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Background: Early detection of central nervous system (CNS) anomalies in human embryos through prenatal 
screening is crucial for timely intervention and improved patient outcomes. Fetal brain mid-sagittal ultrasound 
images (FBMUIs) play a pivotal role as a diagnostic tool for detecting structural abnormalities. However, the 
automatic localization and quantitative segmentation of complex anatomical structures such as the corpus callosum-
cavum septum pellucidum complex (CCC) and cerebellar vermis (CV) in FBMUIs present significant challenges.
Methods: To address this issue, we propose an integrated framework that combines anatomical knowledge 
with computer vision techniques. Our framework comprises four steps: (I) generation of average templates 
for CCC and CV local images using a variational autoencoder (VAE); (II) localizing the CCC by using the 
“Initial Localization-Accurate Localization-Result Detection” strategy, followed by segmenting it based on 
morphological characteristics using the “Initial Contour Fitting-Contour Iteration” strategy; (III) applying 
a similar strategy as CCC localization and CV segmentation; and (IV) leveraging spatial and morphological 
characteristics to achieve accurate localization and segmentation.
Results: Our CCC and CV localization and segmentation methods were validated by using 140 FBMUIs 
from various perspectives. The accuracy and effectiveness of our approach were demonstrated through data 
statistics and comparative analysis. Currently, clinical trials are being conducted on our method at Shengjing 
Hospital of China Medical University. 
Conclusions: Our proposed integrated framework presents a novel solution for the automatic localization 
and quantitative segmentation of the CCC and CV in FBMUIs. It shows promise for early diagnosis of CNS 
anomalies in human embryos, offering significant clinical implications.
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Introduction

Prenatal care and examination are crucial for gravidas to 
ensure healthy newborns. Congenital abnormalities of 
the central nervous system (CNS) are a major concern in 
prenatal detection of fetal brain (1), which can be screened 
by ultrasound (US) as a safe, cost-effective, and real-time 
imaging modality. Evaluation of the corpus callosum (CC) 
and cerebellar vermis (CV) are critical aspects of fetal brain 
examination. The CC is a fibrous tract plate connecting 
the hemispheres, playing a vital role in maintaining 
coordinated brain activity (2). Congenital malformations 
like agenesis of the corpus callosum (ACC) and complete 
agenesis of the corpus callosum (CACC) can lead to mental 
retardation, epilepsy, and other related symptoms. Similarly, 
the CV, located in the posterior fossa, plays a vital role in 
maintaining body equilibrium and coordinating muscle and 
organ function (3). However, congenital malformations, 
such as Dandy-Walker malformation (DWM) (4), can lead 
to the absence, hypoplasia, or rotation of the CV. 

During pregnancy, mid-gestational transabdominal scans 
commonly capture axial plane images of the fetal brain, 
whereas the mid-sagittal plane offers the most optimal view 
for visualizing the CC and CV. Three-dimensional (3D) 
reconstruction technology has improved the display rate 
of the mid-sagittal plane, allowing physicians to evaluate 
the CC and CV (2,3). However, artificial evaluation relies 
on medical expertise and are prone to subjective errors, 
inefficiencies, and inaccuracies. Thus, there is an urgent 
need for an accurate and efficient automated method for 
medical quantification of CC and CV, providing reliable 
clinical diagnosis.

It is crucial to avoid artificial errors and improve 
efficiency during examination. However, there is no 
CC and CV localization and segmentation method that 
satisfies clinical requirements due to the complexity of 
FBMUIs for different individuals and the impact of US 
imaging techniques on image quality. Also, obtaining 
large-scale datasets is challenging. Therefore, our paper 
proposes a fully automated method that makes use of the 
morphological and anatomical characteristics of region 
of interest (ROI) to explore accurate localization and 
segmentation, starting from the traditional method, and 
fulfilling the urgent need for paramedical diagnosis.

The corpus callosum-cavum septum pellucidum complex 
(CCC) includes the CC and the cavum septum pellucidum 
(CSP), which are not easily distinguishable in fetal brain 
mid-sagittal ultrasound images (FBMUIs). Therefore, 

diagnosis of CC development relies on evaluating the 
complex. The CSP is a fluid-filled cavity located between 
two hyaline septa anterior to the brain’s midline, with the 
CC situated above and the cerebral vault below, and the 
lateral walls of the hyaline septal lobules (5).

Related works

In recent years, medical image processing techniques 
have been widely used in assisting medical examinations. 
Various imaging techniques are used to help physicians 
make more accurate diagnoses. Traditional and learning-
based image analysis methods have been developed for 
different medical images, lesion areas, and age groups. This 
paper focuses on 2D US images and proposes a method 
for accurate localization and segmentation of the CCC and 
CV. Keywords related to this work include 2D, ultrasound, 
CCC, CV, localization, and segmentation.

In this paper, we drew inspiration from various studies 
related to US image analysis, CC, CCC, and CV. These 
studies included research on the anatomical relationships 
between these structures (6,7), as well as studies on fetal 
brain US images (8) and other imaging modalities such 
as magnetic resonance imaging (MRI) (9-11). We also 
referenced a processing tool developed for fetal brain MRIs 
by Rousseau et al. and applied it to the processing of US 
images (12).

Our research is unique due to the complexity of FBMUIs 
data and the combination of CCC with CV. However, our 
approach was inspired by related studies. In this section, 
we summarize the research related to our paper from the 
perspectives of CCC and CV, respectively. For the CCC 
part, the related work mainly focuses on CC.

Related works in CCC
Our paper focused on detecting congenital disorders such 
as CC and CV hypoplasia in the fetal brain, and we began 
by reviewing relevant literature from a clinical medical 
perspective. Previous studies by Pashaj et al. (13) provided 
a reference range for quantitative characteristics of the fetal 
CC, and our own previous academic papers established a 
reference range based on classical medical studies and real 
clinical experience. With prior anatomical knowledge, we 
initiated research on CC in fetal brain US images.

To conduct our study, collecting and standardizing 
experimental data was crucial, with professional anatomical 
knowledge as the basis. Yang et al. proposed an open 
benchmark dataset (OpenCC) for CC segmentation and 
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evaluation, created through automatic segmentation and 
manual refinement methods (14), which could be used to 
compare and evaluate newly developed CC segmentation 
algorithms. This dataset also provided ideas for creating 
FBMUI datasets in our study.

Medical a priori knowledge and a well-developed dataset 
could assist in localizing and segmenting the CC. Typically, 
target localization was carried out prior to segmentation 
in most studies. Due to US image characteristics, our 
approach used a traditional method to build and analyze 
the framework. While existing studies primarily used 
adult brain MRIs, traditional techniques such as the 
watershed algorithm, active contour model, and level set 
algorithms were extensively applied for CC localization 
and segmentation based on image gray value (9). Several 
traditional methods were used for CC segmentation in brain 
MRIs, including Freitas et al.’s fully automatic technique using 
the watershed transform (15), Mogali et al.’s semi-automatic 
technique using a two-stage snake formulation (16), Li et al.’s 
fully automatic technique using t1 weighted median and 
the Geometric Active Contour model (17), and Anandh 
et al.’s method using anisotropic diffusion filtering and 
a modified distance regularization level set method for 
Alzheimer’s brain MRIs (18), which was based on Bayesian 
inference using sparse representation and multi-atlas 
voting. Our paper could also benefit from learning-based 
approaches in terms of data processing methods, among 
other things. Furthermore, İçer et al. proposed traditional 
patch-based CC segmentation methods (19-23) as well as 
denoising and enhancement methods (24) for US images, 
which encompassed commonly used traditional methods 
in medical image segmentation. These methods provided 
valuable references for our research.

Related works in CV
Few studies have focused on CV individuals compared to 
CC, with most studies instead concentrating on the overall 
cerebellum structure. Weier et al. provided parametric 
support for data and quantitative references on cerebellar 
dysfunction (25), while Joubert et al. analyzed familial 
CV deficits from medical and genetic perspectives (26). 
The localization and segmentation of CV rely on prior 
knowledge of anatomy and well-developed datasets. Our 
research team has prepared professional medical theory 
and data support for CV localization and segmentation in 
FBMUIs (3,27).

Many studies on CV are based on adult brain MRI 
data and provide references for traditional and learning-

based methods. For example, Claude et al. developed a semi-
automatic segmentation method for fetal MRI and biometric 
analysis of posterior fossa midline structures (28), and 
Hwang et al. proposed an automatic cerebellar extraction 
method using a shape-guided active contour model in T1-
weighted brain MRIs (29). Our paper is more focused on 
the data processing methods and the rational utilization of 
medical prior knowledge in learning-based methods, rather 
than the methods themselves. Powell et al. proposed several 
automatic segmentation methods using multidimensional 
registration, including templates, probabilities, artificial 
neural networks, and support vector machines, and 
presented a direct comparison of their performance. Their 
methods may be as reliable as manual scorers and do not 
require scorer intervention (30).

Our research topic on the localization and segmentation 
of CCC and CV in FBMUIs is a crucial area in medical 
image processing, addressing a gap in clinical medical 
needs. Unlike most studies focusing on MRIs of adult brain, 
FBMUIs present unique challenges due to the differences 
in the medium and data processing difficulty. Our paper 
aims to develop accurate localization and segmentation 
methods for CCC and CV based on the potential medical 
and physiological relationship between the two issues.

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by Medical Ethics Committee of Shengjing 
Hospital, Affiliated to China Medical University (No. 
2022PS293K) and informed consent was taken from all the 
participants.

