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Abstract
Corn is a common energy source in pig diets globally; when financially warranted, industrial corn coproducts, such as corn 
distiller’s dried grains with solubles (DDGS), are also employed. The energy provided by corn stems largely from starch, with 
some contribution from protein, fat, and non-starch polysaccharides (NSP). When corn DDGS are used in the diet, it will 
reduce starch within the diet; increase dietary protein, fat, and NSP levels; and alter the source profile of dietary energy. 
Arabinoxylans (AXs) comprise the majority of NSP in corn and its coproducts. One strategy to mitigate the antinutritive 
effects of NSP and improve its contribution to energy is by including carbohydrases within the diet. Xylanase is a 
carbohydrase that targets the β-1,4-glycosidic bonds of AX, releasing a mixture of smaller polysaccharides, oligosaccharides, 
and pentoses that could potentially be used by the pig. Xylanase is consistently effective in poultry production and 
moderately consistent in wheat-based swine diets, but its efficacy in corn-based swine diets is quite variable. Xylanase 
has been shown to improve the digestibility of various components of swine-based diets, but this seldom translates into 
an improvement in growth performance. Indeed, a review of xylanase literature conducted herein suggests that xylanase 
improves the digestibility of dietary fiber at least 50% of the time in pigs fed corn-based diets, but only 33% and 26% of the 
time was there an increase in average daily gain or feed efficiency, respectively. Intriguingly, there has been an abundance 
of reports proposing xylanase alters intestinal barrier integrity, inflammatory responses, oxidative status, and other health 
markers in the pig. Notably, xylanase has shown to reduce mortality in both high and low health commercial herds. These 
inconsistencies in performance metrics, and unexpected health benefits, warrant a greater understanding of the in vivo 
mechanism(s) of action (MOA) of xylanase. While the MOA of xylanase has been postulated considerably in the literature 
and widely studied in in vitro settings, in wheat-based diets, and in poultry, there is a dearth of understanding of the in vivo 
MOA in pigs fed corn-based diets. The purpose of this review is to explore the role of xylanase in corn-based swine diets, 
discuss responses observed when supplemented in diets containing corn-based fiber, suggest potential MOA of xylanase, 
and identify critical research gaps.
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Introduction 
In 2019, more than one billion metric tonne of corn was 
produced globally with the United States responsible for more 
than 30% of that supply. Naturally, most of the U.S.  swine 
diets contain corn and many contain corn coproducts, and 
pig production is concentrated where corn is produced most 
efficiently. Globally, corn is increasingly used in swine diets, but 
as with any feed ingredient, it is dependent on price, quality, 
availability, and accessibility within a region (Popp et al., 2016). 
Corn is an energy-dense cereal grain with a relatively consistent 
nutrient composition (NRC, 2012) compared with wheat (Zijlstra 
et  al., 1999) and barley (Fairbairn et  al., 1999). Indeed, in the 
Americas, the economic and nutritional value of other cereal 
grains is often defined relative to corn. When corn prices are 
high, often a consequence of turbulent markets, reduced yields, 
or increased demand for industrial purposes, nutritionists 
will seek alternatives to reduce feed cost. One such option is 
industrial coproducts from the dry and wet milling of corn.

A wide array of corn-based industrial coproducts are 
produced, and corn distiller’s dried grains with solubles (DDGS), 
a byproduct of dry-milled ethanol production, is the most 
abundant (Shurson et  al., 2012). Pigs are fed approximately 
10% of the corn DDGS produced annually (Jayasinghe, 2017), 
and DDGS can effectively supply energy, amino acids, and 
phosphorus (P). However, one disadvantage of formulating diets 
containing DDGS, and numerous other industrial coproducts, is 
their high concentration of non-starch polysaccharides (NSP). 
In recent years, ethanol plants have increased the efficacy with 
which they extract oil from the solubles fraction, so that swine 
producers are now utilizing more reduced-oil DDGS. Reduced-oil 
DDGS contain less fat and greater NSP than conventional DDGS 
and as such contain less dietary energy (Li et al., 2017). Typically, 
corn–soybean meal-based diets contain between 7% and 10% 
neutral detergent fiber (NDF), but with every 5% addition of 
reduced-oil DDGS in place of corn, dietary NDF will increase by 
approximately 1% (Acosta et al., 2020).

NSP, or more simply called fiber, has taken on many definitions 
over the past century but has been most recently defined in 
the context of animal nutritionists by the Codex Alimentarius 
Committee of the Food and Agriculture Organization of the 
United Nations (2010) “as those carbohydrate polymers with 
ten or more monomeric units which are not hydrolyzed by 

the endogenous enzymes nor absorbed in the small intestine.” 
Indeed, pigs lack the endogenous carbohydrases needed to digest 
NSP and rely on microbial fermentation for NSP utilization (Varel 
and Yen, 1997), and corn-based NSP is poorly fermentable due 
to its insolubility (Gutierrez et al., 2013). Insoluble NSP is often 
touted as an antinutritive factor, as increased dietary insoluble 
NSP will decrease nutrient and energy digestibility, impact 
pig performance, and reduce carcass yield (Weber et al., 2015; 
Acosta et al., 2020). However, utilizing exogenous carbohydrases 
may partially ameliorate these antinutritive effects.

Carbohydrases have gained considerable popularity in the 
swine industry due to the proven efficacy in pig diets of phytase, 
another exogenous enzyme that is different in structure but 
it releases otherwise undigestible phosphorus from phytate. 
Phytase, as a proof of concept, combined with carbohydrases 
offering consistent responses when used in poultry diets 
(Adeola and Cowieson, 2011), supports and encourages this 
broader enzyme focus. Carbohydrases are enzymes that 
catalyze the hydrolysis of carbohydrates, and in this context, 
NSP carbohydrases reduce the molecular weight of NSP by 
hydrolyzing a targeted type of NSP (Adeola and Cowesion, 2011). 
Arabinoxylans (AXs) comprise nearly half of the NSP found in 
corn and corn DDGS (Jaworski et al., 2015), and thus, xylanase, 
a carbohydrase that hydrolyzes the β-1,4-glycosidic bonds 
of AXs, may mitigate the impact of corn-based NSP. However, 
the efficacy of xylanases when used in corn-based pig diets is 
highly variable. Quite often, xylanase will improve the energy 
and nutrient digestibility of corn-based diets, but this seldom 
translates into an improvement in growth performance (Torres-
Pitarch et  al., 2019). Interestingly, increases in markers of 
improved health and reduced finishing pig mortality have been 
observed with xylanase supplementation (Zier-Rush et al., 2016).

