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Abstract
Trastuzumab is a monoclonal antibody targeted against the HER2
tyrosine kinase receptor. The majority of patients with metastatic
breast cancer who initially respond to trastuzumab develop
resistance within one year of treatment initiation, and in the adjuvant
setting 15% of patients still relapse despite trastuzumab-based
therapy. In this review, we discuss potential mechanisms of
antitumor activity by trastuzumab, and how these mechanisms
become altered to promote therapeutic resistance. We also discuss
novel therapies that may improve the efficacy of trastuzumab, and
that offer hope that the survival of breast cancer patients with
HER2-overexpressing tumors can be vastly improved.

Introduction
Approximately 20% to 25% of invasive breast cancers exhibit
overexpression of the human epidermal growth factor receptor
(HER)2 tyrosine kinase receptor [1,2]. As elevated HER2
levels are associated with reduced disease-free and overall
survival in metastatic breast cancer (MBC) [1,3], therapeutic
strategies are being developed to target this oncoprotein.
Trastuzumab (Herceptin®; Genentech, South San Francisco,
CA, USA), a recombinant humanized monoclonal antibody
(rhumAb 4D5) directed against an extracellular region of
HER2 [4], was the first HER2-targeted therapy approved by
the United States Food and Drug Administration (FDA) for
the treatment of HER2-overexpressing MBC. In addition,
trastuzumab with adjuvant chemotherapy (either in sequence
or in combination) significantly improved disease-free and
overall survival rates in patients with early stage HER2-
overexpressing breast cancer [5-7].

Trastuzumab: mechanisms of antitumor effects
The mechanisms by which trastuzumab induces regression of
HER2-overexpressing tumors are still being elucidated, but
several molecular and cellular effects have been reported in
the literature [8].

Trastuzumab reduces signaling mediated by HER2 through
the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated
protein kinase (MAPK) cascades. Reduced downstream
signaling through these pathways induces the cyclin-
dependent kinase inhibitor p27kip1, which promotes cell-
cycle arrest and apoptosis [9,10].

Trastuzumab rapidly dissociates the non-receptor tyrosine
kinase Src from HER2, reducing Src activity such that the
phosphatase and tensin homolog deleted on chromosome
ten (PTEN) is dephosphorylated and translocated to the
plasma membrane where it is active [11]. The PI3K down-
stream effectors Akt and mammalian target of rapamycin
(mTOR) are then inhibited.

The efficacy of trastuzumab may also depend upon its ability
to induce an immune response. HER2-targeted antibodies,
including trastuzumab, were shown to promote apoptosis in
multiple breast cancer cell lines via antibody-dependent
cellular cytotoxicity (ADCC) [12-15]. Importantly, mice that
were null for the Fc gamma receptor expressed on natural
killer cells, which are important for ADCC, lost much of the
antitumor effect of trastuzumab, with only 29% tumor growth
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inhibition observed versus 96% in control mice expressing
the Fc gamma receptor and with intact natural killer cell function
[13]. Thus, an active immune response to trastuzumab may
be partially responsible for cytotoxic activity. Furthermore, a
higher in situ infiltration of leukocytes and ADCC activity
were observed in patients achieving complete or partial
remission after receiving preoperative trastuzumab relative to
those who did not respond to this regimen [14]. Since
patients with advanced MBC are immunosuppressed, it is
difficult to appreciate the magnitude of the contribution of
ADCC to trastuzumab-mediated tumor inhibition. More in-
depth in vivo studies are required to grasp exactly how
important the contribution of ADCC is to mediating the
response to trastuzumab and whether other targeted
antibodies used against solid tumors also rely upon immune
modulation to achieve response.

Trastuzumab has also been shown to inhibit angiogenesis,
resulting in decreased microvessel density in vivo [16-18]
and reduced endothelial cell migration in vitro [17].
Expression of pro-angiogenic factors was reduced, while
expression of anti-angiogenic factors was increased in
trastuzumab-treated tumors relative to control-treated tumors
in vivo [16-18]. Combining trastuzumab with the chemo-
therapeutic agent paclitaxel actually inhibited angiogenesis
more potently than did trastuzumab alone [17], perhaps due
to trastuzumab-mediated normalization of the tumor
vasculature allowing for better drug delivery [16].