Overview

The localization and segmentation of the CCC and CV 
in fetal US images currently rely on manual techniques, 
which are often inefficient and prone to inaccuracies. In our 
study, we addressed this clinical challenge by emphasizing 
two key aspects: target localization and segmentation. Our 
proposed localization method is based on “Sliding window 
& Adaptive Average Template”, while the segmentation 
method is based on “Contour Fitting & Contour Iteration”. 
The framework’s overall flow is illustrated in Figure 1, 
leverages the morphological characteristics and spatial 
location correspondence of the CCC and CV.

In the first step, we use artificially segmented images 
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as input for a variational autoencoder (VAE) (31,32) for 
generating average templates of the CCC and CV. An 
image similarity comparison algorithm applicable to 
FBMUIs is selected using comparison experiments. In 
the second and third steps, a progressively more accurate 
localization structure is applied to the CCC: “Initial 
Localization-Accurate Localization-Result Detection”. The 
initial contour is determined using morphological features 
and segmentation is completed by iterating over the 
initial contour. In the fourth and fifth steps, the previously 
obtained CCC segmentation result is used to determine 
the specific location of the CV. The localization of the CV 
is completed using the same localization structure as the 
CCC, based on their physiological geometry relationship. 
The initial contour determination and subsequent iterative 
segmentation process are completed based on the localization 
results of the CV. Figure 2 provides a flowchart illustrating 
the localization and segmentation process of the CC and CV 
in FBMUIs. The steps depicted in Figure 2 align precisely 
with the sequential steps presented in Figure 1.

Framework methodology preparation

Average template images were used for both target 
localization and segmentation. The localization process was 
achieved by using image similarity comparison algorithms. 
The target average template image was generated through 
training, while the selection of the most suitable image 
similarity comparison algorithm for US images was based 
on rigorous comparative experiments.

Data preparation
In our study, fetal brain images were obtained from 140 
healthy volunteers with singleton pregnancies, ranging 
from 20 to 28 weeks of gestational age. US examinations 
were conducted using GE Voluson E8, GE Voluson 
E10, and SAMSUNG WS80A machines, equipped with 
transabdominal 3D transducers (RAB 4-8, RM 6C, or 
eM6C). Five experienced sonographers, each with more 
than 10 years of expertise, manually annotated the two-
dimensional fetal brain US images in the median sagittal 

Framework methodology preparation Localization of CCC

Segmentation of CCC

Localization of CV

Segmentation of CV

Output

CCC location

CCC contour

CV location

CV contour

1 2

3

4

5

Figure 1 Schematic diagram of localization and segmentation of CCC and CV in FBMUIs. The green and yellow dashed lines respectively 
reflect the correspondence between the steps in the localization and segmentation of CCC and CV (dashed lines connect images or 
rectangles, where the front and back indicate the same image or a derived relationship). The overall framework is a string structure, and 
the result of the previous step is the input of the next step, including five steps: generation of the average templates; localization of CCC; 
segmentation of CCC; localization of CV; segmentation of CV. CCC, corpus callosum-cavum septum pellucidum complex; CV, cerebellar 
vermis; FBMUI, fetal brain mid-sagittal ultrasound image.
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plane of the 3D US data. We only selected images that 
displayed the complete fetal brain, had no significant 
sound shadow, and lacked explicit measurement caliper 
coverage. The original dataset comprised 140 preprocessed 
images (gray value normalized and size normalized). Two 
expert sonographers manually annotated the regions 
corresponding to CCC and CV and provided masks for the 
two-dimensional fetal brain median sagittal US images. The 
data collection process adhered to ethical guidelines, and all 
patients participated with informed consent.

Generation of average templates
By observing the small image in the upper left corner 
of Figure 1, the grayscale values of the pixel differences 
between the main regions of CCC and CV and their 
background regions in FBMUIs were more significant. 
This feature reduced human errors in the manual labeling 
of target images by physicians. The process began with 
the creation of a training dataset for generating the target 
average template. A concept called the “pixel domain” 
was introduced, which represented a line segment of pixel 
points extending in a specified vector direction S



 with a 
given length ( )S n



 (denoted as a line segment containing 
n pixel points with width 1 on the image). Taking one side 
of the CV image A as an example, the micro-adjustment 
process was illustrated in Figure 3. The main area of the CV, 
along with its tangent point P1, was identified on the edge 
E1. A specific length of the pixel domain was determined 
in the direction of 1ES⊥



, and a new tangent point 1 newP−  was 
obtained based on the mean pixel value within that range. 
By applying this method to all four edges, the new target 

image was obtained. This micro-adjustment process was 
performed on the 140 FBMUIs manually labeled by doctors 
to obtain separate CCC and CV image datasets.

The CCC and CV datasets were divided into three 
groups following a 5:1:1 ratio (training set: 100, validation 
set: 20, testing set: 20). These datasets were used as inputs 
for training the VAE model, which included an encoder and 
a decoder (22,31). The encoding results of each image were 
weighted and averaged, and then decoded using the trained 
decoder. This process yielded the average feature-decoded 
images for CCC and CV, respectively, which served as the 
average template images (as shown in Figure 4). These 
template images contained texture and morphological 
feature information of the target and background regions. 
They provided feature comparison information for target 
localization tasks and an average initial contour for target 
segmentation tasks, facilitating subsequent segmentation and 
iteration. Moreover, these template images were combined 
with the methods described in subsequent chapters to 
address challenges caused by anatomical variance.

Selection of similarity comparison algorithm
Suitable similarity comparison algorithms were selected 
through comparative experiments. The average templates of 
CCC and CV obtained from the original US images served 
as references for the sliding window search. Algorithms 
that demonstrated accurate target area localization were 
then chosen for subsequent localization tasks (as shown in 
Figure 5). Based on the experimental results, the following 
algorithms were selected for target localization: Pearson 
correlation coefficient, structural similarity index measure 
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Figure 2 Flowchart of localization and segmentation of CCC and CV in FBMUIs. FBMUI, fetal brain mid-sagittal ultrasound image; CCC, 
corpus callosum-cavum septum pellucidum complex; CV, cerebellar vermis; N, no; Y, yes.
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Figure 3 The annotation results of the automatically adjusted CCC and CV images. The red box in the left image is the manually calibrated 
target area, and the orange box in the right image is the result of automatic adjustment. CCC, corpus callosum-cavum septum pellucidum 
complex; CV, cerebellar vermis.
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Average template of CCC

Average template 
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Figure 4 Average templates of CCC and CV are generated respectively by VAE model. CCC, corpus callosum-cavum septum pellucidum 
complex; CV, cerebellar vermis; VAE, variational autoencoder. 
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(SSIM), peak signal-to-noise ratio (PSNR), mutual 
information (MI), and mean squared error (MSE) (33-36).

Localization of the CCC region

Based on the analysis of 140 clinical images, it was observed 
that the CCC in FBMUIs generally maintained a consistent 
orientation with left-right symmetry. However, certain cases 
exhibited angular deviations. As a result, the localization 
process for the CCC in FBMUIs comprised the following 
steps: (step 1) determining the initial search area of CCC; 
(step 2) performing initial localization using the sliding 
window search method and a size adaptive template; (step 3) 
determining the accurate search area based on the initial 

localization result; (step 4) conducting accurate localization 
using the sliding window search method and a size adaptive 
template (different from the initial localization in step 2); 
(step 5) verifying the accuracy of the localization result 
and rectifying any potential CCC orientation deviations 
through rotation if required. Overall, the localization 
process adhered to a sequential structure known as “Initial 
Localization-Accurate Localization-Result Detection”.

Initial localization of the CCC region
To determine the initial search region of CCC, we define 
the concepts of “The Valuable Region” and “The Invaluable 
Region” (as shown in Figure 6). The area ratio information 
of these regions is utilized to obtain the fitted rectangular 

Figure 5 This figure presents the experimental results of image similarity comparison algorithms for brain ultrasound images from 8 individual 
fetuses. The green box displays the localization results of 12 image similarity comparison algorithms within the initial search region of CCC (each 
algorithm is indicated by a corresponding color in the upper right corner of the image). The yellow box represents the initial search region of CV. 
Within this region, the image similarity comparison algorithms suitable for CV localization are filtered using the same experiments as conducted 
for CCC. PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure; MSE, mean squared error; MI, mutual information; 
LCC, linear correlation coefficient; KROCC, Kendall rank-order correlation coefficient; SROCC, Spearman rank-order correlation coefficient; 
PROCC, Pearson rank-order correlation coefficient; CCC, corpus callosum-cavum septum pellucidum complex; CV, cerebellar vermis. 

1 2 3 4

5 6 7 8



Wang et al. Auto localization & segmentation in fetal brain US6066

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(9):6059-6088 | https://dx.doi.org/10.21037/qims-22-1242

valS

invalS

The invaluable region

The valuable region

1 2

3 4

Figure 6 Four FBMUIs are shown in the figure, and the red shaded areas are “The Valuable Region”. Other black areas are “The Invaluable 
Region”. FBMUI, fetal brain mid-sagittal ultrasound image; val, valuable; inval, invaluable. 

Initial search region 
of CCC region

1 2

3 4

Figure 7 The initial search region of CCC (the purple rectangle region). CCC, corpus callosum-cavum septum pellucidum complex.

area of the valuable regions (shown as the purple rectangular 
area in Figure 7), which serves as the initial search area 
for CCC. A sliding window search is conducted in the 
initial search area using an average template Tmp1st with 

an adaptive variable size. The sliding window size matches 
the template image size. The images obtained from the 
window are compared with the CCC template image using 
the correlation coefficient matching algorithm (as shown 
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in Figure 8, step 1). Rectangular boxes of search results that 
satisfy the similarity threshold range are recorded (as shown 
in Figure 8, step 2). Subsequently, the centroids of these 
rectangular boxes are clustered (37), and the centroid of the 
maximum class is identified as the initial localization result 
for CCC. The initial localization result of CCC is denoted 
as Res1st (as shown in Figure 8, step 3).

