition
As part of a more comprehensive imaging protocol, subjects
underwent a structural MRI using a Philips 3.0T X-Series Achieva
MR System (Philips Medical Systems, software version 5.1.7)
with a 32-channel SENSE head coil. A structural T1-weighted 3D
MPRAGE (237 axial slices, matrix size = 324 × 325, turbo-field
echo factor = 181, repetition time = 10.0 ms, echo time = 4.6 ms,
flip angle = 8◦, shot interval = 2,709 ms) with 0.8 mm isotropic
voxels was obtained for registration.

For resting state functional connectivity data, three echoes of
whole-brain axial echo-planar images were collected parallel to
the anterior commissure—posterior commissure (AC-PC) line
(37 sequential ascending slices, 3.5 mm isotropic voxels, field
of view = 224 × 224 × 129.5, repetition time = 2,500 ms,
echo time = 9.5 ms, 27.5 and 45.5 ms, flip angle = 79, SENSE
acceleration factor = 2.5, EPI factor = 25, 240 volumes). Each
resting state scan was 240 volumes (10 min).

MRI Analysis
Non-brain tissue was removed using FSL’s brain extraction tool
(BET) (Smith et al., 2002). Multi-echo functional magnetic
resonance imaging (fMRI) data were processed with an Analysis
of Functional NeuroImages (AFNI) module that implements
multi-echo independent component analysis (ME-ICA) to
distinguish blood oxygen level-dependent (BOLD) neuronal
and non-BOLD artifact components based on the characteristic
linear echo-time dependence of BOLD T2∗ signals (Kundu
et al., 2012, 2013). We registered the functional image to the
structural image using boundary-based registration based on
a white matter segmentation of the structural image using
epi_reg in FSL (Avants et al., 2007, 2008). The structural image
was registered to a population-specific template derived from
an earlier pilot data set of elderly subjects within the UW
ADRC clinical core, and the population-specific template was
registered to the MNI space template, both using symmetric
diffeomorphic registration algorithm implemented in Advanced
Normalization Tools (ANTs) (Avants et al., 2008). All MRI
images and registrations passed visual quality assurance checks.
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FIGURE 1 | Methods workflow diagram. This diagram illustrates how the different sampling strategies were applied and then compared. Using traditional
neuropathologic sampling approaches, the neuropathologist (NP) selected Regions of Interest (ROIs) in both subjects’ native MRI space (subject-specific samples)
and standard MNI space (target samples). The target samples were then aligned to each subject’s native MRI space to form the reference samples. Translating the
subject-specific sample to achieve maximal overlap with the reference samples resulted in the neuroimaging-guided samples and using rigid-body registration to find
the highest overlap regardless of slice created the optimal samples. The overlap of the subject-specific samples from all subjects aligned in MNI space was used to
evaluate the precision of traditional neuropathologic sampling. The overlap of all three sampling strategies methods with the reference samples was used to evaluate
and compare sampling accuracy. Not shown: the functional connectivity patterns of the original subject-specific and references samples were compared to assess
the potential impact of sampling variability. MRI, magnetic resonance imaging; MNI, Montreal Neurological Institute.

Virtual Slicing and Sampling
Using in-house scripts written in R (R Core Team, 2017), we
created images of brain slices from the structural MRI scan for
each subject and the MNI template every 4 mm, corresponding
to the UW neuropathology brain slicing protocol (Figure 2A).
A neuropathologist (CSL) then visually inspected the slices,
placing a 3.8 cm by 3.2 cm square on appropriate slices using
the image editing utility GIMP1 to simulate sampling of the
MFG, MSTG, IPL, and V1 using the traditional neuropathologic
sampling approach. Once drawn, we reassembled each rectangle
into a 3D mask (3.8 cm × 3.2 cm × 4 mm) to create the original
subject-specific samples (Figure 2B).

Using the registration methods described above, the four
target samples from the MNI space template (Figure 2C) were
then registered into each subject’s native MRI space to form the
reference samples (Figure 2D). Thus, for each ROI (MFG, MSTG,
IPL, and V1) every subject had both a subject-specific sample,
drawn on their own brain MRI in its native space according to the
traditional neuropathologic sampling protocol, and a reference
sample, obtained by transforming a reference ROI from the MNI
space template sample to subject-specific space.

