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Background: One-third of patients with hormone receptor (HR)-positive breast cancers fail to respond to
hormone therapy, and some patients even progress within two years of adjuvant endocrine therapy (ET)
toward primary endocrine resistance. However, there is no effective way to predict endocrine resistance.
Objective: To build a model that incorporates the radiomic signature of pretreatment magnetic reso-
nance imaging (MRI) with clinical information to predict endocrine resistance.
Methods: Clinical data of non-metastatic breast cancer patients diagnosed between May 1, 2015 and
December 31, 2018 and preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) were retrospectively collected from three hospitals in China. The significant clinicopathological
characteristics and radiomic signatures were included in multivariable logistic regression to establish a
combined model to predict endocrine resistance in the training set, and validate the internal and external
validation set.
Results: A total of 744 female non-metastatic breast cancer patients from three hospitals in China were
included. In the training cohort, the AUC of the Radiomic-Clinical combined model to predict endocrine
resistance was 0.975, which was higher than clinical model (0.849), IHC4 model (0.682) and similar as
radiomic model (0.941). Also, the AUC of the combined model in the internal (0.921) and external
validation cohort (0.955) were higher than clinical model and IHC4 model. The sensitivity of combined
model was higher than radiomic alone, and got the best thresholding of the AUC.
Conclusion: This study developed and validated a pretreatment multiparametric MRI-based radiomic-
clinical combined model and showed good performance in predicting endocrine resistance.
© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Abbreviations

AI Artificial intelligence
AUC Area under the ROC curve
DCE-MRI Dynamic contrast-enhanced magnetic resonance

imaging
DWI-ADC Diffusion-weighted imaging quantitatively measured

apparent diffusion coefficient
DCA Decision curve analysis
ER Estrogen receptor
ET Endocrine therapy
HR Hormone receptor
HER2 Human epidermal growth factor receptor 2

IHC Immunohistochemistry
MRI Magnetic resonance imaging
MBC Metastatic breast cancer
OFS Ovarian function suppression
PR Progesterone receptor
RFS Recurrence-free survival
RS Recurrence score
ROR Risk of recurrence
RRSs Radiomics risk scores
ROC Receiver operating characteristic
T1þC T1-weighted imaging
T2WI T2-weighted imaging
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1. Introduction

Breast cancer has the highest incidence rate and the second
highest mortality rate among women with malignant tumor
around the world [1]. Molecular subtypes based on the expression
of hormone receptor (HR), human epidermal growth factor recep-
tor 2 (HER2), and Ki67 directly determine basic treatment strate-
gies and indicate prognosis in patients with breast cancer [2,3].
About 70e80% breast cancer cases showpositive HR expression and
tend to be sensitive to endocrine therapy (ET). However, one-third
of HR-positive breast cancer patients experience endocrine therapy
failures [4], and some patients even progress within two years of
adjuvant ET toward primary endocrine resistance. Once post-
operative recurrence or even metastasis occurs, these patients’ 5-
year survival will be less than 30% [1]. Therefore, methods to pre-
dict the efficacy of ET need to be explored in addition to the positive
expression of HR.

Models that have been used to predict the risk of endocrine
therapy include Oncotype DX21-gene and the PAM50 risk score in
clinical practice [5,6]. Immune infiltration was assessed with he-
matoxylin & eosin (H&E)-stained histology sections, and immune
scores were proven to be related to recurrence-free survival (RFS)
[7]. With the development of artificial intelligence (AI), radiomics
models to predict tumor-related prognosis or treatment responses
have become noninvasive and efficient prediction technique.
Radiomics risk scores (RRSs) based on CT have been constructed to
predict the efficacy of CDK 4/6 inhibitors in HR-positive metastatic
breast cancer (MBC) with a receiver operating characteristic (ROC)
curve of 0.675 (N ¼ 46) [8]. However, there is still no consensus on
the radiomics method to be applied for assessing ET response.

In this study, we built a model incorporating the radiomics
signature of pretreatment magnetic resonance imaging (MRI) with
clinical information and assessed the predictive ability.