To determine the initial search region of CCC, the 
concepts of “The Valuable Region” and “The Invaluable 
Region” were defined (as shown in Figure 6). The area 
ratio information of these regions was utilized to obtain 
the fitted rectangular area of the valuable regions (shown 
as the purple rectangular area in Figure 7), which served as 
the initial search area for CCC. A sliding window search 
was conducted in the initial search area using an average 
template Tmp1st with an adaptive variable size. The sliding 
window size matched the template image size. The images 
obtained from the window were compared with the CCC 
template image using the correlation coefficient matching 
algorithm (as shown in Figure 8, step 1). Rectangular boxes 
of search results that satisfied the similarity threshold range 
were recorded (as shown in Figure 8, step 2). Subsequently, 
the centroids of these rectangular boxes were clustered (37), 
and the centroid of the maximum class was identified as the 
initial localization result for CCC. The initial localization 
result of CCC was denoted as Res1st (as shown in Figure 8, 
step 3).

Accurate localization of the CCC region 
The accurate search area Rgn2nd was determined based on the 
initial localization result Res1st (as shown in Figure 9, step 1).  
By employing the image pyramid and sliding window search, 
rectangular boxes satisfying the image similarity threshold 
range (compared with the CCC average template image 
Tmp2nd) were obtained (as shown in Figure 9, steps 2 and 3). 
The CCC average template image and similarity comparison 
algorithms such as SSIM, PSNR, MI, and MSE were 
utilized for localization (33-36). The top-left point set PTL 

and bottom-right point set PBR of these rectangular boxes 
were separately clustered to obtain the geometric centers of 
the maximum class, denoted as CenTL and CenBR (as shown in 
Figure 9, step 4). These points were then used as the upper-
left corner point and lower-right corner point of the accurate 
localization results Res2nd (as shown in Figure 9, step 5).

Localization result detection of the CCC region
To ensure precise localization that aligned with medical 
clinical requirements, the mirror symmetry of the 
morphological features of the CCC was exploited. By 
comparing the image similarity between the segmented 
CCC images’ left and right sides, the accuracy of the 
localization results could be evaluated. Based on the 
accurate localization result Res2nd, the CCC image Callimg 
was extracted from the FBMUI. We divided Callimg 
vertically at its midpoint, obtaining the left and right images 

Rgn1st

Tmp1st

PSET

Cen1st

Res1st

Rgn1st

Class 1

Class 2

Class 3

Initial localization 
result of CCC

Class 4

21

3

Figure 8 The process of the CCC initial localization. CCC, corpus callosum-cavum septum pellucidum complex.
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CallLeft, CallRight. A mirror inversion operation was performed 
on CallRight to obtain the RightCall′  image. By applying the 
normalized correlation coefficient algorithm, the similarity 
between CallLeft and RightCall′  was compared (as shown in 
Figure 10). Through extensive experimental comparisons, 
the threshold value of 0.75 was set for judging the similarity 
between the left and right images. Upon analyzing the 
experimental data, we observed that irregular angles in 
FBMUIs contribute to errors. To mitigate these errors, image 
rotation was incorporated into the localization method. 
In the new localization process (as shown in Figure 11),  
the original CCC localization result was considered as 
the centroid and its size as the size of the new search 
area. The original FBMUI was rotated around its center 
point, with rotation angles ranging from −45° to 45° in 
1° increments. Using the same search method employed 

for accurate CCC localization, CCC was searched within 
the search area at each angle. This localization process 
effectively addressed errors arising from variations in 
shooting angles. The resulting area of the final localization 
was denoted as Res3rd, and its corresponding CCC image 
represented the final localization result of CCC, denoted 
as Callres. By implementing the localization and inspection 
framework, CCC localization results that met the precision 
requirements of clinical medicine could be ascertained.

Segmentation of the CCC region

Through medical prior knowledge and careful observations, 
a significant dissimilarity in grayscale values emerged 
between the CCC and its surrounding region (as illustrated 
in Figure 12). Based on this observation, we proposed a pixel 

3Rgn2ndRes1st

Tmp2nd

Res2nd

Accurate localization 
result of CCC

PTL

CenTL

CenBR

PBR

21

4

5

Figure 9 The process of the CCC accurate localization. CCC, corpus callosum-cavum septum pellucidum complex; TL, top-left; BR, 
bottom-right.

Call'RightCallRightCallLeft
Res2nd

Similarity comparison

Figure 10 Examination of CCC localization results. CCC, corpus callosum-cavum septum pellucidum complex. 
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Rgn3rd Rgn3rd

Tmp3rd
The image is rotated around the center point at an 
angle of −45 to 45 degrees, 1 degree at a time.

2
1

Figure 11 After detecting the accuracy of CCC accurate localization results, the results that do not meet the threshold criteria are localized 
again. Errors due to the angle of capture are eliminated by rotating the original FBMUI to improve the localization accuracy. CCC, corpus 
callosum-cavum septum pellucidum complex; FBMUI, fetal brain mid-sagittal ultrasound image.

1 2 3 4

Figure 12 The CCC region and its surrounding region. The red arrows indicate the difference between the target region and the 
background region (the gray pixels in some samples have obvious differences and clear boundaries, as shown in Figures 1,2; while the other 
part has no obvious difference, as shown in Figures 3,4). CCC, corpus callosum-cavum septum pellucidum complex.

comparison-based contour fitting and iterative method for 
CCC segmentation (18,32,35,38-44).

Contour fitting of the CCC region
After observation, the shape features of CCC could not 

be described by conventional geometries. Therefore, the 
average contour of the average template Tmpcall was adopted 
to fit the CCC contour and reflect its shape characteristics 
more accurately (as shown in Figure 13). The purple contour 
Shapecall represented the average template contour, while the 

Shape'call

Shapecall

Tmpcall

Callres

1 2

3 4

Figure 13 The contour fitting process of CCC. The figures in right show the result of contour fitting of four CCC images. CCC, corpus 
callosum-cavum septum pellucidum complex. 
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red contour ′callShape  was obtained by smoothing Shapecall.

Contour iteration process of the CCC region
In the CCC images, the outer contour of the fitted map was 
represented as coordinate points according to the fitting 
results obtained above, and the fitted contour point set was 
obtained, denoted as { }1 2, , ,shape s s snPset P P P . Due to the 
differences in the shapes of CCC individuals, the iteration 
of the CCC contour was completed by adjusting the point 
set Psetshape (using the pixel information of the main edges 
of CCC). The specific steps were as follows (as shown in 
Figure 14).

First, the geometric center point of the image was 
determined to be Cencall, and N rays were sent out from this 
point to pass through the points in the point set Psetshape, 

each in the direction of { }1 2, , ,shape s s sNDset S S S
  

 . For a 

point Psetshape in the point set Psi, 1≤i≤n, the pixel domain 
( ) ( ) ( ) ( ) ( ) ( ){ }, 10 , 9 , 1 ,0 ,1 ,10, , , , , , ,seti i i i i i iP P P P P P P− − −   extending along 

the X direction was found. The coordinates of all points in 
the pixel domain and the corresponding pixel values were 
calculated. The coordinates and pixel values of each pixel 
point in the pixel domain were calculated as follows:

Take a point P(i,m), −10≤m≤10 in Pseti. Suppose this point 

was ( ),m mx y , then there was ( ) ( )0 0, ,m m six y mS x y=


.
In general, the pixel points on the image were discrete 

(the coordinate values of the pixel points were integer 

values), and the ( ),m mx y  obtained above could be non-

integer values. In such cases, the mean square difference 
value algorithm was used to obtain the approximate pixel 
values of coordinate points, denoted as ( ),i mPix .

By this method, the coordinate information and pixel 
value information of all the points contained in Pseti were 

obtained. Then, all the pixel domains of length 5 in the 

point set Pseti were found, denoted as { }1 2 17, , ,B B B . The 

absolute value of the difference between the mean pixel 
gray value of the first two pixels in each pixel domain was 
calculated. The mean pixel gray value of the last two pixels 

was denoted as ( ) ( ) ( ){ },1 ,2 ,17, , ,i i iavgPix avgPix avgPix .  The 

coordinates of the newly obtained point siP′  were defined 

as the coordinates of the maximum absolute value of the 
difference between the center point Bj of the pixel domain 
and the above mean value.

( ) ( ) ( ){ }( ),1 ,2 ,17max , , , , 1 17′ = ≤ ≤si j i i iP B avgPix avgPix avgPix j  [1]

All the points in the point set Psetshape were updated 
by the above process to obtain the new coordinate point 
set { }0 1 2, , ,new s s snPset P P P′ ′ ′

  (as shown in Figure 14, steps 
1&2). The new point set Psetnew0 was smoothed as follows: 
in Psetnew0, a neighborhood point set of length N was 
randomly found (based on the total number of coordinate 
points contained within the cardinal point set Psetnew0, and 
experimental comparison, the smoothing effect was best 
when the length was 7). Assuming that the neighborhood 

point set was { }1 7, ,nearPset P P , the average of the horizontal 

and vertical coordinates of all points in this point set was 
taken as the new horizontal and vertical coordinate values 
of the intermediate term in the point set, respectively, and 

denoted as ( ),new newx y .

