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Abstract

This study aimed to assess safety and therapeutic potential of gene electrotransfer as a method for 

delivery of plasmid encoding vascular endothelial growth factor A to ischemic myocardium in a 

porcine model. Myocardial ischemia was induced by surgically occluding the left anterior 

descending coronary artery in swine. Gene electrotransfer following plasmid encoding vascular 

endothelial growth factor A injection was performed at four sites in the ischemic region. Control 

groups either received injections of the plasmid without electrotransfer or injections of saline 

vehicle. Animals were monitored for seven weeks and hearts were evaluated for angiogenesis, 

myocardial infarct size, and left ventricular contractility. Arteriograms suggest growth of new 

arteries as early as two weeks post treatment in electrotransfer animals. There is a significant 

reduction of infarct area and left ventricular contractility is improved in gene electrotransfer 

treated group compared to controls. There was no significant difference in mortality of animals 

treated with gene electrotransfer of plasmid encoding vascular endothelial growth factor A from 

control groups. Gene delivery of plasmid encoding vascular endothelial growth factor A to 

ischemic myocardium in a porcine model can be accomplished safely with potential for 

myocardial repair and regeneration.
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Introduction

Heart disease is the leading cause of death in the United States accounting for a quarter of all 

deaths 1, 2. Approximately 22% of men and 46% of women surviving myocardial infarction 

will develop congestive heart failure within six years post MI 1-3. Of those diagnosed with 

heart failure, the five year survival rate is only 50% 1-3. Extensive atherosclerosis of the 

coronary arteries can lead to sufficient blockage of the coronary vessels to cause 

downstream ischemia in the ventricles of the heart 4. Therefore, current clinical therapies 

aim at direct revascularization to improve the survival rates for patients post MI 5. However, 

the myocardium does not regenerate to its former electrical, histological, and functional 

pumping potential 1, 6. Rather, ischemic myocardium remodels with fibroblast proliferation, 

collagen deposition replacing cardiomyocytes, resulting in thin, non-contracting patches in 

the ventricle, limiting cardiac output 7. There is little clinical evidence of return of viable 

cardiomyoctes in patients surviving MI 6-8.

Due to atherosclerosis, angiogenesis in ischemic myocardium is likely impaired. There are 

many pre-clinical therapies aimed at inducing angiogenesis in ischemic myocardium. 

Vascular endothelial growth factor A (VEGF-A) is a commonly used gene for therapeutic 

angiogenesis in coronary artery disease models, with intentions of collateral vessel 

development in hypoxic areas 6. The primary role of VEGF-A is induction of angiogenesis 

by stimulation of endothelial cells to migrate and proliferate in hypoxic areas 9-11. VEGF-A 

also plays an important role in stem cell mobilization and differentiation to cardiomyocytes 

as well as cardiomyocyte proliferation 12-15. VEGF-A promotes embryonic stem cell 

differentiation into cardiomyocytes in a mouse model 14 and has been shown to promote 

cardiac stem/progenitor cell mobilization and cardiomyocyte differentiation 12 and 

cardiomyocyte proliferation 13. In addition to the use of VEGF-A delivered in the form of 

recombinant protein, several gene therapy approaches for VEGF-A delivery to the 

myocardium have also been evaluated 6.

Primary methods of gene delivery are viral mediated transfer and plasmid-based transfer. 

Adenoviral vectors and adeno-associated (AAV) vectors are the most commonly used 

vectors for delivery to the heart with immunogenicity and toxicity as major side effects. 

Plasmid DNA delivery is associated with fewer side effects, low immune response, low 

toxicity, and reduced cost but with lower efficiency 6, 16, 17.

There are several studies reported on electroporation aka gene electrotransfer (GET) 

mediated gene delivery to the beating heart in a small animal model 18, 19. In our previous 

studies we reported on plasmid DNA delivery via GET to cardiac muscle in vivo in a 

porcine model 20, 21. GET of plasmid DNA can be applied safely directly to the ischemic 

and non-ischemic myocardium and gene expression can be modulated by pulsing 

conditions 20, 21. We have also determined that there may be a therapeutic benefit to local 

delivery of pVEGF-A to ischemic myocardium, with improved myocardial perfusion two 

weeks after treatment 21.