2. Method

2.1. Study population

Clinical data and preoperative DCE-MRI from a total of 744 non-
MBC patients, diagnosed between May 1, 2015 and December 31,
2018 were retrospectively collected from three hospitals in China.
The study was approved by Sun Yat-sen Memorial Hospital Ethics
Committee and registered with ClinicalTrials.gov (NCT04003558),
Chinese Clinical Trail Registry (ChiCTR1900024020). Informed
consent from the study participants was exempted as it was a
retrospective study. Clinical and histopathologic data were ob-
tained from the medical records. Clinicopathological characteristics
of the patients with breast cancer included age, tumor type,
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estrogen receptor (ER) status, progesterone receptor (PR) status,
HER2 expression, Ki-67 proliferation index, histological grade, T
stage, N stage, and ET.

The inclusion criteriawere as follows: (a) non-metastatic female
breast cancer patients; (b) patients underwent standardized breast
cancer treatment; (c) determined by IHC as ER-positive, or/and PR-
positive for breast cancer. ER or PR positive status was defined as
�1% of the tumor cells were immunoreactive; (d) patients with
complete clinicopathological characteristics, follow-up, and pre-
treatment MRI data.

In this study, the definition of primary endocrine therapy
resistance was that breast cancer patients progressed within two
years of adjuvant ET [9]. Follow-up data were censored on January
31, 2021.

2.2. Radiomic feature extraction

The radiomic workflow and MRI protocol were introduced in
our first study [10]. Among the various software programs used in
this study, the open-access software 3D Slicer was the main one
and the license was obtained for its availability for use. N4ITK Bias
Correction code of 3D Slicer version 4.10.2 was applied to normalize
the whole DCE-MRIs from 3 hospitals. Radiologists who engaged in
breast MRI imaging for more than five years reviewed all the pre-
operative DCE-MRI and semi-automatically segmented and delin-
eated the 3D regions of interest (ROIs) of the breast tumors. All
radiologists were blinded to the patients’ clinical outcomes. When
there were multiple lesions, the most obvious and malignant lesion
was selected. After the ROIs of the ALNs and tumors were recon-
structed and segmented, the volume of interest (VOI) images (ac-
cording to the Digital Imaging and Communications in Medicine
[DICOM] format) were transferred to the Slicer Radiomics code.
Then, an in-house texture extraction platformwas developed based
on the Python package PyRadiomics [11]. The voxel-based features
included shape, first-order, gray-level cooccurrence matrix, gray-
level size zone matrix, gray-level dependence matrix, and neigh-
boring gray tone difference matrix. More details about the radiomic
feature extraction were provided in our earlier study [10]. Even-
tually, 2589 radiomics features were extracted from preoperative
DCE-MRI, including contrast-enhanced T1-weighted imaging
(T1þC), T2-weighted imaging (T2WI), and diffusion-weighted im-
aging quantitatively measured apparent diffusion coefficient (DWI-
ADC) imaging.

2.3. Development of radiomic signature

The random forest algorithm was used to select the most pre-
dictive 30 radiomic features for each radiomic sequence (T1þC
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sequence, T2WI sequence, and DWI-ADC sequence，see
Supplemental Fig. 1Ae1C). The number of features selected by the
random forest algorithm and the optimal parameters were deter-
mined empirically based on the performance in the training cohort
[12]. After normalization processing, multivariable logistic regres-
sion was used to combine the T1þC, T2WI, and DWI-ADC imaging
signatures of the breast tumors for endocrine resistance prediction.

2.4. Calculation of immunohistochemistry (IHC)4 score

The IHC4 score was used according to the following algorithm:
IHC4 ¼ 94.7 � {-0.100ER10e0.079PR10 þ 0.586HER2 þ 0.240 ln
(1 þ 10 � Ki-67)} [13]. ER was quantified using the H-score. The
variable ER10 was obtained by dividing the H-score by 30 to obtain
a variable with a range of 0e10. PR was scored as the percentage of
cells with positive staining. The positive cut-off was 10%. The var-
iable PR10 was obtained by dividing the variable PR by 10 to obtain
a variable between 0 and 10. HER2 was scored when the IHC score
for HER2 was 3þ or 2þ and confirmed positive by FISH. Ki-67 was
scored as the percentage of malignant cells showing positive
staining [13].