7

1
7

1

new i
i

new i
i

x x

y y

=

=

=

=

∑

∑
 [2]

Psetshape
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Figure 14 Contour iteration process of CCC. CCC, corpus callosum-cavum septum pellucidum complex.
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The corresponding coordinate points in the original 
point set Psetnew0 were replaced by the new coordinate 
points obtained by the update. Then, a neighboring point 
clockwise from the updated point set was selected. The newly 
selected point was used as the center point to determine 
the new set of coordinate points. The same operation as 
above was performed to update the coordinates of the center 
point of the new point set Psetnew0. After finite iterations, the 
contour points were all updated, and a smooth contour was 
obtained, which was noted as Psetsoomth0. The contour point 
set Psetsoomth0 presented on the CCC image was the initial 
contour of CCC (as shown in Figure 14, steps 3&4).

After obtaining the initial contour of CCC, the initial 
contour point set of CCC was used as the input point 
set, and the new contour point set was iterated using 
the contour point adjustment and smoothing method 
introduced above. The initial contour point set of CCC was 
Psetnew0, and the iteration process was as follows:

0 0 1 1new soomth new soomth newn soomthnPset Pset Pset Pset Pset Pset→ → → → →  [3]

The contour obtained after a finite number of iterations 

was the final contour point set of CCC, completing the 
segmentation of the FBMUI for the subject of CCC.

Localization of the CV region

After the localization and segmentation of the CCC, the 
subsequent step was to localize the CV (as illustrated in 
Figure 15). The CV localization process followed the 
same framework structure as the CCC, adhering to a 
sequential sequence known as “Initial Localization-Accurate 
Localization-Result Detection”. However, due to the 
distinct morphological and spatial characteristics between 
the CV and CCC, different methods were used within the 
same framework structure to achieve precise localization of 
each structure.

Initial localization of the CV region
Using  medica l  pr ior  knowledge  and  anatomica l 
correspondence, the initial search range of CV was 
derived from the specific location information of CCC. In 
FBMUIs, there were typically two cases of relative positions 

Figure 15 The whole localization process of the CV. The first step is the initial localization process, and the second and third steps are the 
accurate localization process. CV, cerebellar vermis. 
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RgnRightRgnLeft

1 2

3 4

Figure 16 Directionality and initial search area determination of CV. CV, cerebellar vermis.

between CV and CCC due to the varying positions of the 
US probe and fetal brain during detection. Thus, the first 
step involved determining the directionality of CV. With 
the accurate localization and segmentation results of CCC, 
two square regions on the left and right were identified as 
pre-selection search regions for initial CV localization (as 
shown in Figure 16). After experimental comparison, the 
square area with a higher mean pixel grayscale value was 
chosen as the initial localization area of CV, along with its 
orientation information. Using the same method as initial 
CCC localization (as shown in Figure 15, step1), the initial 
localization result of CV in the FBMUI was obtained and 

denoted as 1stRes′ .

( )
( )

, 0

, 1

> → =

< → =

Left Right Left

Left Right Right

avgPix avgPix Rgn Loc

avgPix avgPix Rgn Loc
 [4]

Accurate localization of the CV region
The process of accurately localizing the CV region 
was as follows (refer to Figure 15, steps 2 and 3): To 

achieve accurate CV localization and obtain reliable 
localization results, the same methodology utilized for 
accurate localization of the CCC was adopted. The initial 
localization result region 1stRes′  served as the basis for 
expansion, allowing the obtainment of the accurate search 
region 2ndRgn′  for the CV. Subsequently, a sliding window 
search was performed within this refined search region, and 
the window images that satisfied the threshold conditions 
were clustered together. The final accurate localization 
result of CV was obtained, denoted as 2ndRes′ .

Localization result detection of the CV region
To ensure localization accuracy in medical clinical settings, 
the symmetry property of CV in terms of its up-and-down 
orientation was utilized. The image similarity between 
the top and bottom sides of the segmented CV images 
was compared to assess the accuracy of its localization 
results. From the accurate localization result 2ndRes′ , the 
CV image Verimg was extracted from the FBMUI. It was 
then divided into top and bottom images VerTop, VerBottom 
by horizontally cutting it in half. A mirror inversion 
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operation was applied to obtain the image. By comparing 
the similarity between VerBottom and BottomVer′  using the 
normalized correlation coefficient algorithm (as shown in 
Figure 17), a threshold value of 0.8 was determined based on 
numerous experimental comparisons. Through this process, 
CV localization results that satisfied the clinical medical 
accuracy requirements could be achieved.

Segmentation of the CV region

Through extensive observation and comparison, it became 
evident that the main part of the CV did not exhibit 
prominent contrast compared to the surrounding pixels. 
As illustrated in Figure 18, the outline of the CV appeared 
blurred. The blue arrows indicated the direction of the 
CV, while the red arrows served to differentiate the target 
region from the background. A solid line represented a clear 
distinction, whereas a dashed line signified an indistinct 
boundary. Therefore, it became crucial to capitalize on the 
morphological features of the CV and the interconnection 
of contour points to achieve its complete segmentation 

effectively.

Contour fitting of the CV region
The process of fitting the shape of the CV differed from 
that of the CCC. Based on prior medical knowledge and 
extensive observations, the CV shape was simplified as a 
composite of three fan-shaped surfaces (as depicted in the 
second row of Figure 19). To determine the CV’s orientation 
information, the center of the CV image was denoted as 
Cenver and expanded to conform to the CV shape using the 
following approach, as illustrated in Figure 19: (I) sector 1 
aligned its center coordinates with Cenver; (II) sector 1 had a 
radius length equal to half the length “L” of the CV image, 
with a center angle of 180°; (III) sector 2 was positioned 
1/8 L above Cenver, with a radius of 3/8 L and a center angle 
of 120°; (IV) sector 3 was located 1/8 L below Cenver, with 
a radius of 3/8 L and a center angle of 120°. These sector 
dimensions were carefully chosen to facilitate obtaining the 
initial profile of the CV by comparing pixel values from the 
fit. In our method, the accuracy requirement for the specific 
shape of the initial fitted contour was not high. Therefore, 

Ver'Bottom

VerBottomVerimg

VerTop

Similarity comparison

Figure 17 Examination of CV localization results. CV, cerebellar vermis.

21 3 4

Figure 18 The CV region and its surrounding region. The blue arrows indicated the direction of the CV, while the red arrows served to 
differentiate the target region from the background. CV, cerebellar vermis.
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appropriate radius and angle values were selected to form 
the fitted profile of the CV. If the orientation coefficient 
of CV was 0, sector 1 was positioned on the left side of the 
CV image, while sectors 2 and 3 were on the right side. 
Conversely, if the orientation coefficient was 1, sector 1 was 
on the right side, and sectors 2 and 3 were on the left side. 
Finally, the contour of the combined image of the three 
sectors served as the initial fitted contour of CV (as shown 
in the flow on the left side of Figure 19).

Contour iteration process of the CV region
After obtaining the initial fitted contour of CV, it was 
necessary to iterate over the CV image based on the pixel 
gray value information to complete the segmentation of CV. 
After experimental comparison, an iterative method of CV 
contour based on the comparison of pixel gray values was 
proposed as follows (as shown in Figure 20):

(I) First, the central point of the CV image was 
determined, and a ray was made every 1 degree 

from the central point. The intersection of these 
rays with the fitted contour was denoted as 

{ }1 2 359 360, , , ,degreeP P P P P° ° ° °  (as shown in Figure 20, 
step 1).

(II) The distance between these points and the 
centra l  po int  was  ca l cu la ted ,  denoted  a s 
{ }1 2 359 360, , , ,° ° ° °D D D D . Then the average distance 
between all points in the point set and the central 
point of the CV image was:

 
 

360

1

1
360avg n

n
D D

°

= °

= ∑  [5]

The search interval on each ray was determined as 
{ }1 2 359 360, , , ,R R R R° ° ° °  by taking the intersection point 
as the center point and setting the range to 1/4 Davg of the 
length. Within each interval, the difference in grayscale 
values between adjacent pixels was calculated, and the 
two pixels with the largest difference were identified. The 
coordinates of the pixel closer to the center of the CV image 

21 3 4

21 3 4

21 3 4

Pset'new0 Pset'smooth0

Cenver

Pset'shape

C1

C2

C3

Loc =0 Loc =1

Figure 19 The contour fitting and iterative process of CV images of four different fetal individuals. The red contour is the initial fitted 
contour of CV obtained by the combination of three sectors. The yellow contour point set is obtained based on the red initial fitted contour. 
The blue contour is obtained by smoothing the yellow contour point set. The segmentation of the CV is completed by successive contour 
iteration process. CV, cerebellar vermis.
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among these two points were recorded. The pixel points 
within the search range for each angle were compared 
and counted, resulting in a new point set denoted as 

{ }0 0 1 0 2 0 359 0 360, , , ,newPset P P P P− ° − ° − ° − °′
  (as shown in Figure 20,  

step 2). For each point in the newly obtained point set, a 
judgment was made to identify points that significantly 
differed from the surrounding points. These points were 
corrected to achieve smoothing of the point set. The 
specific operation was as follows (illustrated using point set 
Pm): to filter out points that were not smooth enough in the 
newly obtained contour point set, an angle threshold Tθ and 
a distance threshold Ts corresponding to the point set were 
proposed. The angle threshold was calculated as the average 
value of the complementary angles formed by the lines 
connecting all three adjacent points in the point set.

( )
( ) ( )
( ) ( )

360
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1 1

1 1

1
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180 arccos ,
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 [6]

And the distance threshold was calculated as the average 

distance between the three points [front ( )1 1,n nx y− − , current 

( ),n nx y , and back ( )1 1,n nx y+ + ] and the center point. After 
several tests, it was found that this threshold yielded a more 
desirable distribution of the filtered center point sequence.