There has been a large investment in research with xylanase 
in corn-based diets in the past decade. Still, the responses 
observed vary considerably, and the in vivo mechanism(s) of 
action (MOA) of xylanase in the presence of corn-based NSP 
is(are) not yet fully elucidated. This review will explore the role of 
xylanase in corn-based swine diets, discuss responses observed 
when xylanase is supplemented in the presence of corn-based 
fiber, suggest the potential MOA of xylanase, and identify critical 
gaps in our current knowledge.

Composition of Corn, Corn Coproducts, and 
Corn-Based Fiber
To recognize the role of xylanase in corn-based diets, it 
is pertinent to understand the composition of corn, corn 
coproducts, and corn-based NSP and to appreciate their 
influence on diet formulation and gastrointestinal physiology. 
Corn is a nonviscous cereal grain comprised of approximately 
6% bran, 11% germ, and 83% endosperm (Hopkins et al., 1974). 
The endosperm consists mostly of starch with some structural 
proteins; the germ contains mainly ether extract; and the bran 
is predominately NSP (Bach Knudsen, 2014). Accordingly, the 
nutritional composition of corn is mostly starch, with lower 
levels of ether extract, protein, and NSP. The composition of 
corn makes it an excellent source of energy since the metabolic 
efficiency of glucose, the monomer that comprises starch, is 
quite high at 0.78 (Patience, 2012). Interestingly, the digestible 
energy content of corn varies by about 3% (NRC, 2012). This is 
likely due to the variation in fermentability of NSP among corn 
samples, even though the contribution of corn NSP to dietary 
energy is quite small (Petry et al., 2019).

Abbreviations

ADF acid detergent fiber
ADG average daily gain
AID apparent ileal digestibility
ATTD apparent total tract digestibility
AX arabinoxylans
A:X ratio of arabinose to xylose
AXOS arabino-xylooligosaccharides
CP crude protein
DDGS distillers’ dried grains with solubles
DM dry matter
GE gross energy
G:F feed efficiency
GH glycoside hydrolase
MOA mechanism(s) of action
NDF neutral detergent fiber
NE net energy
NSP non-starch polysaccharides
SDF soluble dietary fiber
TDF total dietary fiber
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The high starch content in corn explains its attractiveness to 
ethanol producers; consequently, corn coproducts derived from 
ethanol production are low in starch (Table  1). Comparatively, 
coproducts produced from the wet or dry milling of corn differ 
in their composition and nutritive value, but compared with the 
parent grain, most of them have increased crude protein (CP), 
fat, minerals, and fiber (Shurson et  al., 2012). Discussing the 
nutrient composition among the vast array of corn coproducts 
is outside the scope of this review—readers are referred to 
Zijlstra and Beltrana 2013) and Gutierrez et  al. (2014)—and 
discussion will be limited to corn DDGS because it is by far the 
most common corn coproduct used in practical pig feeding 
programs. Within DDGS, there is considerable compositional 
variability. For example, Zeng et  al. (2017) reported that the 
coefficients of variation for CP (n = 90), NDF (n = 90), ash (n = 46), 
and crude fat (n  =  38) in corn DDGS were 9%, 13%, 25%, and 
36%, respectively. This is likely a result of the processes used to 
extract ethanol by a given plant and not necessarily the region 
in which the DDGS is sourced (Stein et al., 2009; Pedersen et al., 
2014). Nonetheless, in general, reduced-oil DDGS contains 210%, 
234%, 235%, and 156% more ash, NDF, CP, and ether extract than 
corn, respectively, and five times less starch (NRC, 2012).

When reduced-oil DDGS are included in diet formulations 
at the expense of corn, the nutrient composition will change 
along with net energy (NE; Patience and Petry, 2019). This can 
be visualized by estimating the NE content and composition 
of NE of the constant ingredient formulation in a study by 
Acosta et  al. (2020). In this study, for every 15% increase in 
reduced-oil-corn DDGS included at the expense of corn, dietary 
acid-hydrolyzed ether extract increased by nearly 17%, NDF 
increased by 34.2%, CP increased by 27%, starch decreased by 
20% (Figure  1A), and estimated NE decreased by 83 kcal/kg or 
3.5% (Figure  1B). Similarly, with increasing levels of reduced-
oil DDGS, the contribution of fat, fiber, and protein to NE will 
increase, and the contribution of simple carbohydrates will 
decrease (Figure  1C). Furthermore, when these components 
are regressed in relationship to increasing levels of reduced-oil 
DDGS, for every 1% of corn replaced by reduced-oil corn DDGS, 
the amount of NE coming from fat, CP, and fiber increases by 
0.1%, 0.3%, 0.02%, respectively, but the amount of NE coming 
from simple carbohydrates decreases by 0.44%.