Our current study is focused on long-term outcome of GET delivery of pVEGF-A to 

ischemic myocardium. We demonstrate that seven weeks post treatment new arteries can be 

Bulysheva et al. Page 2

Gene Ther. Author manuscript; available in PMC 2016 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed in arteriograms in the majority of treated ischemic porcine hearts. We also 

observed a reduction of myocardial damage from ischemic injury at treatment sites, with 

improved contractility and relaxation of the left ventricular myocardium under chemically 

induced stress. Overall, our results indicate a potential long-term therapeutic benefit of 

exogenous VEGF-A gene delivery mediated by electrotransfer to ischemic myocardium, 

with reduced progression to pathological cardiac remodeling at treatment sites in a porcine 

model of myocardial infarction.

Results

Occlusion of Left Anterior Descending Coronary Artery leads to Myocardial Infarction of 
Anterior Left Ventricle

To study the effects of an angiogenic therapy for myocardial infarction, we first confirmed 

the presence of myocardial infarction of the anterior left ventricle after occlusion of the left 

anterior descending (LAD) coronary artery. Thrombosis in myocardial infarction (TIMI) 

scoring of the arterial tree, confirmed successful permanent occlusion of the LAD coronary 

artery (Figure 1A). There were two animals that were excluded from the study, based on a 

TIMI score of 3, indicating insufficient occlusion, and lack of ischemia (which was 

confirmed at 7 weeks, with lack of MI detectable by triphenyltetrazolium (TTC) staining). 

SPY® System analysis indicates a presence of a consistent ischemic region in terms of size 

and drop in perfusion (Figure 1B and 1C). Further analysis of plasma indicated a sharp 

increase of cardiac troponin-I 24 hours after the induction of ischemia indicating presence of 

myocardial infarction (Supplemental Table 1). There is a sharp increase of plasma creatine 

kinase muscle-isoform (CK-MM), indicating muscle cell damage and also consistent with 

myocardial infarction in all groups (Supplemental Table 1).

GET of pVEGF-A to the ischemic myocardium has no deleterious effects on survival or 
cardiac output in a porcine model

Kaplan-Meier log ranks survival analysis was performed on all animals surviving the onset 

of acute ischemia and receiving GET with pVEGF-A, pVEGF-A injections without 

electrotransfer, or saline injections. Two animals were excluded from the study due to 

irreversible ventricular fibrillation following the occlusion of the left anterior descending 

coronary artery prior to any experimental treatment. Two additional animals were excluded 

due to lack of sufficient occlusion (TIMI score of 3), resulting in unabated flow through the 

coronary artery, thus insufficient ischemia and no myocardial infarction. There was no 

significant difference in survival between treated groups and untreated controls (Figure 2A), 

indicating no significant increase of mortality due to electrotransfer mediated gene delivery 

of VEGF-A encoding plasmid DNA to ischemic myocardium seven weeks post induction of 

ischemia.

Measurements of left ventricular diameters via echocardiography indicate no significant 

difference in calculated end-systolic and end-diastolic measures of volumes, ejection 

fraction, fractional shortening and cardiac output between GET treated, pVEGF-A injection 

without electrotransfer and sham control groups at any time point throughout the study 

(Figure 2B-F), indicating no additional damage caused by GET mediated pVEGF-A to 
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ischemic myocardium of the left ventricle. Other cardiac ultrasound parameters are also 

consistent with this observation (Supplemental Figure 1).

GET of VEGF-A induces angiogenesis in ischemic myocardium in a porcine model

Arteriograms taken prior to LAD coronary artery occlusion were compared to arteriograms 

taken two and seven weeks after LAD coronary artery occlusion and gene therapy treatment. 

More than 70% of GET treated animals developed new arteries large enough to be visible 

via arteriogram of the heart, while only 25% and 40% of the pVEGF-A injection only and 

saline injection controls, respectively, developed new vessels (Figure 3A and 3B). The 

average length of new vessels as visible in arteriograms was not significantly different 

between treatment groups for animals that did have new vessel growth (Supplemental Figure 

2).