( ) ( )

360

1

2 2
0 0

1
360s n

n

n n n

T d

d x x y y

°

= °

=

= − + −

∑
 [7]

For each point in Pm, the two adjacent points before and 
after it were Pm−1, Pm+1. The angle Pm corresponding to was 
calculated as the angle between the reverse extension of the 
ray connecting Pm with its Pm−1 and the line connecting Pm 

with its Pm−1. And d was the distance from Pm to the center 
of the CV image. If d was greater than Ts and θ was greater 
than Tθ, Pm was considered not smooth enough compared 
to its surrounding points. To smooth the point set, the 
point on the ray where the non-smooth point was located 
was determined, and its distance from the center point was 
replaced with the average of the distances and to the center 
point (as shown in Figure 20, steps 3&4). All the points in 
the point set 0newPset′  were judged by the above method, 
and the points that did not meet the requirements were 
smoothed. Then the smoothed point set was obtained as 

0smoothPset′ . To obtain more accurate CV contours, iterative 
calculations were performed using the above method. 

Pset'shape
Pset'new0

Pset'smooth0

Ts

θ<Tθ

θ>Tθ
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d≤Ts d>Ts
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θ<Tθ
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Figure 20 Iterative process of CV contours. Points are taken at equal distances on the CV fitted contour. Then the points that satisfy the 
criteria are found in the specified interval, as shown in steps 1 and 2. Then the points that do not satisfy the judging criteria are smoothed to 
obtain the new CV contour, as shown in steps 3 and 4. CV, cerebellar vermis.
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0smoothPset′  was used as a new input for a new round of contour 
point screening and smoothing, and the iterative process was 
as follows (as shown in the third row of Figure 19):

0 0 1 1new soomth new soomth newn soomthnPset Pset Pset Pset Pset Pset′ ′ ′ ′ ′ ′→ → → → →  [8]

Results

Two experiments (Visual Validation and Computational 
Validation) were conducted to test the accuracy and 
robustness of our proposed method for target localization, 
and two additional experiments (Euclidean Distance 
Validation and Overlapping Percentage Comparison 
Validation) were conducted to test the effectiveness of 

the target contour segmentation. The experiments were 
conducted using real clinical data consisting of 140 US 
images of the median sagittal plane of the fetal brain. 
These images were labeled and segmented by experienced 
physicians to create CCC and CV location and contour 
information data, which were used as the ground truth (GT). 
Our method was compared with other comparative methods 
using various experiments mentioned above to measure 
the feasibility and accuracy of our method in CCC and CV 
localization and segmentation tasks. Several measures and 
statistical tools were used to tabulate the result data for 
better judgment of the experimental results. The following 
sections describe the experiments specifically for the 
localization and segmentation of CCC and CV, respectively.

Validation of the localization of the CCC region

Visual validation
We aimed to verify the feasibility of our proposed 
framework through both rough and detailed evaluations. In 
the rough visual verification, we evaluated the framework’s 
effectiveness in localizing the CCC by comparing the 
localization results with the GT, i.e., the rectangular area of 
the CCC marked by physicians. Three evaluation criteria 
(illustrated in Figure 21) were used to evaluate the results: 
(I) complete coverage of the CCC region by the localization 
result box; (II) appropriate size of the localization result 
box; and (III) correspondence between the center of the 
CCC region and the center point of the localization result 
box (with small deviation). The CCC localization results 
were scored (as shown in Table 1) in terms of “high or low 
score” and “whether the criterion is satisfied”. “NUM” 

1 2 3

Figure 21 Principle of visual validation. The green boxes are the standard result, and the red boxes are those do not meet the three 
judgment criteria.

Table 1 Observed score of CCC localization

Variables NUM PCT (%)

Score

0 3/140 2.14

1 8/140 5.71

2 23/140 16.43

3 106/140 75.71

Criteria

 133/140 95.00

 127/140 90.71

 121/140 86.43

CCC, corpus callosum-cavum septum pellucidum complex; 
NUM, the number of corresponding scored images in the 140 
experimental data; PCT, the percentage of the whole data.
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indicated the number of corresponding scored images in the 
140 experimental data, and “PCT” indicated the percentage 
of the whole data. Based on these observations, statistics, 
and comparisons, we demonstrated the basic feasibility of 
our framework for CCC localization.

Computational validation
An experiment of “computational validation” was 
conducted to verify the accuracy of CCC localization. 
The “Intersection over Union (IoU)” values of the CCC 
localization results and GT were calculated to determine 
the accuracy (the IoU is defined as (A: the localization 
result/red box; B: the GT/green box): IoU = (A∪B)/(A∩B). 
The results are shown in Figure 22, and detailed statistics 
are presented in Table 2. The method was considered 
effective when the IoU value was greater than 0.5 based on 

0.8791 0.8419 0.8377 0.8153 0.8085

0.7469 0.7407 0.7343 0.7324 0.729

0.7273 0.7225 0.7163 0.7163 0.7161

0.8002 0.7896 0.7815 0.7626 0.7599

Figure 22 The CCC localization results of 20 images. The green boxes are the GT boxes, and the red boxes are the localization result 
boxes. The data at the top of each image is the IoU value. CCC, corpus callosum-cavum septum pellucidum complex; GT, ground truth; 
IoU, Intersection over Union.

Table 2 IoU statistical results of CCC localization

IoU NUM PCT (%) Mean 

<0.5 11/140 7.86 0.4040

≥0.5 129/140 92.14 0.6436

0.5–0.6 43/140 30.71 0.5605

>0.6–0.7 62/140 44.29 0.6570

>0.7–0.8 18/140 12.86 0.7342

>0.8–0.9 6/140 4.29 0.8304

>0.9 0/140 0.00 nan

IoU: Max =0.8791; Min =0.2936; mean =0.6248. NUM, the 
number of corresponding scored images in the 140 experimental 
data; PCT, the percentage of the whole data. IoU, Intersection 
over Union; CCC, corpus callosum-cavum septum pellucidum 
complex; nan, not a number. 
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discussions with front-line clinicians and comparison with 
results. The overall mean value of IoU was greater than 0.5, 
indicating the method was effective for CCC localization.

Validation of the segmentation of the CCC region

We compared our proposed CCC segmentation method 
with eight traditional contour segmentation methods, 
including SNAKE (42), DRLSE (39), C-V (38), RSF (39), 
ACWE (45), LBF (46), GLFIF (41), and ALF (47), which 
have been widely used in medical image segmentation. The 
results of the comparative experiments are shown in Figure 23,  
which demonstrate the adaptability and accuracy of our 
method for CCC segmentation.

The Euclidean distance validation
In order to validate the effectiveness CCC segmentation 
in our proposed framework, we employed a well-
established approach for contour comparison: the average 
minimum Euclidean distance (AMED) between the 
segmented contour and the corresponding GT (contour 
labeled by physicians). The results, as presented in  
Table 3, provide insights into the performance of different 

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8 Image 9 Image 10No. iterations: 100

SNAKE 

DRLSE 

C-V 

RSF 

ACWE 

LBF 

GLFIF 

ALF 

Proposed

Figure 23 The red contours are the GT (contour corresponding to the CCC image segmented by the physician); the green contours are 
the segmentation result contours of the algorithms. SNAKE, Snakes Active Contour Model; DRLSE, Distance Regularized Level Set 
Evolution; C-V, Chan-Vese; RSF, Region-scalable Fitting; ACWE, Active Contour Without Edges; LBF, Local Binary Fitting Energy; 
GLFIF, Global and Local Fuzzy Implicit Active Contours Driven by Weighted Fitting Energy; ALF, Implicit Active Contours Driven by 
Local Binary Fitting Energy; GT, ground truth; CCC, corpus callosum-cavum septum pellucidum complex. 

Table 3 Quality evaluation of CCC segmentation [1]

Methods 
Average minimum euclidian distance (px)

Mean ± SD Max Min

SNAKE 17.0871±9.6970 102.2812 6.3644

DRLSE 19.2121±9.2405 99.8596 10.6112

C-V 22.3694±10.4815 78.2613 5.9222

RSF 20.3013±9.1172 99.4417 11.8548

ACWE 71.4484±18.4213 234.9442 3.7107

LBF 11.1675±8.8794 88.2111 2.8951

GLFIF 13.5887±9.1329 89.7424 4.4795

ALF 14.3849±9.4532 69.4153 5.4933

Proposed* 5.0673±3.9653 29.1394 1.6023

*, optimal result. CCC, corpus callosum-cavum septum pellucidum 
complex; px, pixels; SD, standard deviation; SNAKE, Snakes Active 
Contour Model; DRLSE, Distance Regularized Level Set Evolution; 
C-V, Chan-Vese Active Contour Model; RSF, Active Contour Model 
Based on Region-scalable Fitting; ACWE, Active Contour Without 
Edges; LBF, Active Contour Model Based on Local Binary Fitting 
Energy; GLFIF, Global and Local Fuzzy Implicit Active Contours 
Driven by Weighted Fitting Energy; ALF, Implicit Active Contours 
Driven by Local Binary Fitting Energy.
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segmentation methods. The values in the table represent 
the mean and standard deviation of AMED, along with 
the maximum (MAX) and minimum (MIN) values. Our 
method outperforms other algorithms in terms of data 
performance, exhibiting the smallest average and extreme 
values, and demonstrating minimal data fluctuation. This 
experiment effectively demonstrates the high accuracy and 
stability of our proposed method.

Segmentation accuracy comparison validation
The accuracy validation calculation principle is illustrated in 
Figure 24, where the segmentation accuracy rate RI, missing 
pixel rate RM and faulting pixel rate RF of the standard 
profile (red) and the resultant profile (green) are calculated. 
The statistical information for mean, standard deviation, 
and MAX values is presented in Table 4. Our segmentation 
method demonstrated remarkable performance in terms of 
the mean value and overall stability. There was no significant 
difference between the MAX value of our method and the 

comparison method. However, our method consistently 
achieved the highest MIN value, indicating a more stable 
performance in CCC segmentation. Furthermore, the mean 
value of our method for the remaining two rates was the 
lowest, which demonstrated its exceptional stability and 
robustness in handling complex and diverse clinical data.