The pig will utilize these four components—fat, CP, fiber, and 
starch—for energy with varying metabolic efficiencies, and it 

is well supported that the least efficient of them is fiber. The 
fermentation of NSP contributes about 30% less energy compared 
with enzymatically digested carbohydrates (Noblet and Le 
Goff, 2001; Patience, 2012). In Figure 1C, there is a nearly 3-fold 
increase in the contribution of fiber to energy from 0% DDGS 
inclusion to 45%, but the relative contribution of fiber to energy 
is quite small, less than 5%. These inefficiencies are largely 
attributed to the increased energetic cost of ingestion, digestion, 
fermentation, and metabolism of NSP, and the subsequent 
effects of fiber on the maintenance energy requirement of the 
pig (Noblet and Le Goff, 2001; Agyekum and Nyachoti, 2017). 
Even the slightest alteration in dietary energy can be costly 
to a producer, as it affects nearly every performance metric, 
and meeting the specification for dietary energy accounts for 
more than 60% of the input cost of raising one pig to market 
(Beaulieu et  al., 2009; Patience, 2017). Thus, if xylanase can 
improve the overall contribution of corn-based fiber to NE, it 
would add considerable value to the swine industry. Moreover, 
if xylanase promotes the intestinal absorption of individual 
monosaccharides that constitute fiber, rather than microbial 
fermentation, it could improve the metabolic efficiency by 
which the pig utilizes fiber for energy.

In addition to fiber source, the type and concentration of 
fiber within a diet need to be considered when using exogenous 
carbohydrases. Due to the complexity of the chemistry of 
dietary fiber, in practical terms, it is defined by the analytical 
method used to quantify it. There are several methods for 
analyzing dietary fiber, and the total NSP, NDF, acid detergent 
fiber (ADF), and total dietary fiber (TDF) content of corn and 
11 corn coproducts have been summarized in Table 1. Of these 
fiber analyses, TDF is the most encompassing, and arguably the 
most accurate, as it measures both insoluble and soluble dietary 
fibers (SDF; Fahey et al., 2019). However, the SDF concentration 
of corn is less than 0.5%, and in corn coproducts, it is generally 
less than 1.5% (Navarro et al., 2018; Abelilla and Stein, 2019). As 
such, the detergent system (NDF and ADF) created by Van Soest 
(1963) is a suitable indicator of the fiber concentration of corn 
and corn coproducts as it measures the insoluble fiber fraction, 
but there are analytical limitations (Fahey et al., 2019). This is 
apparent when comparing the NDF and TDF values in Table 1. 
The detergent system does not capture SDF, and in the TDF 
analysis, an analyte is corrected for ash and protein residues, 
while NDF is not. This is likely why NDF is higher than TDF in 

Table 1. Total NSP, NDF, ADF, TDF, starch, and AX concentrations (g/kg) in corn-based feed ingredients

Feed ingredient Total NSP NDF ADF TDF Starch AX1 A:X2

Corn3,4,5 81 85 24 108 625 38 0.81
Dehulled, degermed corn3 11 38 4 23 685 8 1.00
Corn gluten meal3 49 121 70 88 120 20 1.22
Corn bran3 370 406 105 425 211 221 0.56
Corn bran with solubles3 171 227 51 253 190 95 0.58
Cooked Corn DDGS3 204 345 92 326 28 108 0.83
Corn DDGS–reduced oil3 250 387 143 329 29 143 0.79
Uncooked DDGS3 220 308 79 291 52 113 0.77
High protein DDG3 219 311 118 289 82 92 0.80
Corn germ meal3 444 462 115 441 164 292 1.18
Corn gluten feed5,6 287 275 84 316 111 145 0.69

1Arabinose + xylose from total NSP analysis.
2Ratio of arabinose to xylose.
3Adapted from Gutierrez et al. (2014).
4Adapted from Navarro et al. (2018).
5Adapted from Jaworski et al. (2015).
6Adapted from NRC (2012).
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the coproducts with higher protein and ash concentrations. The 
total NSP analysis proposed by Englyst et al. (1994) gives insight 
into fiber types within a feed ingredient, when the individual 
monomeric components are measured using chromatography, 
but this methodology consistently underestimates fiber, relative 
to TDF, and is not a methodology approved by the Association of 
Official Analytical Collaboration (AOAC) International.

Corn DDGS has nearly three times the TDF and NDF content 
of corn, and corn bran and corn germ meal almost four times 
(Table  1); not surprisingly, the composition of that fiber is 
quite similar. The NSP in corn and corn DDGS is composed of 
approximately 49% AXs, 22% to 23% cellulose, and the remaining 
28% to 30% is a mixture of other hemicelluloses, such as mixed 
β-glucans and β-mannans (Bach Knudsen, 2014; Jaworski et al., 
2015). Although less than 2% of the total NSP composition, the 
β-mannan content in corn DDGS is substantially greater than 
corn, and this is likely a result of the presence of residual yeast 
from ethanol production (Pedersen et al., 2014; Shurson, 2018). 
Corn also contains about 1.5% resistant starch that can be 
rapidly fermented in the large intestine of the pig (Bird et al., 
2007); corn DDGS contains between 3% and 14% residual starch 
that escapes fermentation to ethanol and is mostly resistant 
starch types 1 and 2 (Li et al., 2014; Pedersen et al., 2014).

These NSP also have viscosity, hydration, and cation 
exchange properties (Kritchevsky, 1988). They can influence 
gastrointestinal physiology by altering digesta transit time, 
increasing endogenous losses, modulating microbial activity, 
reducing nutrient digestibility, and impeding nutrient uptake 
(Blackwood et  al., 2000). Relative to sugar beet pulp, a feed 
ingredient with 3 to 4 times the amount of SDF, corn and corn 
DDGS have less swelling and water-binding capacity, and 
lower viscosity (Navarro et  al., 2018). Moreover, due to its low 
solubility, corn NSP possesses invariant exchange properties 
that can hinder calcium uptake in the small intestine (Laszlo 
et  al., 1992). However, physicochemical properties may not 
always be indicative of a given physiological response (Gidley 
and Yakubov, 2019). For example, it is often stated that insoluble 
NSP is poorly fermentable; while this is the case for corn-based 
feedstuffs, NSP stemming from pea hulls are insoluble, but 
readily fermentable (Jha and Leterme, 2012; Gutierrez et  al., 
2013). If xylanase hydrolyzes corn NSP, it could potentially 

alter its physicochemical properties and as such may mitigate 
its impact on digestive physiology. The attenuation of digesta 
viscosity from feeding viscous cereal grains is the hallmark of 
the success of xylanase in the poultry industry (Raza et al., 2019), 
but its efficacy in viscous swine diets is less consistent (Patience 
et al., 1992; Lærke et al., 2015).