2.5. Statistical analysis

Data were presented as frequency and percentage for categori-
cal variables. The distribution of clinicopathological characteristics
was presented in the three cohorts: training cohort, internal vali-
dation cohort and external validation cohort. Univariable analysis
(c2 test or Fisher's exact test) was performed to determine the as-
sociations of clinicopathological characteristics with endocrine
resistance in the training cohort. Significant variables were then
included in multivariable logistic regression analysis for predicting
endocrine resistance.

The significant radiomic signatures and clinicopathological
characteristics were included in the multivariable logistic regres-
sion to establish a combined model to endocrine resistance and
presented as a nomogram in the training set. Then, the internal and
external data sets were used to validate the combined model and
compared with the IHC4 model using ROC curve analysis and by
calculating the AUC. Additionally, the decision curve analysis was
used to calculate the net benefits for a range of threshold proba-
bilities to estimate the predictive models’ clinical utility. The sta-
tistical descriptions and analyses were performed using R software
version 3.6.1, the license for which was obtained under any
requirement for permission for use. All statistical tests were two-
sided, with statistical significance defined as having a P-value <
0.05.

3. Result

3.1. Clinical characteristics

In total, 744 newly diagnosed female non-metastatic breast
cancer patients from three hospitals in China (median age: 48
years; range: 24e74 years) were included in this study: 593 pa-
tients from Sun Yat-sen Memorial Hospital of Sun Yat-sen Univer-
sity, 87 patients from Shunde Hospital of Southern Medical
University, and 64 patients from Tungwah Hospital of Sun Yat-sen
University. In Sun Yat-sen Memorial Hospital, 433 breast cancer
patients were used as the training cohort, and 160 breast cancer
patients whowere enrolled from an ongoing clinical trial were used
as the internal validation cohort. The external validation cohort
comprised 151 breast cancer patients from Shunde Hospital and
Tungwah Hospital. The three cohorts’ clinical characteristics are
provided in Table 1. Patient characteristics included age,
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histological grade, pathologic types, ER group, PR group, HER2
status, stage, T stage, N stage, drug used in chemotherapy and ET,
Ovarian function suppression (OFS), and endocrine resistance. The
rate of endocrine resistance was no significant differences among
the three cohorts (P ¼ 0.391), which were 4.4% (19/433) in the
training cohort, 6.9% (11/160) in the internal validation cohort, and
4.0% (6/151) in the external validation cohort. There were no sig-
nificant differences in histological grade, ER group, and HER2 status
between the three cohorts. There were some variations regarding
tumor and patient characteristics (e.g., age, PR, Ki67, stage, patho-
logic types, surgery, chemotherapy, ET, as presented in Table 1)
between the different cohorts.

3.2. Clinical model development

The association of clinicopathological characteristics and
endocrine resistance in the training cohort is shown in Table 2.
Patients diagnosed with higher breast cancer stages were more
likely to develop endocrine resistance (P ¼ 0.001). The rate of
endocrine resistance in histological grade 3 was higher than his-
tological grades 1 and 2 (7.1% vs 2.4%, P ¼ 0.019). In addition, pa-
tients with PR expression <20% were more likely to develop
endocrine resistance than patients with PR expression >20% (8.0%
vs 1.6%, P¼ 0.001). The results showed that age, pathologic type, ER
expression, Her-2 status, chemotherapy, endocrine drug, and OFS
did not affect endocrine resistance (P > 0.05, as shown in Table 2).
The clinical signature model that was incorporated with significant
factors of stage, histological grade, and PR expression showed AUCs
of 0.849 (95% CI: 0.785e0.914) based on logistic regression model
in the training cohort (Fig. 2A).