Histological comparison of vessel density in ten randomly selected fields of view from 

treatment sites indicate no significant difference in blood vessel density between the groups 

seven weeks after induction of myocardial infarction and gene therapy treatment (Figure 3C 

and 3D).

GET of pVEGF-A reduces myocardial damage from ischemic injury at treatment sites of the 
left ventricle

Myocardial infarction caused by occlusion of the LAD coronary artery extended through the 

anterior left ventricle, septum and right ventricle in most animals, based on TTC staining 

performed on harvested hearts seven weeks post LAD coronary artery occlusion and gene 

therapy treatment (Supplemental Figure 3). The infarct/ischemic area in the left ventricle 

post LAD occlusion is significantly lower in GET of pVEGF-A group than the saline 

injection group and is lower than the pVEGF-A injection without electrotransfer (4B). 

Therefore, the infarct size in GET with pVEGF-A group at the treatment sites is smaller than 

the infarct size of the control groups.

The total volume of myocardial infarction was not significantly different between the 

experimental groups (Figure 4A). There is notable variability in the extent of the infarction 

into the right ventricle and septum, which were untreated affecting the total size of the 

infarct (Supplemental Figure 3).

GET of pVEGF-A improves left ventricular contractility and relaxation under dobutamine 
stress

While the heart rate of all animals irrespective of the treatment group increased dramatically 

in response to dobutamine administration, the change in intra-ventricular pressure correlated 

inversely with total size of infarct in the left ventricle. Higher ventricular compliance was 

observed for GET (n=2) treated hearts than controls (n=3), based on higher ±dP/dtmax 

measurements as indicators of contractility and relaxation in response to increasing 

dobutamine dose (Supplemental Figure 4).
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Discussion

Atherosclerosis of coronary arteries with stable or unstable atherosclerotic plaques often 

leads to ischemia of the myocardium or acute myocardial infarction respectively. Sufficient 

hypoxic conditions result in loss of cardiomyocytes and remodeling of the myocardium into 

non-contractile scar tissue. Sufficient loss of contractile function of the heart leads to heart 

failure and reduced long-term survival. Restoration of blood flow is a common strategy for 

clinical treatments such as coronary artery bypass grafting (CABG), however such 

procedures do not address the problem of atherosclerosis. Autologous blood vessels (ex. 

saphenous vein), often used for bypassing blocked arteries suffer the same atherosclerotic 

disease as the original vessels, can and often do develop atherosclerotic plaques. An 

angiogenic therapy is an attractive option due to the potential to alleviate ischemia in short 

term and to cultivate new autologous vessels, which are not yet effected by atherosclerosis, 

similar to blood vessels of younger individuals, who are not likely to suffer from 

atherosclerosis. Here, we demonstrate an angiogenic gene therapy approach that results in 

development of new arteries in ischemic myocardium with minimal adverse effects.

Our gene delivery approach is non-viral and non-integrating with temporary elevation of 

local gene expression up to two weeks 21. We injected naked plasmid DNA encoding human 

VEGF-A to four sites in the ischemic myocardium in a porcine animal model, followed by 

electrotransfer. In our previous studies we have shown that GET greatly enhances gene 

expression of VEGF-A compared to plasmid DNA injection without electrotransfer in a 

porcine model of myocardial infarction. Here, we evaluated long term impact of GET 

mediated delivery of pVEGF-A on ischemic myocardium.

The occlusion of the LAD coronary artery resulted in consistent ischemia of the left 

ventricle in terms of the area affected and drop in perfusion observed, both measured with 

SPY perfusion analysis system. There were no significant differences between ischemia of 

the left ventricle between the groups of animals. Ischemia of the septum and the right 

ventricle were not assessed, due to limitations of the SPY imaging system. Only the apical 

surface of the left ventricle is visible via the SPY system, thus only perfusion through that 

area can be assessed before and after the occlusion. Elevated plasma levels of cardiac 

troponin I and CK-MM one day after LAD coronary artery occlusion indicated that 

induction of ischemia also resulted in myocardial infarction. Therefore, the occlusion of the 

LAD coronary artery resulted in consistent ischemia and acute myocardial infarction for all 

treatment groups.