Segmentation results mask image similarity comparison 
validation
The performance of our CCC segmentation method 
was evaluated by comparing the similarity between the 
segmentation result and the GT mask images using five 
standard parameters: Kendall rank correlation (KRC), dice 
similarity coefficient (DSC), SSIM, Hausdorff distance 
(HD), and average Hausdorff distance (AHD) (46,48). 
The results, presented in Table 5, clearly indicated that our 
method outperformed other approaches across multiple 
parameters (higher mean values and lower standard 
deviations). Moreover, the DSC results of 30 CCC images, 

Intersection pixels Faulting pixels Missing pixels

Figure 24 Principle of accuracy verification. The green contours indicate ground truth; the red contours indicate prediction result.

Table 4 Quality evaluation of CCC segmentation [2]

Methods 
RI RM RF 

Mean ± SD Max Min Mean ± SD Max Min Mean ± SD Max Min

SNAKE 0.8302±0.1159 0.9919* 0.3909 0.2866±0.1325 0.7184 0.0625 0.1570±0.1400 1.0039* 0.0056*

DRLSE 0.7703±0.1046 0.9591 0.3645 0.2609±0.1282 0.7075 0.0176 0.2318±0.1596 1.4651 0.0297

C-V 0.8332±0.0982 0.9851 0.4190 0.5136±0.0987 0.8216 0.2699 0.1447±0.1179* 1.0115 0.0093

RSF 0.7423±0.1068 0.9440 0.3514 0.2471±0.1320 0.7055 0.0150* 0.2744±0.1731 1.5775 0.0417

ACWE 0.8580±0.1521 0.9854 0.4028 0.4575±0.1210 0.9995 0.1466 0.1496±0.1925 1.9324 0.0276

LBF 0.8078±0.1429 0.9759 0.1959 0.3324±0.1490 0.7490 0.0471 0.1641±0.1398 1.0173 0.0168

GLFIF 0.8262±0.1139 0.9997 0.3428 0.4197±0.1367 0.9894 0.1105 0.1577±0.1302 1.2228 0.0340

ALF 0.7931±0.1116 0.9644 0.2045 0.2724±0.1354 0.8688 0.0314 0.1973±0.1409 1.2269 0.0245

Proposed 0.8740*±0.0883* 0.9680 0.4281* 0.1508*±0.0913* 0.5760* 0.0188 0.1406*±0.1560 1.2588 0.0201

*, optimal result. CCC, corpus callosum-cavum septum pellucidum complex; RI, segmentation accuracy rate; RM, missing pixel rate; RF, 
faulting pixel rate; SD, standard deviation; SNAKE, Snakes Active Contour Model; DRLSE, Distance Regularized Level Set Evolution; C-V, 
Chan-Vese Active Contour Model; RSF, Active Contour Model Based on Region-scalable Fitting; ACWE, Active Contour Without Edges; 
LBF, Active Contour Model Based on Local Binary Fitting Energy; GLFIF, Global and Local Fuzzy Implicit Active Contours Driven by 
Weighted Fitting Energy; ALF, Implicit Active Contours Driven by Local Binary Fitting Energy. 
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presented in Table 6, further validated our method’s 
superiority over alternative techniques. These statistical 
analyses validated the accuracy, robustness, and stability of 
our method for CCC segmentation.

Validation of the localization of the CV region

Visual validation
The evaluation of CV localization and segmentation 
methods was conducted using the same criteria as CCC, 
and the results were presented in Table 7. Among the 141 
images examined, an impressive 105 images achieved a 
localization score of 3, accounting for nearly 75% of the 
total results. In terms of segmentation, a significant majority 
of images met criterion 2, accounting for nearly 94% of 
the cases. The localization results for CV demonstrated 
a superior performance in criterion 2 compared to the 
localization results for CCC. This suggested that our CV 
localization method was more sensitive to size variations 
and demonstrated remarkable adaptability in addressing the 
substantial disparities observed in clinical images.

Computational validation
The localization results of CV were presented in Figure 25 
and summarized in Table 8. The majority of IoU values 
ranged between 0.6 and 0.7, with 87.14% of the results 
satisfying the accuracy requirement. It is important to note 

that this accuracy level was slightly lower than that of CCC 
localization, where 92.14% of the results met the accuracy 
requirement. This slight decrease in accuracy could be 
attributed to the integrated serial structure of our method. 
The localization and segmentation outcomes of CCC 
could have an impact on the subsequent localization and 
segmentation process of CV. Nevertheless, our method still 
provided relatively good results for the localization of CV.

Validation of the segmentation of the CV region

In this section, the experimental methods, the criteria for 
judging the results, and the way the tables were documented 
were identical to those in section “Validation of the 
segmentation of the CCC region”. The description of the 
experimental principle was omitted. The experimental 
results were shown in Figure 26.

The Euclidean distance validation
Table 9 illustrated the outstanding performance of our 
method in terms of the mean and AMED value when 
compared to the other 8 algorithms (highlighted by 
asterisks). Our method exhibited a significant advantage 
in achieving the optimal mean value. Furthermore, the 
standard deviation of the mean value for our method was 
the smallest among the compared algorithms, indicating 
its exceptional stability. Hence, it could be concluded that 

Table 5 Quality evaluation of CCC segmentation [3]

Methods KRC, mean ± SD DSC, mean ± SD SSIM, mean ± SD HD, mean ± SD (px) AHD, mean ± SD (px)

SNAKE 0.6735±0.1157 0.7603±0.0879 0.7636±0.0529 55.3089±26.8671 3.5231±4.6711

DRLSE 0.6444±0.0982 0.7236±0.0753 0.7447±0.0412 54.6655±25.8281 3.8592±4.3156

C-V 0.5968±0.1033 0.7943±0.0839 0.6836±0.0677 75.1000±29.8133 3.8606±5.0408

RSF 0.6338±0.0966 0.7061±0.0741 0.7393±0.0410* 56.3961±25.4791 4.1356±4.2407

ACWE 0.6513±0.1739 0.8223±0.1209 0.7319±0.0926 56.0623±27.2610 2.8226±5.6080

LBF 0.6204±0.1907 0.7624±0.1176 0.7005±0.1202 66.7879±38.9074 3.8926±5.2375

GLFIF 0.6396±0.1517 0.7956±0.1013 0.6952±0.0930 79.9539±34.5955 3.7200±4.7642

ALF 0.6296±0.1455 0.6050±0.0857 0.6693±0.0685 106.8502±24.2695 9.2019±3.9525

Proposed 0.8312*±0.0669* 0.8955*±0.0483* 0.8475*±0.0499 28.4420*±20.2059* 0.7071*±1.2097*

*, optimal result. CCC, corpus callosum-cavum septum pellucidum complex; KRC, Kendall rank correlation; DSC, dice similarity 
coefficient; SSIM, structural similarity index measure; HD, Hausdorff distance; AHD, average Hausdorff distance; SD, standard deviation; 
px, pixels; SNAKE, Snakes Active Contour Model; DRLSE, Distance Regularized Level Set Evolution; C-V, Chan-Vese Active Contour 
Model; RSF, Active Contour Model Based on Region-scalable Fitting; ACWE, Active Contour Without Edges; LBF, Active Contour Model 
Based on Local Binary Fitting Energy; GLFIF, Global and Local Fuzzy Implicit Active Contours Driven by Weighted Fitting Energy; ALF, 
Implicit Active Contours Driven by Local Binary Fitting Energy. 
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Table 6 Quality evaluation of CCC segmentation [4]