Xylans are the target substrate of xylanase. They are 
composed of a d-xylose backbone linked by β-1,4-glycosidic 
bonds in a linear or branched form and are frequently 
substituted with other monosaccharides, phenolic compounds, 
and short-chain fatty acids (Cummings and Stephen, 2007). AX 
is the dominant xylan found in corn and corn coproducts, with 
the majority being concentrated in the bran and far less in the 
endosperm. This is apparent when comparing the AX content 
in dehulled and degermed corn (8 g/kg) vs. corn bran (221 g/kg), 
and logically, corn-based feed ingredients with increased NDF 
and TDF have increased AX concentrations (Table  1). There is 
certainly an opportunity to improve the utilization of AX from 
corn; for example, Gutierrez et al. (2014) concluded that across 
nine corn coproducts, their AX concentration best explained the 
variance in the apparent ileal digestibility (AID) of gross energy 
(GE) and dry matter (DM), and NSP xylose concentration also best 
explained the variance in the apparent total tract digestibility 
(ATTD) of GE, DM, and NDF.

As the name suggests, AXs are highly substituted with 
l-arabinose, and up to 85% of the xylose monomers in corn 
bran are substituted with various residues and the majority are 
arabinose side chains linked by α-1,2- or α-1,3-glycosidic bonds 
(Chanliaud et al., 1995). Additionally, galactose and glucuronic 
acid can form glycosidic bonds to the xylose backbone, and 
acetic acid can also directly esterify to the main chain of 
corn-based AXs and accounts for approximately 4% of the dry 
weight of corn bran (Saulnier et al., 1995). To complicate things 
further, almost 40% of the arabinose substitutions in corn-
based AXs are nonterminal, and contain glycosidic linkages to 
other arabinoses, xyloses, or galactose units, or are esterified 
to hydrocinnamic acids (Chanliaud et  al., 1995). The most 
commonly substituted hydrocinnamic acid in corn-based AXs 
is ferulic acid; p-coumaric is also present but to a lesser degree 
(Saulnier et al., 1995). Moreover, corn-based AXs can be cross-
linked through dehydrodiferulate or dehydrotriferulate ester 

Figure 1. The impact of substituting reduced-oil DDGS at the expense of corn using a constant ingredient formulation on nutrient composition (A), NE (B), and 

contribution of simple carbohydrates, fat, protein, and fiber to NE (C). 
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bridges formed between the arabinose–ferulic acid complexes 
(Saulnier et al., 1995).

These aforementioned structural complexities contribute to 
the insolubility of corn-based AXs within the gastrointestinal 
tract, but their fermentability is not necessarily dependent on 
solubility. However, due to the degree of interaction of corn 
AXs with other plant components, increased phenolic cross-
linkages, arabinose substitutions, and lignification, it is also 
poorly fermented by resident microbiota (Bach Knudsen, 2014). 
The ratio of arabinose to xylose (A:X) is used as an indicator of 
AX solubility, as a higher A:X would indicate greater arabinose 
substitution. For example, compared with corn, the AXs in wheat 
and rye are considerably more soluble and viscous, and their A:X 
ratio ranges between 0.57 and 0.7 (Lærke et al., 2015; Buksa et al., 
2016), whereas the A:X ratio for corn is 0.81 (Table 1). Similarly, 
the A:X of wheat DDGS is 0.68, and corn DDGS ranges between 
0.77 and 0.83 (Pedersen et  al., 2014; Table  1). Interestingly, 
though, the ratio of A:X in corn bran is similar to that of rye 
and wheat, yet the fermentation of corn bran is quite poor in 
the pig (Gutierrez et al., 2013). This is likely due to the increased 
lignification in corn bran (Akin and Rigsby, 2008). Interestingly, 
corn bran appears to be susceptible to xylanase in the pig (Petry 
et al., 2020b). Moreover, the structure of AX is often described and 
portrayed in a linear unidimensional fashion, but the reality is 
the more substituted and complex AXs, like those in corn, form 
complex three-dimensional structures that are intertwined 
with other components in the plant cell wall (Jeremic et  al., 
2014). In total, these structural complexities pose challenges 
with utilizing exogenous xylanase, but nevertheless, reports 
of positive responses exist when xylanase is supplemented in 
diets containing corn-based fiber (Torres-Pitarch et al., 2019).

Xylanase and Corn-Based Fiber
The complete saccharification of corn-based AX requires 
nine enzymes. Endoxylanases (i.e., xylanase) are needed to 
hydrolyze the β-1,4-glycosidic bonds of the main chain; several 
de-branching enzymes, such as α-arabinofuranosidases, 
α-arabinofuranohydrolases, α-glucuronidases, α-galacturonidases, 
and acetyl xylan esterases, are needed to hydrolyze the side 
chains; β-d-xylosidases are needed to release xylose for the 
various oligomers produced; and ferulic and p-coumaric acid 
esterases are required to release phenolics esterified to arabinose 
(Dodd and Cann, 2009; Stein, 2019). However, the complete in 
vivo saccharification of AX is likely implausible, nor worth the 
return on investment, due to the vast array of technologies and 
advancements needed to produce these enzymes in sufficient 
quantities with proven efficacies to tolerate the conditions of 
the gastrointestinal tract (Bedford, 2019). Nonetheless, some of 
these “accessory” enzymes are found in commercially available 
xylanases, as many are produced from the various microorganisms 
that produce xylanase, but by and large, endoxylanase is the most 
readily available commercial carbohydrase that targets AXs.