Trastuzumab: clinical efficacy and resistance
Trastuzumab is active as a single agent and in combination
with chemotherapy in HER2-overexpressing MBC, leading to
FDA approval of trastuzumab in 1998 for treatment in this
setting. The objective response rates to trastuzumab mono-
therapy were low, ranging from 12% to 34% depending on
prior therapy for metastatic disease, for a median duration of
9 months. Hence, the majority of HER2-overexpressing
tumors demonstrated primary (de novo or intrinsic) resistance
to single-agent trastuzumab. In fact, the rate of primary
resistance to single-agent trastuzumab for HER2-over-
expressing MBC is 66% to 88% [19-21]. Further phase III
trials revealed that combining trastuzumab with paclitaxel
[22,23] or docetaxel [24] could increase response rates, time
to disease progression, and overall survival compared with
trastuzumab monotherapy. In patients whose tumors had
amplified her2 and had not received prior chemotherapy for
MBC, the median time to progression in response to single-
agent trastuzumab treatment was 4.9 months [22]; in patients
who received trastuzumab and chemotherapy, the median
time to progression was 7.4 months [23]. Thus, the majority
of patients who achieve an initial response to trastuzumab-
based regimens develop resistance within one year. In the
adjuvant setting, administration of trastuzumab in combination
with or following chemotherapy improves the disease-free
and overall survival rates in patients with early stage breast
cancer [5-7]. However, approximately 15% of these women

still develop metastatic disease despite trastuzumab-based
adjuvant chemotherapy. Elucidating the molecular mecha-
nisms underlying primary or acquired (treatment-induced)
trastuzumab resistance is critical to improving the survival of
MBC patients whose tumors overexpress HER2 (Table 1)
[25].

Trastuzumab: mechanisms of resistance
Steric hindrance of receptor-antibody interaction:
overexpression of MUC4
A potential mechanism by which resistance to targeted
antibodies may develop is via disruption of the interaction
between the therapeutic agent and the target protein.
Resistance to trastuzumab was associated with increased
expression of the membrane-associated glycoprotein MUC4
[26]. MUC4 was shown to bind and sterically hinder HER2
from binding to trastuzumab [26,27]. MUC4 has been
suggested to contribute to cancer because of its ability to
inhibit immune recognition of cancer cells, promote tumor
progression and metastasis, suppress apoptosis, and
activate HER2 [28]. MUC4 interacts directly with HER2, an
event that is dependent upon an epidermal growth factor
(EGF)-like domain on the ASGP-2 subunit of MUC4 [26].
Through this interaction, it is proposed that MUC4 serves as
a ligand for HER2, resulting in increased phosphorylation of
HER2 on the residue Tyr1248 [26], which is a major
phosphorylation site contributing to the transforming ability of
the HER2 oncoprotein [29]. MUC4 does not affect total
HER2 receptor expression levels [26,28]. The JIMT-1
trastuzumab-resistant cell line described by Nagy and
colleagues [27] was established from a breast cancer patient
showing her2 gene amplification and primary resistance to
trastuzumab [30]. Using this model, the authors demon-
strated that the level of MUC4 protein was inversely
correlated with the trastuzumab binding capacity, and
showed that knockdown of MUC4 increased the sensitivity of
JIMT-1 cells to trastuzumab [27]. Thus, the authors proposed
that elevated MUC4 expression masks the trastuzumab
binding epitopes of HER2, resulting in steric hindrance of the
interaction between this antibody and its therapeutic target,
resulting in drug resistance. Interestingly, the authors also
reported that HER2 was unable to interact with other
proteins, such as EGFR or HER3, because of epitope
masking by MUC4.