Anatomical regions such as gyri often extend through
multiple coronal slices. While neuropathologists are unlikely
to sample the wrong gyrus on a slice, not choosing the

1https://www.gimp.org/

optimum slice to sample a particular portion of the gyrus across
subjects likely introduces significant variability. To assess this,
we next generated neuroimaging-guided samples by translating
the subject-specific samples across each slice (moving in the
anterior/posterior dimension) to identify the location that had
maximal voxel overlap with the corresponding reference samples.

Another potential source of variation in sampling comes from
the precise position and angle of the brain when it is prepared for
slicing. Relatively slight shifts could lead to significant reductions
in the amount of a reference sample present in any given coronal
slice. To quantify the influence of how the brain is coronally
sliced, we next determined the maximal voxel overlap with
each reference sample possible for any coronal slicing. This
optimal sample was accomplished by registering each subject-
specific sample to the corresponding reference sample using rigid
body registration (Jenkinson and Smith, 2001; Jenkinson et al.,
2002), which allows translation and rotation, but not scaling,
shearing, or warping.

An example of each type of sample for the MFG in a single
subject’s MRI is illustrated in Figure 3, which highlights the
variability in the samples.

Functional Connectivity
For each of the four ROIs, seed-based functional connectivity
from the subject-specific samples and the reference samples were
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FIGURE 2 | Virtual Sampling protocol. (A) Here we show the cortical samples routinely taken at autopsy on coronal sections of fixed human brain that are oriented
by anatomic convention (MFG, middle frontal gyrus; MSTG, middle and superior temporal gyri; IPL, inferior parietal lobule; V1, primary visual cortex. For traditional
neuropathologic sampling, the neuropathologist targets the regions of interest (ROIs; open black boxes) using the gyral pattern and deep brain structures as
landmarks on the sliced human brain. (B) To mimic traditional neuropathologic sampling in silico, we generated coronal slices using each subject’s native space
T1-weighted MRI. An example subject is shown in radiological convention. The neuropathologist identified the ROIs on the MRI slices (subject-specific samples; red)
using the same gyral patterns and deep brain structures as would be used in physical brain slices. (C) The MNI space template brain was then used to create similar
coronal slices and ROIs were identified as before (target samples, green boxes). (D) Finally, the ROIs identified on the coronal sections of the MNI space template
brain were aligned to each subject’s T1-weighted MRI (reference samples, light green). A series of adjacent 4 mm thick coronal sections from a single subject’s
native space T1-weighted MRI illustrates the variability between the subject-specific and reference samples.

calculated for 264 brain regions that were previously identified
as functionally unique (Power et al., 2011). We calculated the
Pearson correlation of the average timeseries in each sample

FIGURE 3 | Illustration of the sampling framework supporting assessment of
precision and accuracy. Position of the samples demonstrates the variation in
location and angle of the MFG ROI for the subject-specific samples (red)
generated using traditional neuropathologic sampling and the reference
sample (light green) which indicated the intended target. Using the reference
sample to guide slice sampling results in the neuroimaging-guided sample
(blue), which shows marked improvement in overlap with the reference
sample. The highest overlap that could be achieved with slicing at any angle
or coronal position is the optimal sample (purple).

to the average timeseries of each of the 264 brain regions.
This produced two sets of whole-brain functional correlations,
one for the subject-specific samples and one for the reference
samples. For each of the four ROIs, we assessed whether there
was a statistically significant difference in the number of subjects
showing increased or decreased connectivity with each of the 264
brain regions (see section “Functional Connectivity”). All scripts
and workflow were implemented reproducibly using GNU Make
(Askren et al., 2016).

Statistical Analysis
Anatomic Overlap
To assess sampling precision (degree of overlap between
subjects), we calculated the number of people whose subject-
specific masks overlapped in MNI space at each voxel. This
descriptive metric illustrates the degree to which the same
anatomical region is sampled across different individuals.

For each sampling method (traditional neuropathologic,
neuroimaging-guided, and optimal), we assessed accuracy
by comparing the percent overlap of each ROI with the
corresponding reference sample using Poisson regression with
robust standard errors. For each ROI, the percent overlap
with the reference sample found for the subject-specific samples
was compared to the percent found for the neuroimage-guided
samples, and the percent with the neuroimaging-guided samples
was compared to optimal samples, using the Wilcoxon matched-
pairs signed-rank test.