3.3. Radiomics model development

The AUC of the radiomic model with the combination of features
from the T1þC, T2WI, and DWI-ADC sequences was 0.941 (95% CI:
0.871e1.000) (Fig. 1), which showed better predictive performance
of endocrine resistance than the T1þC sequence alone
(AUC ¼ 0.829, 95% CI: 0.747e0.911,P ¼ 0.031) and the DWI-ADC
sequence alone (AUC ¼ 0.828, 95% CI: 0.727e0.929, P ¼ 0.050),
and also higher than the T2WI sequence alone (AUC ¼ 0.886, 95%
CI: 0.816e0.955,P ¼ 0.212) with no statistical significance (see
Fig. 1).

3.4. Radiomic-clinical model development and validation

The multivariable logistic regression model identified clinical
and radiomic signatures combined to predict endocrine resistance
in HR-positive patients. The radiomic-clinical combined model was
presented as a nomogram in Supplemental Fig. 2 and compared
with the radiomic, clinical, and IHC4 models. The AUC of the
radiomic-clinical combined model to predict endocrine resistance
was 0.975 (95% CI: 0.953e0.996), which was significantly higher
than the clinical model (0.849, 95% CI: 0.785e0.914, P < 0.001) and
the IHC4 model (0.682, 95% CI, 0.561e0.803, P < 0.001) in the
training cohort, and similar as that of the radiomic model (0.941,
95% CI: 0.871e1.000,P ¼ 0.229) (Fig. 2A). But the sensitivity and the
maximal Youden index of combined model was higher than
radiomic model alone (sensitivity 1.00 v.s. 0.89, Youden index 0.86
v.s. 0.81) in training cohort. Similarly, the AUC of the combined
model (0.921, 95% CI: 0.840e1.000) for predicting endocrine
resistance in the internal validation cohort was significantly higher
than that of the clinical model (0.799, 95% CI: 0.672e0.926,
P < 0.001) and IHC4 model (0.741, 95% CI: 0.591e0.892, P < 0.001),
and similar as that of the radiomic model (0.920, 95% CI:
0.847e0.993,P ¼ 0.951) (Fig. 2B). Also the sensitivity and the



Table 1
Clinicopathologic Characteristics and Endocrine Resistance status of patients in training, internal and external validation cohorts.

Characteristics Training cohort
N ¼ 433 (%)

Internal validation cohort
N ¼ 160 (%)

External validation cohort
N ¼ 151 (%)

Total
N ¼ 744 (%)

P value

age <0.001
�35 27(6.2) 29(18.1) 8(5.3) 64(8.6)
35e50 203(47.0) 80(50.0) 76(50.3) 359(48.3)
�50 202(46.8) 51(31.9) 67(44.4) 320(43.1)

ER* 0.842
Low 85(19.6) 28(17.5) 29(19.2) 142(19.1)
High 348(80.4) 132(82.5) 122(80.8) 602(80.9)

PRþ <0.001
Low 188(43.4) 95(59.4) 51(33.8) 334(44.9)
High 245(56.6) 65(40.6) 100(66.2) 410(55.1)

HER2** 0.067
Negative 311(71.8) 99(61.9) 104(68.9) 514(69.1)
Positive 122(28.2) 61(38.1) 47(31.1) 230(30.9)

Ki-67þþ <0.001
Negative 72(16.6) 71(44.4) 53(36.6) 196(26.6)
Positive 361(83.4) 89(55.6) 92(63.4) 542(73.4)

Stage <0.001
I 84(19.4) 5(3.1) 37(24.5) 126(16.9)
II 287(66.3) 109(68.1) 76(50.3) 472(63.4)
III 62(14.3) 46(28.8) 38(25.2) 146(19.6)

T stage <0.001
T1 95(21.9) 5(3.1) 59(39.1) 159(21.4)
T2 264(61.0) 84(52.5) 83(55.0) 431(57.9)
T3-4 74(17.1) 71(44.4) 9(6.0) 154(20.7)

N stage <0.001
N0 262(60.5) 58(36.3) 77(51.0) 397(53.4)
N1 124(28.6) 63(39.4) 38(25.2) 225(30.2)
N2-3 47(10.9) 39(24.4) 36(23.8) 122(16.4)