Exp.
DSC 

SNAKE DRLSE C-V RSF ACWE LBF GLFIF ALF Proposed

1 0.8561 0.7933 0.8520 0.7783 0.8638 0.7970 0.8428 0.6206 0.9333*

2 0.7936 0.7368 0.7735 0.7234 0.8009 0.7480 0.7321 0.5366 0.9215*

3 0.8527 0.8137 0.7713 0.8001 0.7719 0.8011 0.7402 0.5719 0.9267*

4 0.7525 0.7197 0.8694 0.7043 0.9027* 0.5171 0.7661 0.5448 0.9014

5 0.8437 0.7538 0.8443 0.7333 0.8665 0.8560 0.8541 0.6000 0.9090*

6 0.7400 0.7511 0.8142 0.7359 0.8148 0.7883 0.8150 0.5738 0.8818*

7 0.7494 0.8041 0.8521 0.7822 0.8679 0.8369 0.8807 0.6639 0.8933*

8 0.8245 0.8142 0.8296 0.7861 0.8339 0.8766 0.8619 0.6733 0.9179*

9 0.7573 0.6455 0.8040 0.6250 0.8072 0.8020 0.8374 0.6023 0.9058*

10 0.7071 0.7050 0.8452 0.6807 0.8587 0.7862 0.8094 0.7394 0.8695*

11 0.7998 0.7870 0.8882 0.7705 0.8923 0.7764 0.9078 0.6446 0.9336*

12 0.8275 0.7836 0.8965 0.7622 0.9082 0.8147 0.8969 0.6730 0.9147*

13 0.8470 0.7977 0.8809 0.7789 0.8847 0.8860 0.8651 0.6686 0.9341*

14 0.8107 0.7990 0.8612 0.7809 0.8523 0.8463 0.8601 0.6664 0.9138*

15 0.7855 0.7662 0.7921 0.7502 0.8666 0.7853 0.7810 0.6213 0.9290*

16 0.7774 0.6941 0.8514 0.6769 0.8766 0.7613 0.8600 0.5617 0.9313*

17 0.7802 0.7022 0.8081 0.6856 0.8636 0.7677 0.8406 0.5470 0.9182*

18 0.7745 0.7762 0.8423 0.7652 0.8594 0.7314 0.8199 0.5816 0.9187*

19 0.6188 0.5556 0.7986 0.5414 0.8033 0.5457 0.7675 0.4806 0.9080*

20 0.6667 0.6330 0.7022 0.6312 0.8231 0.6949 0.6842 0.5481 0.9327*

21 0.7639 0.7126 0.7757 0.7010 0.8173 0.7651 0.8202 0.5452 0.9052*

22 0.8450 0.8002 0.8236 0.7772 0.8668 0.8558 0.8467 0.6338 0.9225*

23 0.8490 0.7378 0.8310 0.7219 0.8711 0.8209 0.8229 0.6293 0.9192*

24 0.7493 0.6242 0.7103 0.6026 0.7283 0.7490 0.7066 0.5578 0.8766*

25 0.8614 0.7952 0.8010 0.7779 0.8256 0.8469 0.8729 0.5680 0.8900*

26 0.7907 0.7137 0.6774 0.7129 0.7556 0.7658 0.6671 0.4771 0.8068*

27 0.4026 0.5794 0.6406 0.5523 0.6377 0.5897 0.6399 0.4377 0.8353*

28 0.8143 0.7282 0.9074* 0.7042 0.8901 0.8124 0.8746 0.7208 0.7530

29 0.6849 0.6190 0.6389 0.6001 0.6594 0.6872 0.6353 0.4807 0.8432*

30 0.8603 0.7999 0.8304 0.7874 0.8573 0.8272 0.8584 0.5796 0.9029*

*, optimal result. CCC, corpus callosum-cavum septum pellucidum complex; Exp., experiment; DSC, dice similarity coefficient; SNAKE, 
Snakes Active Contour Model; DRLSE, Distance Regularized Level Set Evolution; C-V, Chan-Vese Active Contour Model; RSF, Active 
Contour Model Based on Region-scalable Fitting; ACWE, Active Contour Without Edges; LBF, Active Contour Model Based on Local 
Binary Fitting Energy; GLFIF, Global and Local Fuzzy Implicit Active Contours Driven by Weighted Fitting Energy; ALF, Implicit Active 
Contours Driven by Local Binary Fitting Energy. 
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Table 7 Observed score of CV localization

Variables NUM PCT (%)

Score

0 4/140 2.86

1 5/140 3.57

2 26/140 18.57

3 105/140 75.00

Criteria

 122/140 87.14

 131/140 93.57

 119/140 85.00

CV, cerebellar vermis; NUM, the number of corresponding 
scored images in the 140 experimental data; PCT, the 
percentage of the whole data.

0.9315 0.922 0.9065 0.8902 0.8508

0.8248 0.8243 0.8211 0.8139 0.8126

0.81 0.8082 0.8079 0.8023 0.8014

0.8505 0.8385 0.8344 0.832 0.8286

Figure 25 The CV localization results of 20 FBMUIs. The green boxes are the GT boxes, and the red boxes are the localization result 
boxes. The data at the top of each image is the IoU value. CV, cerebellar vermis; FBMUI, fetal brain mid-sagittal ultrasound image; GT, 
ground truth; IoU, Intersection over Union. 

Table 8 IoU statistical results of CV localization

IoU NUM PCT (%) Mean 

<0.5 18/140 12.86 0.4535

≥0.5 122/140 87.14 0.6846

0.5–0.6 29/140 20.71 0.5548

>0.6–0.7 39/140 27.86 0.6479

>0.7–0.8 34/140 24.29 0.7451

>0.8–0.9 17/140 12.14 0.8265

>0.9 3/140 2.14 0.9200

IoU: Max =0.9315; Min =0.4255; mean =0.6548. IoU, 
Intersection over Union; CV, cerebellar vermis; NUM, the number 
of corresponding scored images in the 140 experimental data; 
PCT, the percentage of the whole data.
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Figure 26 The CV segmentation results of 10 FBMUIs. The red contours are the GT (contour corresponding to the CV image segmented 
by the physician); the green contours are the segmentation result contours of the algorithms. SNAKE, Snakes Active Contour Model; 
DRLSE, Distance Regularized Level Set Evolution; C-V, Chan-Vese Active Contour Model; RSF, Active Contour Model Based on Region-
scalable Fitting; ACWE, Active Contour Without Edges; LBF, Active Contour Model Based on Local Binary Fitting Energy; GLFIF, 
Global and Local Fuzzy Implicit Active Contours Driven by Weighted Fitting Energy; ALF, Implicit Active Contours Driven by Local 
Binary Fitting Energy; GT, ground truth; CV, cerebellar vermis; FBMUI, fetal brain mid-sagittal ultrasound image.

Table 9 Quality evaluation of CV segmentation [1]

Methods 
Average minimum euclidian distance (px)

Mean ± SD Max Min

SNAKE 26.2120±6.7847 52.1724 7.9756

DRLSE 20.5157±5.6312 37.3987 8.7888

C-V 17.8330±4.8314 35.0913 7.6370

RSF 33.6351±7.9459 57.7634 15.6956

ACWE 34.7071±8.6887 101.6779 11.8902

LBF 12.2416±4.3219 29.8167 4.5964

GLFIF 20.0284±9.0308 65.1474 5.8798

ALF 17.0995±9.5254 54.1683 5.7958

Proposed* 6.9800±3.6554 24.1876 2.1183

*, optimal result. CV, cerebellar vermis; px, pixels; SD, standard 
deviation; SNAKE, Snakes Active Contour Model; DRLSE, Distance 
Regularized Level Set Evolution; C-V, Chan-Vese Active Contour 
Model; RSF, Active Contour Model Based on Region-scalable Fitting; 
ACWE, Active Contour Without Edges; LBF, Active Contour Model 
Based on Local Binary Fitting Energy; GLFIF, Global and Local Fuzzy 
Implicit Active Contours Driven by Weighted Fitting Energy; ALF, 
Implicit Active Contours Driven by Local Binary Fitting Energy. 

our framework’s CV segmentation contour accurately and 
effectively represented the true contour of CV in FBMUIs.

Segmentation accuracy comparison validation
The experimental principle was the same as that shown in 
Figure 24, and the corresponding statistical results were 
presented in Table 10. The SNAKE and RSF segmentation 
methods yielded a MIN value of 0.0000 for the missing 
pixel rate because their contours completely contained 
the manual marker contours. However, to ensure contour 
smoothness and integrity, the fitting degree between the 
contour result and the true edge of the target was sacrificed, 
leading to inaccurate results. Given the complexity of the 
CV contour, our method improved contour accuracy by 
smoothing and iterating within a small range.

Segmentation results mask image similarity comparison 
validation
In “Segmentation accuracy comparison validation” under 
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Table 10 Quality evaluation of CV segmentation [2]

Methods
RI RM RF 

Mean ± SD Max Min Mean ± SD Max Min Mean ± SD Max Min

SNAKE 0.8067±0.0899 0.9955 0.5647 0.0923±0.0820 0.3781 0.0000* 0.2380±0.1435 0.6728 0.0032

DRLSE 0.8033±0.0755 0.9483 0.5809 0.3305±0.1011 0.6211 0.0708 0.1785±0.1052 0.6348 0.0238

C-V 0.9032±0.0623 0.9978* 0.7158 0.3403±0.1119 0.5969 0.0409 0.1672±0.0524* 0.4178 0.0009*

RSF 0.7238±0.0904 0.9743 0.5062 0.0613*±0.0680* 0.3132* 0.0000* 0.3841±0.1780 0.9627 0.0218

ACWE 0.6692±0.2466 0.9964 0.0199 0.3317±0.1734 0.9753 0.0000* 0.5663±0.7907 4.7464 0.0021

LBF 0.6951±0.1473* 0.9621 0.3326 0.1901±0.1209 0.5399 0.0047 0.3969±0.2667 1.2833 0.0318

GLFIF 0.7871±0.1492 0.9946 0.2443 0.3728±0.1275 0.8286 0.0450 0.1909±0.1632 0.8888 0.0030

ALF 0.8203±0.0805 0.9948 0.5542 0.1055±0.0813 0.3543 0.0015 0.2118±0.1249 0.6938 0.0037

Proposed 0.9114±0.0576 0.9842 0.7223* 0.1268±0.0713 0.3812 0.0192 0.0904±0.0693 0.3668* 0.0121

*, optimal result. CV, cerebellar vermis; RI, segmentation accuracy rate; RM, missing pixel rate; RF, faulting pixel rate; SD, standard 
deviation; SNAKE, Snakes Active Contour Model; DRLSE, Distance Regularized Level Set Evolution; C-V, Chan-Vese Active Contour 
Model; RSF, Active Contour Model Based on Region-scalable Fitting; ACWE, Active Contour Without Edges; LBF, Active Contour Model 
Based on Local Binary Fitting Energy; GLFIF, Global and Local Fuzzy Implicit Active Contours Driven by Weighted Fitting Energy; ALF, 
Implicit Active Contours Driven by Local Binary Fitting Energy.