Functional Connectivity
To examine whether functional connectivity patterns
significantly differed between each of the four corresponding
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subject-specific and reference samples, we used non-parametric
permutation testing (with 1,000 samples) to create a distribution
of expected differences in functional connectivity between the
sample types. We then calculated the empirical threshold for the
top and bottom 5% differences for each reference region.

RESULTS

Precision: Variation in Sampling Across
Individuals for All Four Regions of
Interest
Figure 4 shows the overlap for subject-specific samples for each
ROI across individuals in the MNI-space template. At least two
subjects overlapped per voxel in 71% of MFG, 73% of MSTG, 67%
of IPL, and 68% of V1. The maximum number of subjects who
overlapped in any given voxel was only 12 of 35 subjects for MFG,
15 of 35 for MSTG, 21 of 35 for IPL, and 15 of 35 for V1, though
in each case this overlap comprised less than one percent of the
total mask volume (see Figure 4, right column).

Accuracy: Localization Discrepancy of
Each ROI Between Traditional
Neuropathologic Sampling and
Neuroimaging-Guided Sampling
Overlap statistics showed that subject-specific samples from
the traditional neuropathologic sampling approach had limited
overlap with the reference samples regardless of the brain region
being sampled [means (standard deviation) of 5.2% (13.1%) for
MFG, 24.0% (16.0%) for MSTG, 27.0% (21.1%) for IPL, and
26.5% (25.0%) for V1; see Figure 5]. There was significantly
lower overlap in MFG than all other regions (p < 0.001), which
appears to be largely due to variation of the subject-specific
samples in the anterior-posterior dimension. The neuroimaging-
guided sampling approach more accurately localized to the
reference samples, significantly improving the overlap for each
ROI [means (standard deviation) of 50.0% (15.4%) for MFG,
45.7% (10.1%) for MSTG, 55.7% (12.7%) for IPL and 48.4%
(15.5%) for V1; Figure 5 shows the distribution]. Optimizing
the position and angle of the coronal brain sections accounts
for approximately 20–30% of the remaining difference between
the target and sampled regions, with ROIs for the optimal
neuroimaging-guided sampling approach ultimately achieving
mean overlaps ranging from 68 to 83% (Figure 5). In each
region, the neuroimaging-guided sampling method significantly
outperformed the traditional neuropathology sampling approach
and optimizing the coronal slicing further improved accuracy
(p < 0.0001 for each comparison).

Functionally Relevant Consequences of
ROI Sampling Discrepancies Are Most
Pronounced in the Middle Frontal Gyrus
To assess whether sampling variability could result in selecting
regions functionally distinct from the target region, we compared
patterns of functional connectivity from the subject-specific

samples to patterns of functional connectivity from the reference
samples for each of the four ROIs. The MFG showed the greatest
discrepancy with 15 regions showing decreased connectivity and
15 regions showing increased connectivity from the subject-
specific sample compared with the reference sample (Figure 6A).
There were also differences among the IPL samples, with one
region showing decreased connectivity and four regions showing
increased connectivity (Figure 6B). Neither MSTG nor V1
showed any significant differences in functional connectivity
between the subject-specific and reference samples.

DISCUSSION

Using an MRI-based simulation, this study estimates the
variability of traditional neuropathologic tissue sampling and
serves as a benchmark against which other sampling protocols
can be compared. It also highlights how neuroimaging tools
could be leveraged to increase the consistency of neuropathologic
sampling and improve the targeting of specific brain regions
by mapping neuroimaging-identified ROIs onto slices of
postmortem human brain.

In our virtual sampling protocol, we found limited overlap
across individuals for the majority of sampled ROIs when using
traditional neuropathologic sampling strategies. This lack of
overlap was largely due to variation in the anterior-posterior
(AP) localization when selecting the target region. For example,
the MFG is normally sampled from the coronal section that
also has the most complete view of the anterior commissure,
but when MFG was selected on the MNI space template using
this approach, and then mapped to each individual MRI, there
was significant variability in the AP location of this brain region
relative to the location of the anterior commissure. Indeed,
when registered to each subject’s native space MRI scan, the
generated reference sample rarely mapped to the same coronal
slice as the anterior commissure, which is where the subject-
specific sample was identified by the traditional neuropathologic
sampling approach.