Grade 0.166
I-II 249(57.5) 101(66.0) 93(61.6) 443(60.1)
III 184(42.5) 52(34.0) 58(38.4) 294(39.9)

Pathologic type 0.016
IDC 406(93.8) 156(97.5) 151(100.0) 713(95.8)
ILC 17(3.9) 0(0.0) 0(0.0) 17(2.3)
Other 10(2.3) 4(2.5) 0(0.0) 14(1.9)

Surgery <0.001
Mastectomy 194(44.8) 96(60.0) 118(78.1) 408(54.8)
BCS 239(55.2) 64(40.0) 33(21.9) 336(35.2)

Chemotherapy <0.001
No 82(18.9) 0(0) 17(11.3) 99(13.3)
Yes 351(81.1) 160(100) 134(88.7) 645(86.7)

Chemotherapy treatment <0.001
Anthracycline and paclitaxel-based 246(70.1) 160(100) 100(74.6) 506(78.4)
Paclitaxel-based 79(22.5) 0(0) 21(15.7) 100(15.5)
Anthracycline-based 26(7.4) 0(0) 13(9.7) 39(6.0)
Endocrine therapy <0.001
Aromatase inhibitor 197(45.5) 79(59.8) 27(17.9) 303(42.3)
Tamoxifen 236(54.5) 53(40.2) 124(82.1) 413(57.7)

Endocrine Resistance 0.391
No 414(95.6) 149(93.1) 145(96.0) 708(95.2)
Yes 19(4.4) 11(6.9) 6(4.0) 36(4.8)

Abbreviations: ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor2; IDC, Invasive ductal carcinoma; ILC, Invasive lobular
carcinoma; BCS, breast conserving surgery.
*Cases where �10% of tumor cells stained positive for ER with immunohistochemistry (IHC) were considered high.
þCases where �20% of tumor cells stained positive for PR with IHC were considered high.
**Cases that showed either 3þ IHC staining or had gene copy number＞2.0 were considered HER2 positive.
þþCases where �14% of tumor cells stained positive for Ki-67 with IHC were considered positive.
P values of the comparison between 3 cohorts were generated by c2 test for categorical variables.
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maximal Youden index of combined model was higher than
radiomic model alone (sensitivity 0.91 v.s. 0.73, Youden index 0.72
v.s. 0.70) in the internal validation cohort. In addition, the AUC of
the combined model (0.955, 95% CI: 0.891e1.000) was higher than
that of the clinical model (0.910, 95% CI: 0.814e1.000, P ¼ 0.090)
and the IHC4 model (0.798, 95% CI: 0.620e0.975, P ¼ 0.012), but
similar as that of the radiomic model (0.932, 95% CI: 0.881e0.934,
P ¼ 0.440) in the external validation cohort (Fig. 2C). And the
sensitivity and the maximal Youden index of combined model was
93
higher than radiomic model alone (sensitivity 1.00 v.s. 0.83, Youden
index 0.88 v.s. 0.81) in the external validation cohort.

Decision curve analysis (DCA) demonstrated that the radiomic-
clinical combinedmodel and radiomic model provided a higher net
benefit of threshold probabilities for predicting endocrine resis-
tance than clinical model and IHC4 model across a wider reason-
able range (7e95%) of threshold probabilities. The radiomic-clinical
combined model, the radiomic model, the clinical model, and IHC4
model were shown in Fig. 3AeC for the training cohort, internal



Table 2
The associations between Clinicopathologic Characteristics and Endocrine Resistance in training Cohort.