Insulin-like growth factor-I receptor signaling
Trastuzumab resistance has been associated with increased
signaling from the insulin-like growth factor-I receptor (IGF-IR).
Increased expression of IGF-IR was shown to reduce
trastuzumab-mediated growth arrest of HER2-overexpressing
breast cancer cells [31]. Expression of IGF-binding protein 3,
which blocks IGF-I-mediated activation of IGF-IR, restored
trastuzumab sensitivity. We recently demonstrated that cross-
talk occurs between IGF-IR and HER2, and showed that IGF-
IR physically interacts with and phosphorylates HER2 in
trastuzumab-resistant cells, but not in trastuzumab-sensitive
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parental cells [32]. Our results showed that resistant cells
exhibited more rapid IGF-I stimulation of downstream PI3K/Akt
and MAPK pathways relative to parental cells. Inhibition of
IGF-IR signaling, either by antibody blockade or IGF-IR
tyrosine kinase inhibition, restored trastuzumab sensitivity in
our in vitro resistant model, demonstrating the potential
importance of this pathway as a therapeutic target in
trastuzumab-resistant breast cancer. Similar to Lu and
colleagues [33], we observed downregulation of p27kip1 upon
IGF-I stimulation in both parental and resistant cells [32].
Importantly, antisense oligonucleotides [34] and small
interfering RNA [35] that reduced p27kip1 expression levels
also blocked trastuzumab-mediated growth arrest in HER2-
overexpressing SKBR3 breast cancer cells. Transfection of
p27kip1 or pharmacological induction of p27kip1 by the
proteasome inhibitor MG132 restored trastuzumab sensitivity
in our resistant model [36]. These results suggest that p27kip1

is a critical mediator of trastuzumab response, and that its
downregulation may occur subsequent to increased signaling
from growth factor receptors such as IGF-IR, promoting
resistance to trastuzumab.

PTEN and PI3K signaling
Growth factor receptor tyrosine kinases, such as HER2 and
IGF-IR, activate the PI3K signaling pathway. Constitutive
PI3K/Akt activity was previously shown to inhibit cell-cycle
arrest and apoptosis mediated by trastuzumab [34].
Furthermore, trastuzumab-resistant cells derived from the
BT474 HER2-overexpressing breast cancer line demon-
strated elevated levels of phosphorylated Akt and Akt kinase
activity compared with parental cells [37]. These resistant
cells also showed increased sensitivity to LY294002, a small
molecule inhibitor of PI3K. Nagata and colleagues [11]
provided compelling evidence supporting a role for the
PI3K/Akt pathway in trastuzumab resistance. They demon-
strated that decreased levels of the PTEN phosphatase
resulted in increased PI3K/Akt phosphorylation and signaling
and blocked trastuzumab-mediated growth arrest of HER2-
overexpressing breast cancer cells. Importantly, they showed
that patients with PTEN-deficient HER2-overexpressing
breast tumors have a much poorer response to trastuzumab-
based therapy. Furthermore, they showed that, in PTEN-
deficient cells, PI3K inhibitors rescued trastuzumab
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Table 1

Proposed mechanisms of trastuzumab resistance

Mechanism Example References

Therapeutic agent cannot recognize molecular target: Overexpression of MUC4 sterically hinders antibody from [26,27]
disrupted interaction between HER2 and trastuzumab binding HER2 surface receptor and may mediate cross-talk to 

activate HER2. Knockdown of MUC4 restored trastuzumab 
sensitivity of breast cancer cells in vitro

Compensatory signaling: increased signaling from Growth factor ligands of EGFR, HER3, or HER4 (EGF, [53,72]
HER family members betacellulin, heregulin) reduced growth inhibitory effect of 

trastuzumab by 57, 84, and 90 percent, respectively. 
Trastuzumab binds domain IV of HER2 and domain II is involved 
in dimerization with ligand-activated family members; trastuzumab 
did not block heregulin-activated HER3/HER2 interaction in 
SKBR3 cells 

Compensatory signaling: increased signaling from Overexpression of IGF-IR reduced trastuzumab-mediated [31-33]
other receptor types growth arrest. Inhibition of IGF-I signaling by IGFBP3 increased 

sensitivity. IGF-IR interacts with and cross-talks to HER2 in 
trastuzumab-resistant cells but not in sensitive cells. 
Inhibition of IGF-IR increased trastuzumab sensitivity

Altered downstream signaling PTEN deficiency correlated with resistance in clinical samples [11]

Increased Akt activity [34,37]

P27kip1 downregulation [35,36]

Competition for binding therapeutic agent Increased circulating HER2 ECD [40]

ECD, extracellular domain; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; HER, human epidermal growth factor receptor;
IGF, insulin-like growth factor; IGFBP, insulin-like growth factor-I binding protein; IGF-IR, insulin-like growth factor-I receptor; PTEN, phosphatase
and tensin homolog deleted on chromosome ten.



resistance in vitro and in vivo. These results suggest that
PTEN loss may serve as a predictor of trastuzumab
resistance, and that PI3K inhibitors should be explored as
potential therapies in patients with trastuzumab-resistant
tumors expressing low levels of PTEN protein.