While the MFG had the most pronounced variability, all
ROIs showed low degrees of overlap that could be significantly
improved by adjusting the slice from which the sample was
taken. Using the reference sample as a guide to select a
slice to sample in each subject’s native MRI space increased
overlap with the reference sample by 20–45 percent, sometimes
resulting in a location 2 cm from the originally selected sample.
These results suggest that relying on gross neuropathological
landmarks alone to select samples at autopsy leads to significant
variability, even when sampled by the same neuropathologist.
Further, this exercise highlights how sampling precision could
be enhanced if neuroimaging were integrated with the standard
neuropathologic assessment.

Although neuroimaging-guided ROI selection improved the
localization of the intended target, it did not completely resolve
the discrepancy with the reference samples. An additional 20–
30% improvement was achieved by optimizing (sub-slice) sample
position and the angle of rotation. There was no apparent pattern
to the angle adjustment needed to improve overlap, but better
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FIGURE 4 | Sampling precision. Heat maps and histograms conveying of the variation in sampling for each ROI. Each heat map shows the degree of overlap for the
ROI. The red end of the spectrum represents less overlap and the yellow end represents greater overlap. The histograms illustrate the number of subjects whose
simulated neuropathological blocks overlap in the MNI template space and the percentage of voxels with each degree of overlap. The maximum amount of overlap
for any given voxel was only 12 of 35 subjects for MFG (A), 15 of 35 for MSTG (B), 21 of 35 for IPL (C), and 15 of 35 for V1 (D). Approximately 30% of each ROI
mask was devoid of any overlap. MFG, middle frontal gyrus; MSTG, middle and superior temporal gyri; IPL, inferior parietal lobule; V1, primary visual cortex.

methods for standardizing the coronal axis prior to coronally
slicing the brain could reduce this source of variability. The
remaining discrepancy (∼20%) is primarily due to individual
non-linear anatomical differences, though small errors in
registration cannot be ruled out. Although it is beyond the
scope of this exercise to fully investigate, some of the individual
differences seen here may in part be related to underlying
pathology. This sample is representative of individuals who
donate tissue to an Alzheimer’s Disease Research Center and
some of the participants had mild cognitive impairment or
dementia while the majority had normal cognition. Neither
AD biomarkers nor definitive post-mortem neuropathologic
data was available to confirm the association between these
clinical diagnoses and the underlying pathology. However, these
will be important questions to pursue in subsequent work
to further extend the utility of integrated neuroimaging and
neuropathological techniques.

Our model suggests that the discrepancies in ROI selection
have meaningful consequences for targeted sampling of

functionally distinct regions, demonstrated by comparing the
functional connectivity patterns of subject-specific and reference
regions for each ROI. Some brain structures, such as the MFG,
extend multiple centimeters in the AP dimension and contain
heterogeneous brain areas (Glasser et al., 2016). As a result, the
cell-types, connectivity patterns, and characteristic pathology
that define the sampled region may vary significantly depending
on the coronal level at which it is sampled. The spatial differences
between the reference and subject-specific samples ranged
up to 20 mm, and the differences in functional connectivity
we observed suggest that the traditional neuropathologic
sampling approach sometimes leads to sampling functionally
distinct brain tissue across individuals. The MFG showed the
greatest discrepancy in connectivity profiles, consistent with
the observation that it had the least amount of physical overlap
across sampled brains compared to the other ROIs evaluated
in this study. The IPL also showed discrepant connectivity
patterns between the two samples. This is in contrast to MSTG
and V1, regions with similar overlap discrepancies between
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FIGURE 5 | Box plots for percentage overlap by method and region. Each box spans the 25th to 75th percentiles, with the mean indicated. The whiskers define 1.5
times the inter-quartile range; individual observations more extreme than this are indicated with dots. Image-guided sample selection, including both adjusting the
anterior-posterior location of the selection as well as optimizing the angle markedly improved overlap with the reference sample compared to the overlap of the
standard sample. MFG improved from 5.2% in the subject-specific sample to 80% in the optimal sample, MSTG improved from 24 to 68%, IPL improved from 27 to
80%, and V1 improved from 26.5 to 83%. MFG, middle frontal gyrus; MSTG, middle and superior temporal gyri; IPL, inferior parietal lobule; V1, primary visual cortex.