Endocrine Resistance

Characteristics No
N ¼ 414 (%)

Yes
N ¼ 19 (%)

Total
N ¼ 433 (%)

P value

age 0.870
�35 26(6.3) 1(5.3) 27(6.2)
35e50 195(47.2) 8(42.1) 203(47.0)
�50 192(46.5) 10(52.6) 202(46.8)

ER* 0.232
Low 79(19.1) 6(31.6) 85(19.6)
High 335(80.9) 13(68.4) 348(80.4)

PRþ 0.001
Low 173(41.8) 15(78.9) 188(43.4)
High 241(58.2) 4(21.1) 245(56.6)

HER2** 0.390
Negative 299(72.2) 12(63.2) 311(71.8)
Positive 115(27.8) 7(36.8) 122(28.2)

Ki-67þþ 0.222
Negative 71(17.1) 1(5.3) 72(16.6)
Positive 343(82.9) 18(94.7) 361(83.4)

Stage 0.005
I 81(19.6) 3(15.8) 84(19.4)
II 280(67.6) 7(36.8) 287(66.3)
III 53(12.8) 9(47.4) 62(14.3)

T stage 0.274
T1 95(22.2) 3(15.8) 95(21.9)
T2 254(61.4) 10(52.6) 264(61.0)
T3-4 68(16.4) 6(31.6) 74(17.1)

N stage 0.001
N0 254(61.4) 8(42.1) 262(60.5)
N1 121(29.2) 3(15.8) 124(28.6)
N2-3 39(9.4) 8(42.1) 47(10.9)

Grade 0.019
I-II 243(58.7) 6(31.6) 249(57.5)
III 171(41.3) 13(68.4) 184(42.5)

Pathologic type 0.516
IDC 387(93.5) 19(100.0) 406(93.8)
ILC 17(4.1) 0(0.0) 17(3.9)
Other 10(2.4) 0(0.0) 10(2.3)

Surgery 0.010
Mastectomy 180(43.5) 14(73.7) 194(44.8)
BCS 234(56.5) 5(26.3) 239(55.2)

Chemotherapy 0.064
No 82(19.8) 0(0) 82(18.9)
Yes 332(80.2) 19(100) 351(81.1)

Chemotherapy treatment 0.670
Anthracycline and paclitaxel-based 231(69.6) 15(78.9) 246(70.1)
Paclitaxel-based 76(22.9) 3(15.8) 79(22.5)
Anthracycline-based 25(7.5) 1(5.3) 26(7.4)
Endocrine therapy 0.267
Aromatase inhibitor 186(44.9) 11(57.9) 197(45.5)
Tamoxifen 228(55.1) 8(42.1) 236(54.5)

Ovarian function suppression 0.562
No 279(78.2) 14(87.5) 293(78.6)
Yes 78(21.8) 2(12.5) 80(21.4)

Abbreviations: ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor2; IDC, Invasive ductal carcinoma; ILC, Invasive lobular
carcinoma; BCS, breast conserving surgery.
*Cases where �10% of tumor cells stained positive for ER with immunohistochemistry (IHC) were considered high.
þCases where �20% of tumor cells stained positive for PR with IHC were considered high.
**Cases that showed either 3þ IHC staining or had gene copy number＞2.0 were considered HER2 positive.
þþCases where �14% of tumor cells stained positive for Ki-67 with IHC were considered positive.
P values of the comparison between Endocrine Resistance and non- Endocrine Resistance patients in training cohort were generated by c2 test for categorical variables.
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validation cohort and external validation cohort, respectively.
4. Discussion

Endocrine resistance is one of the most troublesome problems
of HR-positive breast cancer patients in clinical practice. Only two-
thirds of patients exhibit a good response to endocrine therapy, and
once postoperative recurrence or even metastasis occur, these pa-
tients would have poor prognosis [1,4]. This study proposed using
94
AI to predict endocrine resistance in HRþ non-MBC patients.
In this multicenter study, we developed and validated a pre-

treatment multiparametric MRI-based radiomic-clinical combined
model to predict endocrine resistance in individual female patients
with non-MBC. We extracted the radiomics features from the MRI
images, combining the clinical features effectively (such as: stage,
histological grade, PR expression), to develop a combined model
with good performance in predicting endocrine resistance in the
training cohort, internal validation cohort and external validation



Fig. 1. Discriminatory accuracy in predicting endocrine resistance that was assessed by
ROC analysis calculating the AUC using T1þC, T2WI, DWI-ADC sequences alone and
combined radiomic sequences.
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cohort, which was better than with the clinical information model
alone and the IHC4 model. Although the AUC between combined
model and radiomic model alone was no significance differences,
the value of combined model was higher than radiomic model
alone. And the sensitivity of combined model was higher than
radiomic model alone, also the combined model was at the best
thresholding of the AUC.