Table 11 Quality evaluation of CV segmentation [3]

Methods KRC, mean ± SD DSC, mean ± SD SSIM, mean ± SD HD, mean ± SD (px) AHD, mean ± SD (px)

SNAKE 0.7092±0.0689 0.7657±0.0518 0.7197±0.0617 43.4975±9.1751 2.3571±0.9083

DRLSE 0.4766±0.1032 0.7479±0.0394 0.5883±0.0577 40.5972±8.0527* 2.4787±0.7693

C-V 0.5430±0.1276 0.7919±0.0530 0.6652±0.0711 44.7217±10.8316 2.2609±1.0468

RSF 0.6552±0.0650 0.7014±0.0489 0.6715±0.0659 47.4939±8.6269 3.3596±1.0448

ACWE 0.3882±0.2172 0.6391±0.1731 0.5636±0.1181 61.1534±24.1471 6.1888±5.7705

LBF 0.5928±0.1676 0.7883±0.0568 0.6030±0.1424 37.9273±10.8149 1.4088±0.6966

GLFIF 0.4232±0.1621 0.7547±0.0687 0.5715±0.1023 50.8752±9.2979 2.6910±1.1194

ALF 0.7026±0.0688 0.7332±0.0525 0.6794±0.0540 58.2279±9.1697 3.1669±1.0745

Proposed 0.8154*±0.0603* 0.9116*±0.0309* 0.8144*±0.0454* 22.6455*±8.7203 0.4377*±0.3673*

*, optimal result. CV, cerebellar vermis; KRC, Kendall Rank Correlation; DSC, Dice Similarity Coefficient; SSIM, Structural Similarity Index 
Measure; HD, Hausdorff Distance; AHD, Average Hausdorff Distance; SD, standard deviation; px, pixels; SNAKE, Snakes Active Contour 
Model; DRLSE, Distance Regularized Level Set Evolution; C-V, Chan-Vese Active Contour Model; RSF, Active Contour Model Based on 
Region-scalable Fitting; ACWE, Active Contour Without Edges; LBF, Active Contour Model Based on Local Binary Fitting Energy; GLFIF, 
Global and Local Fuzzy Implicit Active Contours Driven by Weighted Fitting Energy; ALF, Implicit Active Contours Driven by Local Binary 
Fitting Energy.

section “Validation of the segmentation of the CCC 
region”, five standard parameters were chosen to calculate 
the mask image similarity. The same parameters were used 
in this section and the results are shown in Tables 11,12. Our 
method achieved better results in most cases (highlighted by 
asterisks in the tables), indicating its accuracy, robustness, 
and stability for CV segmentation.

Discussion

The rapid advancement of technology and the increasing 
importance of eugenics have underscored the urgent need 
for automated testing techniques to aid in prenatal diagnosis, 
particularly in assessing fetal brain development. In this 
study, we addressed the significant challenge of accurately 
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Table 12 Quality evaluation of CV segmentation [4]

Exp.
DSC 

SNAKE DRLSE C-V RSF ACWE LBF GLFIF ALF Proposed*

1 0.8176 0.7237 0.7377 0.7372 0.7741 0.6224 0.7423 0.6897 0.9370

2 0.7348 0.6872 0.8104 0.6552 0.7177 0.7172 0.8212 0.7965 0.9443

3 0.8352 0.7400 0.7856 0.7492 0.7547 0.6986 0.7791 0.7468 0.9494

4 0.7887 0.6540 0.8376 0.6682 0.3159 0.7046 0.8322 0.7984 0.9578

5 0.7407 0.6979 0.7385 0.7476 0.7219 0.8523 0.7489 0.6558 0.9288

6 0.8028 0.6962 0.8005 0.7553 0.7864 0.8956 0.8118 0.7221 0.9508

7 0.7825 0.7060 0.8879 0.7204 0.8326 0.8609 0.8612 0.7304 0.9212

8 0.8342 0.7700 0.7956 0.8094 0.7620 0.9001 0.7524 0.6293 0.9047

9 0.7397 0.7415 0.8800 0.6236 0.5726 0.7644 0.8481 0.8229 0.9365

10 0.7185 0.6735 0.7625 0.6735 0.6532 0.7382 0.7164 0.7396 0.8553

11 0.7478 0.7508 0.7579 0.7343 0.4239 0.7014 0.6656 0.6891 0.9084

12 0.6341 0.6538 0.8370 0.5872 0.4910 0.7668 0.7522 0.7765 0.8541

13 0.7058 0.7161 0.7830 0.6302 0.4799 0.6937 0.7576 0.8365 0.9174

14 0.8172 0.7352 0.7078 0.7689 0.6925 0.7410 0.6991 0.6750 0.9518

15 0.8161 0.6970 0.8370 0.7128 0.8047 0.7935 0.8275 0.7840 0.9219

16 0.7563 0.7545 0.8476 0.7002 0.8193 0.8096 0.8159 0.7490 0.9562

17 0.7725 0.6490 0.8406 0.7310 0.7836 0.8185 0.8039 0.6652 0.9246

18 0.7748 0.6974 0.6767 0.7495 0.6163 0.7241 0.6665 0.6905 0.9386

19 0.7818 0.7239 0.7501 0.6876 0.6990 0.7764 0.7483 0.7793 0.9383

20 0.7352 0.6879 0.7803 0.6562 0.6413 0.7916 0.8153 0.7488 0.9036

21 0.7813 0.7730 0.7670 0.7145 0.6188 0.8438 0.7369 0.6988 0.9025

22 0.7983 0.7080 0.6866 0.7675 0.7700 0.8715 0.7384 0.6451 0.9344

23 0.8658 0.7275 0.9061 0.7059 0.5082 0.8313 0.8880 0.7458 0.9429

24 0.8302 0.7919 0.7869 0.6986 0.7908 0.8029 0.6506 0.7117 0.8645

25 0.8190 0.7479 0.8063 0.6991 0.6377 0.8727 0.7712 0.7388 0.9090

26 0.7251 0.8515 0.7999 0.6610 0.8005 0.8255 0.7202 0.7768 0.8965

27 0.7757 0.8186 0.8200 0.7095 0.7731 0.8581 0.7919 0.7101 0.9216

28 0.7320 0.7816 0.8326 0.7127 0.7930 0.8651 0.7869 0.7146 0.9243

29 0.7773 0.7793 0.8290 0.6685 0.7825 0.8840 0.8322 0.7953 0.9556

30 0.7623 0.7811 0.8713 0.6562 0.7435 0.8218 0.8494 0.7839 0.9347

*, optimal result. CV, cerebellar vermis; Exp., experiment; DSC, dice similarity coefficient; SNAKE, Snakes Active Contour Model; DRLSE, 
Distance Regularized Level Set Evolution; C-V, Chan-Vese Active Contour Model; RSF, Active Contour Model Based on Region-scalable 
Fitting; ACWE, Active Contour Without Edges; LBF, Active Contour Model Based on Local Binary Fitting Energy; GLFIF, Global and Local 
Fuzzy Implicit Active Contours Driven by Weighted Fitting Energy; ALF, Implicit Active Contours Driven by Local Binary Fitting Energy.
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determining the area and location of the CCC and CV in 
FBMUIs. To tackle this challenge, we developed an integrated 
framework that combines medical a priori knowledge 
with traditional medical image processing techniques. Our 
framework leverages the physiological characteristics and 
positional correspondence between CCC and CV to provide 
valuable medical insights and data in FBMUIs.

By employing a VAE, we generated average templates 
for CCC and CV local images, which served as the 
foundation for subsequent localization and segmentation 
steps. For CCC localization, we implemented the 
“Initial Localization-Accurate Localization-Result 
Detection” strategy, followed by morphological-based 
segmentation using the “Initial Contour Fitting-Contour 
Iteration” strategy. A similar approach was employed 
for CV localization and segmentation. Our method also 
incorporated spatial and morphological characteristics 
to achieve accurate localization and segmentation. We 
validated the accuracy and effectiveness of our CCC and 
CV localization and segmentation methods using 140 
FBMUIs from various perspectives. Data statistics and 
comparative analysis demonstrated the robustness of 
our approach. Currently, clinical trials are underway at 
Shengjing Hospital of China Medical University to further 
evaluate the clinical utility of our method. The integration 
of medical knowledge and computer vision techniques in 
our framework offers a novel solution for the automatic 
localization and quantitative segmentation of CCC and CV 
in FBMUIs. This method holds promise for early diagnosis 
of CNS anomalies in human embryos, thereby offering 
significant clinical implications. The potential benefits of 
timely intervention based on accurate prenatal diagnosis are 
extensive and can contribute to improved patient outcomes.

While our study presents a promising approach, it 
is important to acknowledge some limitations. First, 
our method relies on the availability of high-quality 
FBMUIs, which may not always be obtainable in clinical 
practice. Additionally, the generalizability of our findings 
to diverse populations and imaging protocols should 
be further investigated. Future research should focus 
on refining and optimizing the framework, considering 
these limitations, and expanding its application to larger 
datasets. In conclusion, our integrated framework represents 
a valuable contribution to the field of prenatal diagnosis. 
The combination of medical knowledge and computer 
vision techniques enables the automatic localization and 
quantitative segmentation of CCC and CV in FBMUIs. The 
scientific validity and feasibility of our method have been 

demonstrated through visual and computational validation 
experiments. The ongoing clinical trials will further validate 
its effectiveness and potential impact on patient care.

Conclusions

Recent technological advancements and the growing 
importance of eugenics have highlighted the urgent need 
for an automated testing technique to aid in the prenatal 
diagnosis of fetal brain development. This presents a 
significant challenge in accurately determining the area 
and location of the CCC and CV in FBMUIs. To address 
this challenge, our paper presents an integrated framework 
that combines medical a priori knowledge with traditional 
medical image processing techniques. By leveraging the 
physiological characteristics and positional correspondence 
between CCC and CV, our framework provides valuable 
medical insights and data in FBMUIs. Through visual and 
computational validation experiments, we demonstrate the 
scientific validity and feasibility of our method, establishing 
its potential as an effective tool in prenatal diagnosis.
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