Xylanase is a glycoside hydrolase (GH), and of the 166 GH 
characterized, 9 GH families are associated with xylanases, 6 of 
which have a single catalytic domain and 3 have two catalytic 
domains (Carbohydrate Active Enzymes Database; Lombard 
et  al., 2014). The majority of xylanase research in animal 
nutrition has focused on GH families 10 and 11, which possess 
single catalytic domains. Pedersen et al. (2015) found that GH 10 
xylanases are more efficient in degrading corn DDGS AX than 
GH 11. Xylanase is produced by a variety of microorganisms, and 
commercially available exogenous xylanases are predominantly 
produced from bacteria or filamentous fungi (Bhardwaj et  al., 

2019). There is a dearth of studies comparing the efficacy of 
varying sources and types of xylanase when supplemented 
with corn-based fiber in the pig. However, a study by Ndou 
et  al. (2015) evaluated five mono-component xylanases from 
different microbial origins and preparations in a diet composed 
of corn and corn DDGS. The authors reported that xylanase 
from Fusarium verticilloides improved average daily gain (ADG) 
and feed efficiency (G:F) but they found no improvements 
in growth performance when using xylanase prepared from 
Aspergillus clavatus, Bacillus subtilis, or two from Trichoderma 
reesei. Interestingly, Ndou et al. (2015), in a separate digestibility 
experiment, observed improvements in the AID of NSP and AX 
from all xylanase sources except Bacillus subtilis.

The paradigm among digestibility, growth 
performance, and health responses in pigs fed 
xylanase

The absence of a performance response but improved fiber 
digestibility observed by Ndou et  al. (2015) is not abnormal 
(Passos et al., 2015; Yang et al., 2016). In theory, supplementing 
xylanase in corn-based swine diets should improve nutrient 
and energy digestibility, and subsequently growth performance 
(Patience, 2012). A meta-analysis of 67 studies reflecting a variety 
of basal diet composition conducted by Torres-Pitarch et  al. 
(2019) concluded that irrespective of diet composition, xylanase 
improved the ATTD of DM, GE, and CP, but growth performance 
responses were not observed as frequently. For the purposes of 
this review, a targeted literature search was conducted using 
Google Scholar and EBSCO from January 2002 to July 2020 for 
digestibility and growth performance studies that met the 
following criteria: 

a. Results were published in a non-predatory peer-reviewed 
journal;

b. The study evaluated xylanase as the sole carbohydrase in 
at least one dietary treatment;

c. Corn grain and/or corn coproducts were the only cereal 
source within the diet;

d. The study included a control diet of similar formulation to 
the diet with xylanase.

A total of 19 publications met the search criteria. Among the 
growth performance observations within these studies, in 33% and 
26% of the studies, xylanase improved ADG and G:F, respectively, 
but no improvements in average daily feed intake were reported 
(Figure  2). Xylanase improved the AID and ATTD of “fiber” (NSP, 
TDF, or NDF) by 61% and 50% of the time, respectively. It should also 
be noted that this search would be biased due to the difficulty in 
publishing data that conclude no treatment effect. There is a lack 
of empirical understanding on why this dearth of performance 

Figure 2. The efficacy of xylanase to improve ADG, G:F, AID of fiber (NSP, TDF, 

or NDF), and ATTD of fiber of pigs fed corn-based diets from 2000 to July 2020.
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responses exists, nor are there any obvious trends which explain 
those publications reporting improved performance vs. those that 
did not. 

A variety of experimental designs, diet formulation strategies, 
enzyme doses, xylanase sources, fiber analyses, sample sizes, 
and stages of production existed among these studies. However, 
if one looks past this variability, there is some evidence to 
suggest that adaptation time may play a role in xylanase efficacy. 
A study by Petry et al. (2020b) found that xylanase improved ADG 
and G:F in pigs fed a corn-based diet with 30% corn bran without 
solubles after 14 d of supplementation, and these metrics were 
even greater after day 27. This work is in agreement with Fang 
et al. (2007), Myers and Patience (2014), and Lan et al. (2017) who 
found that xylanase improved performance in later phases of 
supplementation in pigs fed largely corn-based diets. Conversely, 
work by Ndou et  al. (2015) and Kerr et  al. (2013) observed no 
improvements in performance among seven xylanase sources 
supplemented for greater than 30 d.  This variability in both 
methods and responses among these studies indicates that 
there is a need for more robust and standardized evaluation 
of exogenous enzymes, much like what has been proposed for 
the study of alternatives to antibiotic growth promoters (Olsen 
et al., 2018).

Although more than half of the studies reported an 
improvement in fiber digestibility, when compared with studies 
using wheat-based diets, digestibility responses in pigs fed 
corn-based diets are still less common (Torres-Pitarch et  al., 
2019). When xylanase is ineffective, it is often suggested that 
corn AX is recalcitrant to enzymatic hydrolysis because of its 
structural complexity and subsequent insolubility. However, 
the number of studies that report improved fiber digestibility 
and the magnitude of those responses certainly indicate that 
xylanase is likely hydrolyzing fiber directly or indirectly through 
microbiota modulation. Moreover, there is considerable in 
vitro work that confirms xylanase’s ability to hydrolyze corn-
based AXs into soluble, more fermentable fractions (Pedersen 
et al., 2015; Kiarie et al., 2016), but in vitro conditions may not 
always translate well to that which exists in vivo. Similar to the 
performance observations, enzyme adaptation may play a role 
in the efficacy of xylanase to improve digestibility, particularly 
in the upper small intestine. A  recent study suggested that 
25 d of adaptation was required for xylanase to improve fiber 
and energy digestibility in the upper small intestine (medial 
jejunum—292 ± 12 cm distal to the pyloric sphincter) of growing 
pigs fed insoluble corn fiber; in contrast, responses across 
the total gastrointestinal tract were observed after only 7 d of 
adaptation (Petry et al., 2020a). Perhaps, the adaptation of the 
upper small intestine to AX hydrolysis may partially explain the 
discrepancies between performance and digestibility responses 
previously discussed. Digestibility studies often employ 
adaptation periods of less than 10 d, and minimal research has 
been conducted in the upper small intestine. Further research 
is clearly warranted to understand the role of adaptation and 
xylanase efficacy in corn-based diets.