Seven-week survival was evaluated with the Kaplan-Meier log-rank evaluation. Mortality 

was not significantly different between the treatment groups, indicating that GET of VEGF-

A did not adversely effect survival, or increase mortality compared to sham in DNA 

injection only groups. This finding is consistent with our previous studies, indicating that 

proper administration of electric pulses for gene therapy during the rise of the R-wave, does 

not increase mortality, neither does overexpression of pVEGF-A at treatment sites of 

ischemic myocardium. Therefore, the GET of pVEGF-A can be safely administered to 

ischemic myocardium as a potential therapeutic.
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Echocardiography evaluation of ejection fraction, fractional shortening, end-systolic and end 

diastolic volumes, cardiac output, and hypertrophy, indicates no significant difference 

between treatment groups at any time points of the study. The occlusion distal to the second 

diagonal branch, resulted in a relatively mild form of ischemia leading to low mortality and 

allowing for evaluation of treatment effects. Variability in ischemia to the septum and the 

right ventricle, may play a role in lack of significant differences in end-systolic and end-

diastolic diameters and calculated volumes, ejection fraction and cardiac output measures 

between the groups. Increase in cardiac output, end-systolic and end-diastolic volume at 

seven weeks compared to the pre myocardial infarction values can also be caused by growth 

of the entire animal and the heart, since most animals grew throughout the duration of the 

study. Significantly, however, there were no adverse effects observed via echocardiography 

in GET of VEGF-A treated animals compared to the control animals, indicating safety of the 

treatment.

While damage to the myocardium from ischemia occurs within hours of the onset of 

ischemia, with some indication that necrosis of cardiomyocytes can also start within hours 

after onset of ischemia, angiogenesis is not induced in the remodeling myocardium until 

about 2-3 weeks from MI onset, with maturation of the new vessels taking even longer 26. 

An angiogenic therapy with an onset earlier than what happens during the endogenous 

course of remodeling of ischemic myocardium, may prove to be extremely beneficial 

therapeutically. Here, we note the presence of new arteries in the distal regions of the 

ischemic myocardium as early as 2 weeks after occlusion of the LAD coronary artery 

(Figure 3). Arteriogram analysis (Figure 3A-B) indicates presence of arteries distal to the 

location of the occlusion in the left ventricle. These vessels were not present in the arterial 

tree of the same hearts prior to occlusion and treatment, indicating angiogenesis in more 

than 70% of the hearts treated with GET of pVEGF-A at seven weeks. In comparison only 

~25% and ~40% of the hearts treated with injection of pVEGF-A or saline, respectively, 

developed new arteries in the same time frame (Figure 3B). Arteriograms can only detect 

macroscopically sized vessels with radiopaque dye, thus onset of angiogenesis is actually 

earlier than two weeks, in order to observe functional arteries via arteriogram analysis 

(Figure 3A-B). Also, due to the size (approximately 0.5-1mm inner diameter) and abundant 

perfusion of the detected arteries it is likely that these new collateral arteries are mature and 

efficient.

Histological analysis for blood vessel density was only performed at seven weeks, for 

observation of long-term effects of GET of pVEGF-A on the myocardium (Figure 3C). By 

seven weeks vessel density at treated sites is indistinguishable between the gene therapy 

group and corresponding controls (Figure 3C-D). Based on our previous data 21, exogenous 

gene expression is expected to persist for up to two weeks, therefore homeostatic processes 

are expected to take over after exogenous gene expression subsides. Blood vessel density 

generally depends on oxygen requirements of the tissue 27, therefore once hypoxic 

conditions and/or exogenous growth factors no longer drive angiogenesis, it is likely that the 

tissue no longer requires angiogenic processes. This is consistent with our results of similar 

blood vessel density on the microscopic level at 7 weeks after LAD coronary artery 

occlusion and gene therapy application.
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VEGF-A has a well-known role in angiogenesis in response to hypoxic conditions, however 

there are also multiple reports of VEGF-A promotion of cardiomyocyte proliferation as well 

as induction of differentiation of cardiac progenitor cells or cardiac stem cells into 

cardiomyocytes. Evaluation of the total size of the infarct including the myocardium of the 

right ventricle, septum and left ventricle yielded no significant differences between treatment 

groups, however there was considerable variability in the degree to which the right ventricle 

and the septum were effected by LAD coronary artery occlusion (Supplemental Figure 3), 

with some hearts having larger or smaller infarcts in those regions. Neither the right 

ventricle nor septum was evaluated for ischemia prior to treatment with SPY analysis. These 

regions contained no treatment sites, thus the variability in myocardial infarct size in these 

regions is not due to treatment group (Figure 4A). This variability may also account for little 

distinction between treatment groups via seven-week echocardiography evaluation (Figure 