Studies have suggested that HER2 overexpression is associated
with poor response to tamoxifen therapy [14]. HER2 may lead to
Fig. 2. Discriminatory accuracy in predicting endocrine resistance that was assessed by RO
validation (C) cohorts.

Fig. 3. Decision curve analysis for the combined, radiomic, clinical, and IHC4 mod
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tamoxifen resistance by activating estrogen receptor co-activator
proteins [8]. Another possible cause is the loss of ER expression. It
can be concluded from the results of clinical trials that Ki-67 is
related to the disease-free survival and recurrence-free survival of
premenopausal breast cancer patients. Dowsett et al. showed that
anastrozole can reduce the Ki67 index and prolong the disease-free
and recurrence-free of patient's survival [15]. Matthew. et al.
studied the clinical characteristics related to the reaction of ET,
which revealed that Ki-67, tumor size, nodule involvement, and ER
status affect the prognosis of ET [16]. About 10e20% of initially ER-
positive patients convert into negative upon relapse [8]. Some
studies evaluated the role of ESR1mutations in acquired endocrine-
resistant breast cancer. ESR amplification has been shown to be
significantly negatively correlated with positive HER2 status,
negative ERa, T stage and number of positive lymph nodes [17]. A
previous study established a predictive model for ERþ/HER2- breast
cancer patient response to endocrine therapy based on the 12-gene
MS, with an AUC of 0.726 (95% CI: 0.60e0.85) [18]. Another study
showed that after 5 years of adjuvant ET in breast cancer, tumor/
lymph stage and histological grade are strongly correlated with the
risk of distant recurrence [19]. In our research, the predictive ability
was further improved by adding radiomic signatures using AI, and
the AUC was 0.975 (95% CI: 0.953e0.996), which is higher than
previous studies.

Diagnosis, prognosis, prediction, and treatment of breast cancer
were improved using AI in radiomics [20]. Several studies have
added clinical information, pathology information, genomics, and
radiomic features to improve model performance in predicting
survival prognosis of breast cancer for all molecular subtypes, and
the AUC was between 0.55 and 0.90 [10,21].

This study was aimed to identify high risk endocrine resistance
patients with HR-positive breast cancer in advance, provide pa-
tients with personalized therapeutic agent such as CDK4/6
C analysis for calculating the AUC. Training (A), internal validation (B), and external

els. Training (A), internal validation (B), and external validation (C) cohorts.
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inhibitors or other targeted therapies, and prolong disease-free
survival [22]. Also, this study was a multi-center, retrospective
study with 744 HR-positive breast cancer patients, and the
radiomic-clinical combined model showed good generalizability
and clinical applicability. Furthermore, we will collect multi-
sequence MRI images and clinicopathological characteristics pro-
spectively to validate the accuracy and consistency of the combined
predictive model.

There are several limitations of the study. First, it is a retro-
spective study, with heterogeneity in MR versions among hospitals.
Therefore, several post-processing steps were conducted to
normalize the images, and a standard distribution of image in-
tensity that reduced heterogeneity was obtained. Second, genetic
features such as transcriptomics, genomics, and tumor mutation
burden were not included in this model due to missing data. In
addition, the underlying mechanism of the interaction between
tumormicroenvironment and radiomic signatures warrants further
investigation. Third, we only discussed primary endocrine resis-
tance, but the number of primary endocrine resistant outcome was
low with 4e9% in HR-positive patients. Secondary endocrine
resistance was excluded from this study and requires further
research.

In conclusion, the study established and validated a radiomic-
clinical model to predict endocrine resistance in non-MBC HR
positive patients. This model can assist clinicians in formulating
individualized therapeutic regimens for patients.
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