While the original intent of using xylanase was to improve 
performance through increasing fiber utilization, today an 
increasingly common justification is its ability to reduce grow-
finish pig mortality. It has been reported that supplementing 
xylanase can increase the net live margin per pig started by 
up to US$2.51 in one production system, largely due to the 
improvements in mortality (Zier-Rush et al., 2016). Reductions in 
mortality have also been observed among several commercially 
available xylanases in different production systems with 
varying health statuses and diet compositions (Zier-Rush 

et al., 2016; Beckers, 2017). Economically, relative to improving 
G:F by 2 points, reducing wean-to-finish mortality from 4% to 
2.4%, as observed by Zier-Rush et al. (2016), is nearly four times 
more profitable. Moreover, recent research in corn-based diets 
has suggested that xylanase may improve pig health through 
altering intestinal morphology (Duarte et al., 2019; Li et al., 2019; 
Chen et al., 2020), increasing gut barrier integrity (Tiwari et al., 
2018; Petry et al., 2020b), altering immune function (Chen et al., 
2020), and mitigating localized and systemic oxidative stress 
(Duarte et al., 2019; Petry et al., 2020b). The efficacy of xylanase 
to improve pig health and reduce mortality is clearly an added, 
and until recently unexpected, benefit of using this enzyme. As 
the pork industry transitions to reduce in-feed antibiotic usage, 
the role of xylanase in this regard may be enhanced (Melo-Duràn 
et  al., 2019). Further, it is apparent that understanding the in 
vivo MOA of xylanase is imperative to eliciting more consistent 
and synergistic responses in pig production, understanding its 
true role in diet formulation, and maximizing its efficacy in 
U.S. swine diets.

The MOA of Xylanase in Pigs

Xylanase releases monosaccharides and 
oligosaccharides

Logically, xylanase likely hydrolyzes AX into lower molecular 
weight fragments that can be either absorbed or fermented in the 
gut (Adeola and Cowieson, 2011). Certainly, the improvements 
in fiber digestibility imply this, particularly the digestibility 
of AX, but the direct quantification of these products has not 
been conducted in pigs fed corn-based diets. Recent work by 
Tiwari et  al. (2018) suggests that xylanase supplemented in a 
corn-based diet increased soluble NSP production in the ileum, 
and this is possibly a result of soluble AX fragments released 
from the insoluble AXs found in corn (Pedersen et  al., 2015). 
However, the composition of these soluble AX fragments, and 
the efficiency by which the pig utilizes them, remains poorly 
understood.

Characterizing the release products of xylanase, in vivo, 
is enormously challenging both analytically and from an 
experimental design perspective. Arabino-xylooligosaccharides 
(AXOS) with varying degrees of polymerization are the most 
plausible release products of xylanase, and this has been 
confirmed in pigs fed wheat, rye, and wheat DDGS (Laerke et al., 
2015; Pedersen et  al., 2015). However, there are a plethora of 
potential release products, depending on the composition of the 
initial AX substrate; because of the aforementioned complexity 
of corn-based AX, the potential oligomers produced in vivo are 
exponentially more complex and difficult to isolate. The less 
substituted oligomers can be semiquantitatively characterized 
using various chromatographic techniques, and these 
methodologies are advancing considerably due to the interest 
in prebiotics among various industries (Alyassin and Campbell, 
2019). It is plausible that in the near future, these analyses 
will be more routine and quantitative in nature, thus allowing 
insight into what is released by xylanase in vivo. In addition to 
the analytical challenges, many of the potential release products 
are rapidly metabolized by gastrointestinal microbiota, and, as 
such, understanding microbial metabolites could be pertinent 
to understanding the in vivo release products of xylanase (Feng 
et al., 2018).

Differentiating the composition of the released products 
from xylanase is imperative to determining the efficiency by 
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which the pig utilizes them for energy. Generally, energy derived 
from carbohydrate fermentation is metabolically less efficient 
relative to the direct metabolism of monosaccharides, and this 
is certainly the case for glucose. Conversely, it is unclear if the 
energetic efficiency of xylose would be greater if fermented 
(Huntley and Patience, 2018; Abelilla and Stein, 2019). A  study 
by Laerke et al. (2015) found that xylanase increased the xylose 
concentration in the liquid phase of ileal digesta from pigs 
fed wheat by nearly 4-fold, but not in pigs fed rye. Moreover, 
an increase in urine GE in pigs fed corn bran with xylanase 
supplementation was observed by Petry et  al. (2020b); this is 
perhaps indicative of xylose absorption as it has been reported 
that free xylose increases urine GE due to the excretion of xylose 
itself or threitol (Huntley and Patience, 2018). There is a dearth 
of in vivo evidence to support xylose release from corn-based 
AX by xylanase, and in vitro research would suggest that it is 
quite marginal (Dale et  al., 2019). This lack of discernment in 
xylanase’s release products is a bottleneck for fully elucidating 
the MOA of xylanase in pigs fed corn-based fiber and could 
aid in understanding the commonly observed misalignment 
between digestibility and performance. However, the plausibility 
of xylanase hydrolyzing corn-based AX to some degree is 
logical and well supported by in vitro research. Moreover, the 
subsequently discussed MOAs are dependent on xylanase 
hydrolyzing AX to some degree.

Xylanase mitigates the impact of NSP 
physicochemical properties

It is well established in poultry that xylanase mitigates the 
impact of viscous cereal grains on the viscosity of intestinal 
contents by hydrolyzing soluble AXs (Raza et al., 2019). Viscous 
polysaccharides form gels in intestinal digesta, consequentially 
increasing digesta viscosity and reducing nutrient digestibility 
by decreasing lipid emulsification and preventing the interaction 
of nutrients with the intestinal brush border (Dikeman and 
Fahey, 2006). However, corn-based diets are largely insoluble 
and nonviscous and as such likely have a limited impact on 
digesta viscosity (Navarro et al., 2018). Moreover, work by Hooda 
et al. (2011) using both high- and low-viscosity diets suggested 
a moderately positive relationship between increased digesta 
viscosity and the AID of GE in pigs, likely due to increased 
mean retention time, and lower viscosity in pigs (Lee et  al., 
2010; He et al., 2020). Potentially, the impact of digesta viscosity 
on nutrient digestibility is less pertinent in swine compared 
with poultry, and even more so in diets with nonviscous feed 
ingredients.