Serum HER2 extracellular domain
The full-length 185 kDa HER2 protein has been reported to
be cleaved by matrix metalloproteases into a 110 kDa
extracellular domain (ECD), which is released into cell culture
media [38-40] or circulating in serum in vivo [41-44], and a
95 kDa amino-terminally truncated membrane-associated
fragment with increased kinase activity [45]. Elevated serum
levels of HER2 ECD correlate with poor prognosis in patients
with advanced breast cancer [41-44,46]. Of potential impor-
tance, trastuzumab blocked HER2 ECD proteolytic cleavage
in vitro [47], and patients with elevated pre-treatment ECD
levels had higher response rates to trastuzumab [48,49].
HER2 overexpression in breast cancers correlated with
elevated pre-treatment levels of circulating HER2 ECD in
patients treated with trastuzumab and paclitaxel, and among
these patients, responses correlated with a decline in ECD
levels over 12 weeks of therapy versus lower responses in
those whose ECD levels remained high post-treatment [50].

Zabrecky and colleagues [40] first described the presence of
cleaved ECD in the culture medium of HER2-overexpressing
SKBR3 breast cancer cells. The authors showed that HER2-
targeted monoclonal antibodies bound to circulating ECD,
competing away binding to membrane-bound HER2. Hence,
signaling from the receptor form of HER2 continued in the
presence of HER2 antibodies, indicating that HER2 ECD
promoted resistance to HER2-targeted antibody therapy.
However, the predictive role of elevated baseline ECD prior
to treatment is not well defined. In one study, elevated HER2
ECD levels predicted favorably for response to trastuzumab
and docetaxel [24], but other studies showed limited
predictive value in this setting. Interestingly, declining levels
of circulating HER2 ECD correlate with improved disease-
free survival in several studies [24,49]. A meta-analysis of 8
clinical trials revealed that patients whose HER2 ECD levels
declined by at least 20% in the first few weeks after initiation
of trastuzumab-based therapy had improved disease-free and
overall survival compared with patients whose HER2 ECD
levels did not drop [51]. Hence, circulating ECD of HER2
may be a serum marker useful for predicting response to
trastuzumab. In contrast to these studies, a recent study by
Anido and colleagues [52] suggests that truncated forms of
HER2 are actually the result of alternative initiation of
translation from different methionines within the her2
sequence, which are referred to as C-terminal fragments of
HER2. The authors present compelling in vivo data showing
that trastuzumab does not inhibit growth of mammary
xenografts of the T47D breast cancer cell line stably
transfected with the truncated form of HER2, but does inhibit
growth of T47D HER2 stable transfectant xenografts. Hence,

this study suggests that the presence of truncated forms of
HER2 may promote resistance to trastuzumab.

Novel therapeutic strategies
Trastuzumab resistance is a major clinical problem that
requires concentrated effort to resolve. A clear understanding
of HER2 and trastuzumab activity at the molecular and
biological levels is needed to fully improve survival of patients
whose breast cancers overexpress HER2. As these
molecular mechanisms begin to be elucidated, more targeted
therapies can be developed to improve response rates in the
HER2-overexpressing population and in trastuzumab-
refractory patients.