FIGURE 6 | Consequences of sampling variability. The locations of 264 brain regions showing differences in seed-based functional connectivity patterns from the
subject-specific samples relative to the reference samples. (A) In MFG there were 15 regions with decreased (blue dots) and 15 regions with increased (red dots)
connectivity to the subject-specific sample compared to the reference sample. (B) In IPL one region showed decreased (blue dot) and four regions showed
increased (red dots) connectivity to the subject-specific sample compared to the reference sample. MFG, middle frontal gyrus; IPL, inferior parietal lobule.

the subject-specific and reference samples as the IPL, but
for which we did not demonstrate differences in functional
connectivity. This may be explained by observed differences in
the cortical parcellation of these different anatomical regions.
Data from multi-modal cortical parcellation studies of the

Human Connectome Project show numerous subdivisions in
MFG and IPL brain regions from anterior to posterior (Glasser
et al., 2016). Therefore, even relatively small physical sampling
discrepancies could lead to effectively sampling functionally
distinct regions of the cortex. Conversely these parcellations
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show larger AP homogeneity for V1 and MSTG, suggesting
that the observed patterns of variation in sampling would
be less likely to result in differences in connectivity patterns.
Potential implications for this sampling variability include
the negative effects on downstream research applications,
which are moving increasingly toward single-cell profiling of
specific brain regions (Lein et al., 2017; Regev et al., 2017;
Hodge et al., 2019). Generating useful data from single cell-
omics profiles across different individuals will depend in
part on the ability to reliably obtain samples from specific
functional brain regions.

Our study had several limitations, one of which concerns the
subjects within the cohort, which includes a range of older adults,
some of whom have cognitive impairment or AD dementia
and associated cortical atrophy. Although we minimized
registration error by using a population-specific template,
individual differences, and residual registration variability may
have contributed to some discrepancies between the subject-
specific and reference samples. We used ANTs to register
subjects’ structural images to a standard template, treating these
registration results as a gold standard; however, with even the
most advanced registration algorithms, alignment of structural
features can differ by 2–5 mm (Askren et al., 2016). Functional
variability may contribute to a second level of variability in
this study, since neuropathological burden affects functional
connectivity and is heterogeneous in elderly adults (Sonnen
et al., 2009; Dowling et al., 2011). This could diminish the
statistical power of our ability to detect differences in functional
connectivity, thus, our results may be an underestimate of the
true consequences of sampling variability. Even when anatomical
landmarks are perfectly aligned, variability in the borders
of functionally distinct cortical areas can be up to 10 mm
(Eickhoff et al., 2009).

Finally, our results represent a best-case scenario for
tissue sampling and future work will need to extend this
to real-word scenarios. First, all samples were selected by
the same board-certified neuropathologist, and although not
specifically analyzed in this model, sampling variability between
neuropathologists/technicians would likely contribute additional
sampling variability. Second, all “sampling” was performed
in silico and not using actual postmortem human brain tissue.
Because MRI scans, unlike brain slices, have no ex vivo or fixation
distortion, further assessment of the actual sampling of physical
brain slices must be done to address potential confounding
effects related to ex vivo and fixation-related tissue distortions
in registering images of brain slices to the MRI. It may be
that ex vivo postmortem imaging is necessary to provide a
bridge between the antemortem neuroimaging studies and the
postmortem tissue sampling.

This study represents an initial attempt to use neuroimaging
tools to estimate the precision accuracy of current brain tissue
sampling practices and promote more accurate targeting of
specific cortical regions. This is an important step in establishing
robust links between neuropathologic and neuroimaging-derived
measures. Innovative approaches to the study of AD are
being developed in both neuropathology and neuroimaging;
an interdisciplinary strategy leveraging the strengths of both

approaches is more likely to foster success in advancing our
understanding of AD. We envision a model whereby studies
conducted in postmortem human brain tissue are informed by
antemortem assessments, with tools such as fMRI leveraged to
localize functional regions and postmortem MRI serving as a
bridge connecting brain imaging to tissue sampling (Tregidgo
et al., 2020). Integration could be achieved through registration
across all modalities to a common neuroanatomical reference
system, such as MNI space or a common coordinate framework.
For example, future extensions of the methods described here
could include assessing neuropathologic sampling relative to
high-resolution multimodal MRI parcellations (Glasser et al.,
2016) to provide more detailed insight into the impact of various
aspects of sampling variability. We expect that incorporating
such integrative approaches into prospective cohort studies
will enhance research rigor and reproducibility, increase
the probability for novel insights, contribute to mechanistic
hypotheses for testing in model systems, and foster innovative
diagnostic and therapeutic strategies.
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