However, there is evidence to imply that xylanase does 
reduce jejunal digesta viscosity in pigs fed corn-based diets 
(Tiwari et  al., 2018; Duarte et  al., 2019; Chen et  al., 2020), but 
others have found no impact on jejunal digesta viscosity (He 
et al., 2020). Moreover, a quadratic relationship on stomach and 
jejunal digesta with increasing xylanase supplementation levels 
in corn-based diets has been observed (Passos et al., 2015; He 
et al., 2020). These studies demonstrated at intermediate levels 
of supplementation that the viscosity of digesta is decreased, but 
at greater levels, it is increased, relative to no inclusion. Perhaps, 
increased soluble NSP production from xylanase hydrolysis 
of insoluble corn-based AXs may have indirectly increased 
viscosity at a greater supplementation level. Moreover, it should 
be noted that these studies measured the viscosity of the digesta 
supernatant and only at one or two shear rates. Intestinal 
digesta displays pseudoplastic shear thinning behavior, and as 
such, when the shear rate of the viscometer increases, viscosity 

decreases (Dikeman and Fahey, 2006). Therefore, measuring 
digesta viscosity at one or two shear rates may inadequately 
portray the influence of xylanase. Similarly, measuring the 
viscosity of digesta supernatant is not directly indicative of the 
rheological properties of whole digesta. Research by Takahashi 
and Sakata (2004) suggested that the solid particles in pig cecal 
digesta are largely responsible for their rheological properties. 
Further research is warranted to determine the impact of 
xylanase on the rheological properties of whole digesta from 
pigs fed corn-based fiber.

Xylanase releases trapped nutrients

AXs are an integral component of the plant cell-wall structure, 
and particularly in cereal grains, they create architecture around 
starch and protein granules within the aleurone. This is often 
referred to as the nutrient encapsulation or caging effect of 
NSP. One conceivable MOA of xylanase is that it can disrupt 
this structural architecture, through AX hydrolyzation, and, in 
turn, expose stored starch and protein granules to endogenous 
enzymes and microbial fermentation (Bedford and Schulze, 1998; 
De Lange et al., 2010). The improvements in the digestibility of 
unexpected dietary components, such as starch, CP, and various 
minerals and amino acids, with xylanase supplementation 
support this MOA. However, these digestibility responses are 
inconsistent in pigs fed corn-based diets (Kerr et al., 2013; Passos 
et  al., 2015), and digestibility metrics provide no discernment 
if it is due to the enzyme or modulation of the microbiome. 
Conversely, there is considerable in vitro microscopic evidence 
to support this MOA (Le et al., 2013; Jha et al., 2015; Ravn et al., 
2016), but minimal work has been conducted in corn-based feed 
ingredients or in vivo. Indeed, the nutritional and economic 
value of xylanase is amplified if the caging effect of NSP can 
be consistently mitigated in vivo; further research is needed to 
confirm this MOA in corn-based diets. Where this mitigation 
occurs is also of importance, as released starch is of more value 
if released in the small intestine, and amino acids released 
in the hindgut serve little value to pig. In the future for swine 
nutritionists to have confidence in a potential nutrient release 
value of xylanase, considerable quantitative research is needed 
in this area. Employing more advanced quantitative microscopy 
methodologies, such as those described by Bourlieu et al. (2020), 
would be warranted. However, relative to the economics of 
reducing mortality, pursuing a nutrient matrix release value 
for xylanase would likely provide minimal to no return on 
investment due to the capital-intensive research required and 
marginal payoff in terms of increased nutrient availability.

Xylanase modulates gastrointestinal microbiota to 
improve pig health

Recently, there has been an increase in the evidence supporting 
xylanase supplementation for purposes that extend beyond the 
logical improvement in fiber utilization. The aforementioned 
reductions in mortality are one of the more consistent 
responses observed commercially with this enzyme, and 
recent research suggests that xylanase likely modulates 
intestinal health through mechanisms that improve gut barrier 
integrity, mitigate oxidative stress, and alter immune function 
(Li et  al., 2018; Duarte et  al., 2019; Petry et  al., 2020b). These 
improvements observed in the systemic and gut health of the 
pig are most plausibly a result of the interplay between xylanase 
and the microbiome. Moreover, with the recent improvements 
in both availability and cost of culture-independent next-
generation sequencing technologies, the interplay between the 
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microbiome and nutrition has gained greater importance. The 
MOA for how xylanase modulates gastrointestinal microbiota 
is multifactorial, and the magnitude of microbial modulation 
differs among these MOA.

Certainly, the improvements in the AID of nutrients, through 
either the mitigation of increased digesta viscosity or the 
caging effect of NSP, can have an impact on gastrointestinal 
microbiota. Through these MOA, xylanase could decrease the 
quantity of undigested substrates in ileal digesta and as such 
alter substrate composition accessible to the large intestine 
microbiota. Thus, xylanase may partially ameliorate substrate 
competition among the host and microbiota and potentially 
reduce the colonization of pathogenic bacteria through 
microbial starvation (Bedford and Cowieson, 2012). Moreover, if 
protein fermentation is partially mitigated through increased 
utilization in the upper gut, this would be beneficial by reducing 
the production of branched-chain fatty acids and protein 
fermentation products, both of which can hinder microbial 
diversity (Peng et  al., 2017). In contrast, if xylanase improves 
protein accessibility in the hindgut through the nutrient release 
MOA, it has the potential to exacerbate the effects of protein 
fermentation. However, the more plausible and direct MOA for 
modulation of the microbiome is the “prebiotic” or “stimbiotic” 
effect of the released AXOS from the hydrolyzation of AX. In situ 
AXOS production has the potential to modulate gastrointestinal 
microbiota through exerting prebiotic-like effects in the gut that 
improves intestinal barrier function and integrity and invokes an 
immunostimulatory response by the gut-associated lymphoid 
tissue (Tiwari et  al., 2020). Moreover, these oligomers can act 
as a stimbiotic that stimulates luminal conditions to favor the 
proliferation of microbiota that degrade AX more efficiently and 
are generally “beneficial” in nature (Bedford, 2018; Bautil et al., 
2020).