Pertuzumab
The recombinant humanized HER2 monoclonal antibody
pertuzumab (Omnitarg™, 2C4, Genentech) represents a new
class of drugs called dimerization inhibitors; these have the
potential to block signaling by other HER family receptors, as
well as inhibiting signaling in cells that express normal levels
of HER2. Pertuzumab sterically blocks dimerization of HER2
with EGFR and HER3, inhibiting signaling from HER2/HER3
and HER2/EGFR heterodimers [53]. Interestingly, we also
observed that pertuzumab disrupted interaction between
HER2 and IGF-IR in trastuzumab-resistant cells [32].
Trastuzumab and pertuzumab bind to different epitopes in the
extracellular domain of HER2, with trastuzumab binding
domain IV of the extracellular domain [54] and pertuzumab
binding near the junction of domains I, II, and III of the HER2
extracellular domain [55]. Thus, pertuzumab could theoretically
be effective in trastuzumab-resistant tumors. However, while
combining trastuzumab with pertuzumab produced syner-
gistic apoptosis in HER2-overexpressing trastuzumab-naïve
breast cancer cells [56], this agent failed to demonstrate
statistically significant differences on the viability of
trastuzumab-resistant breast cancer cells [30,32]. The
mechanisms by which trastuzumab-resistant cells develop
cross-resistance to alternative HER2-targeted antibodies are
unclear, but may reflect aberrations in downstream signaling
pathways resulting in resistance to a variety of HER2-
targeted agents. Clearly, additional preclinical studies are
required to determine the potential efficacy of novel HER2-
targeted antibodies in trastuzumab-resistant breast cancers.

Lapatinib
Lapatinib (Tykerb™, GSK572016, formerly GW572016;
GlaxoSmithKline, Research Triangle Park, NC, USA) is a dual
tyrosine kinase inhibitor targeted against both EGFR and
HER2. In comparison to other tyrosine kinase inhibitors in
clinical trials (for example, gefitinib, erlotinib), interaction of
lapatinib with EGFR and HER2 is reversible, similar to other
agents, but dissociation is much slower, allowing for
prolonged downregulation of receptor tyrosine
phosphorylation in tumor cells. Differences in enzyme-
inhibitor structures could account for differences in
dissociation off-rate, as EGFR is in a closed conformation
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when lapatinib binds versus a more open conformation when
gefitinib binds [57]. However, effects on HER2 appear to be
more critical to efficacy of lapatinib than effects on EGFR,
and the HER2 status is a determinant of lapatinib activity
while EGFR status is apparently not. Pre-clinically, lapatinib
induced potent growth arrest and/or apoptosis in EGFR- and
HER2-dependent tumor cell lines and xenograft models, and
blocked downstream MAPK and Akt activation [58]. In vitro
studies demonstrated that the combination of lapatinib with
anti-HER2 antibodies enhanced apoptosis of HER2-
overexpressing breast cancer cells, and that lapatinib-
mediated apoptosis was associated with downregulation of
survivin [59]. Interestingly, resistance to lapatinib was
recently shown to be mediated by increased signaling from
the estrogen receptor (ER) in ER-positive HER2-
overexpressing breast cancers, suggesting that co-targeting
of ER and HER2 may be beneficial in this population [60].

Important to the issue of trastuzumab resistance, lapatinib
was shown to inhibit growth of HER2-overexpressing breast
cancer cells maintained long-term on trastuzumab [61]. We
have observed that lapatinib induces significant apoptosis in
trastuzumab-resistant cells to the same degree as in parental,
trastuzumab-sensitive cells. Furthermore, lapatinib appears to
have inhibitory effects on IGF-I signaling in the resistant cells,
suggesting that its growth inhibitory activity may be due not
only to anti-EGFR/HER2 activities but also to IGF-IR
inhibition (Nahta R, Yuan LX, Yu D, Esteva FJ, submitted).

Exciting clinical data have strongly positioned lapatinib for
FDA approval against HER2-overexpressing breast cancers.
The phase I study EGF10004 examined heavily pretreated
patients with EGFR-expressing and/or HER2-overexpressing
MBC who were randomly assigned to one of five dose
cohorts of lapatinib [62]. Four patients with trastuzumab-
resistant MBC, two of whom were classified as having
inflammatory breast cancer, had partial responses. A recent
phase III trial of HER2-overexpressing MBC patients who
were heavily pretreated and trastuzumab-refractory demon-
strated that combination lapatinib and capecitabine resulted
in a doubling of median time to progression and median
progression-free survival (both 36.9 weeks) compared with
capecitabine alone (median time to progression 19.7 weeks
and progression-free survival 17.9 weeks) [63]. Such results
are rarely if ever seen in this patient population, and support
lapatinib as a promising new agent for patients who have
progressed on trastuzumab-based therapy.

IGF-IR inhibition
Based on preclinical evidence suggesting a role for IGF-IR
signaling in the development of trastuzumab resistance
[31-33], novel IGF-IR-targeted agents have been introduced
into pharmaceutical testing and are being assessed in
preclinical trastuzumab-resistant models. In vitro studies
demonstrated that inhibition of HER2 signaling using
trastuzumab, and inhibition of IGF-IR signaling using a

dominant negative construct produced synergistic growth
inhibition of HER2-overexpressing breast cancer cells [64].
Triple combination treatment of BT474 ER-positive HER2-
overxpressing breast cancer cells or MCF7 ER-positive
IGF-IR-elevated breast cancer cells with ER, HER2, and
IGF-IR antagonists further augmented apoptotic effects of
single agents or dual combinations [65]. In addition, our data
demonstrate increased apoptosis when lapatinib and the
IGF-IR monoclonal antibody alpha IR3 are combined in
trastuzumab-resistant cells (Nahta R, Yuan LX, Yu D, Esteva
FJ, submitted). Therapeutic strategies that target both the
HER2 and IGF-I signaling pathways should be studied further
for potential use in cancers that progress on trastuzumab.

PI3K inhibition
Inhibitors of pathways downstream of the HER2 receptor may
combat trastuzumab resistance. Perifosine is an Akt inhibitor
undergoing clinical testing in patients with solid tumors and
hematological malignancies [66,67]. As most Akt inhibitors
have not achieved clinical development due to excessive
toxicity in preclinical models, an alternative approach to
blocking PI3K/Akt signaling is the use of small molecules that
inactivate the kinase mTOR, which functions downstream of
Akt. Three mTOR inhibitors being tested in clinical trials for
patients with breast cancer and other solid tumors are
CCI-779 (temsirolimus; Wyeth-Ayerst, Madison, NJ, USA),
RAD001 (everolimus; Novartis, New York, NY, USA), and
AP23573 (Ariad; Cambridge, MA, USA) [68,69]. Based on
the results of Nagata and colleagues [11], in which low
PTEN-expressing breast tumors were found to have reduced
response to trastuzumab, our group launched a clinical trial of
trastuzumab in combination with the mTOR inhibitor RAD001
in patients with HER2-overexpressing MBC resistant to
trastuzumab-based therapy. Additionally, drug discovery
programs are focusing on developing more effective, less
toxic, direct inhibitors of the Akt kinase family.

Histone deacetylase inhibitors and trastuzumab
Another class of agents called histone deacetylase inhibitors
is being explored in the setting of HER2-overexpressing
MBC. Preclinical work demonstrated that the histone
deacetylase inhibitor hydroxamic acid analogue, LAQ824,
significantly reduced HER2 levels in SKBR3 and BT474
breast cancer cells by promoting proteasome-dependent
degradation and reduced transcription of HER2 [70]. These
effects on HER2 were associated with induction of p27kip1
and inhibition of Akt and MAPK signaling. In addition, the
combination of LAQ824 with trastuzumab induced marked
apoptosis in vitro. Another hydroxamate-based histone
deacetylase inhibitor called suberoylanilide hydroxamic acid
similarly reduced HER2 protein levels [71]. It was found that
suberoylanilide hydroxamic acid induced acetylation of the
HER2 chaperone protein heat shock protein 90 (hsp90),
reducing interaction between the proteins and promoting
ubiquitination and degradation of HER2. Suberoylanilide
hydroxamic acid and trastuzumab combined resulted in
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synergistic induction of apoptosis in BT474 and SKBR3
breast cancer cells. These in vitro studies paved the way for
clinical trials examining the combination of histone
deacetylase inhibitors with trastuzumab.

Conclusion
The clinical problem of trastuzumab resistance is becoming
increasingly important as recent studies strongly support a
role for trastuzumab not only in the management of metastatic
disease but also in the adjuvant setting for HER2-
overexpressing breast cancers. Thus, identifying the
molecular mechanisms that contribute to trastuzumab
resistance is more imperative than ever. Only then can we
identify novel therapeutic targets toward the goal of
increasing the magnitude and duration of response to
trastuzumab-based treatment.
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