If xylanase is effective in modulating microbial ecology to 
favor corn-based AX fermentation, this would be beneficial not 
only in terms of capturing a greater amount of energy from a 
highly insoluble and poorly fermentable fiber source but also 
potentially improving gastrointestinal health through the 
stimulatory effects of short-chain fatty acids (Bach Knudsen 
et al., 2018). Indeed, a carbohydrase blend containing xylanase 
demonstrated positive effects in controlling postweaning 
colibacillosis and modulating the microbiome (Li et  al., 2019, 
2020). A recent study by Luise et al. (2020) observed that xylanase 
tended to increase jejunal villi height and upregulate Lactobacillus 
reuteri in nursery pigs challenged with enterotoxigenic Escherichia 
coli and fed corn-based diets. This MOA could also partially 
explain why xylanase improved diversity and altered microbiota 
ecology in the large intestine of pigs fed corn-based feed 
ingredients (Zhang et al., 2017, 2018). Likewise, the observations 
that xylanase mitigates oxidative stress in pigs fed corn-based 
diets observed by Duarte et  al. (2019) and Petry et  al. (2020b) 
may be partially explained through this MOA. As discussed 
previously, corn AX is highly substituted with ferulic acid, and 
this phenolic compound is a robust antioxidant that is efficient 
in mitigating free radicals, increasing anti-oxidase production, 
and hindering enzymes that produce excess free radicals 
(Ogiwara et  al., 2002). However, ferulic acid bioavailability is 
low, but in vitro evidence suggests that xylanase can improve 
its bioavailability by releasing feruloylated AXOS, and, in turn, 
ferulic acid could be released by microbial ferulic acid esterase 
(Mathew and Abraham, 2004). Still, this has yet to be confirmed 
in vivo in the pig. However, these improvements in the various 
aspects of gastrointestinal structure and function warrant 

further investigation into this MOA. Moreover, there is a paucity 
of studies investigating gastrointestinal microbiota composition 
and phenotypic responses in pigs fed corn-based diets.

Future Considerations and Conclusions
Supplementing xylanase emerged in an effort to ameliorate 
the antinutritional effects of NSP, and in corn-based swine 
diets, there is certainly ample substrate and opportunity 
to improve the energetic contribution of fiber. However, its 
efficacy in improving fiber utilization and pig performance 
is variable and still poorly understood. Interestingly though, 
unexpected health benefits are often observed when including 
xylanase in diet formulations. Indeed, there have been 
considerable advancements in understanding why a fiber-
degrading enzyme could improve pig livability, but there is little 
empirical understanding of why digestibility and performance 
responses are misaligned. Even a brief review of the literature 
would indicate this may be a product of variable experimental 
conditions and designs and indicate there is a need for more 
robust and standardized research protocols in carbohydrase 
research. Recently, adaptation time has emerged as an 
experimental design criterion, which, if proven to be important, 
could possibly improve research outcomes. Although research 
on adaptation time is in its infancy, there is considerable 
evidence to suggest that previous studies could have faltered 
due to inadequate adaptation periods.

Moreover, it is increasingly apparent that elucidating the 
in vivo MOA of xylanase in pigs fed corn-based swine diets 
is warranted to improve its use in swine diets. If the MOA is 
correctly determined and robustly tested, swine nutritionists 
will be able to make informed decisions about the proper 
utilization of xylanase and will be more confident in achieving 
consistent and economically valuable phenotypic outcomes. By 
the same token, the desired phenotypic outcome from xylanase 
may need to be reevaluated. Certainly, an improvement in ADG 
or G:F can be valuable to a producer, but as it stands, these 
responses are not yet consistent in commercial situations. 
However, improving pig livability appears to be an unexpected 
benefit. Economically, there is certainly an upside to improving 
the proportion of full value pigs, if market conditions favorite it.

Several potential MOA for xylanase have been proposed 
over the years, and in the context of corn-based diets, several 
are plausible, and as with many feed additives, it is likely 
multifactorial. The modulation of the microbiome through a 
stimbiotic mechanism, while the least studied, has the potential 
to provide the greatest return on investment. The mitigation of 
increased digesta viscosity by xylanase likely has the least value 
and plausibility as corn-based diets are nonvicious and highly 
insoluble. Partially ameliorating the nutrient encapsulation 
of NSP through xylanase supplementation is certainly well 
supported by in vitro evidence and reported improvements in 
the digestibility of unexpected dietary components, but the 
monetary investment required to apply a nutrient release value 
to xylanase is likely not worth the marginal improvements 
observed. All of the aforementioned MOA rely on xylanase 
hydrolysis of AX to some extent. While there is certainly logical 
evidence that this is occurring in vivo, the composition of 
associated release products is largely unknown. All of this is 
essential to our understanding of the in vivo MOA of xylanase, 
including  how these breakdown products’ contribution energy 
to the pig. Further, the chemical complexity of corn-based AXs 
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hinders our ability to isolate these release products and quantify 
them. Recent advances in chromatographic methodologies 
provide optimism that they will be characterized, and in the 
future, this could become a routine analysis. Continual holistic 
and multifaceted investigation into the MOA of xylanase in 
corn-based diets will exponentially improve our understanding 
of enzymes and probably stimulate the increased use of 
carbohydrases in swine diets.
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