2B-2F and Supplemental Figure 1). Therefore, we evaluated ischemia and infarct size of the 

left ventricle separately from other infarcted regions in order to assess the effect of GET of 

VEGF-A at the treatment sites. Treatment sites were only present in the left ventricle. There 

was a significant decrease in infarct size in terms of surface area of infarct at seven weeks 

relative to the initial area of ischemia of the left ventricle, which is the site of GET treatment 

(Figure 4B). The reduction of myocardial infarct area of the left ventricle was larger in the 

GET of VEGF-A group than the pVEGF-A injection only, or the saline injection (sham) 

control groups. The difference between GET and sham group is statistically significant 

(p=0.0349), implicating a therapeutic potential for GET of pVEGF-A treatment.

A strong correlation between the presence of new arteries and reduction of infarct area was 

not observed, suggesting another role for exogenous VEGF-A in repair of the myocardium 

after ischemic injury. VEGF-A may preserve viability of resident cardiomyocytes, induce 

cardiomyocyte proliferation in adjacent normoxic regions, promote migration and 

differentiation of cardiac stem/progenitor cells to cardiomyocytes, or a combination of these 

three. It has been noted that VEGF-A is capable of promoting proliferation of 

cardiomyocytes 13, and induction of differentiation of cardiac stem cells or progenitor cells 

to cardiomyocytes 15. This role of VEGF-A may account for the reduction of myocardial 

infarct size in vivo with recruitment of new cardiomyocytes to the hypoxic myocardium in 

addition to the traditional angiogenic role.

Ventricular contractility and relaxation are extremely important to quality of life. The ability 

of the heart to respond to increased demand in oxygen due to stress such as exercise 

determines patients’ daily physical abilities. Therefore, we evaluated contractility and 

relaxation of infarcted hearts under increasing dobutamine stress seven weeks after 

treatment. GET treated animals had a higher contractility and relaxation in response to 

increased stress than the controls (Supplemental Figure 4A-B). While our sample size is 

very limited, these results are consistent with our other findings, that there are more 

contractile cells present in the treated left ventricles, leading to improved contractility of the 

left ventricle in the treated groups, compared to control groups.

In summary, gene electrotransfer of VEGF-A encoding plasmid applied to left ventricular 

ischemic myocardium has no deleterious effects on long term survival compared to injection 

of VEGF-A encoding plasmid without electrotransfer, or injection of saline. There is no 
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significant difference in echocardiographic measures between treatment groups at any time 

point, possibly due to initial variation in ischemia to the septum and the right ventricle. The 

proportion of animals with new arteries is much higher in GET group than in any of the 

control groups as early as two weeks and persisting through seven weeks post treatment. By 

seven weeks, there is no difference in blood vessel density between treatment groups at the 

sites of treatment on the microscopic level. Overall myocardial infarct size is not 

significantly different between treatment groups, however there is a difference in reduction 

of left ventricular area of infarct. Myocardial infarct area reduction in GET group is 

significantly larger, indicating a potential therapeutic benefit for this gene therapy approach. 

Improved left ventricular contractility and relaxation under dobutamine stress further 

support therapeutic application potential of GET of pVEGF-A to ischemic myocardium for 

increasing angiogenesis and myocardial repair and regeneration. This study supports safety 

and therapeutic potential for using gene electrotransfer to deliver plasmid DNA encoding 

VEGF-A to ischemic myocardium in a porcine model.

Methods

Animals

Thirty-seven adult Yorkshire pigs were purchased from Bellview Farms, Smithville, Virginia 

at an approximate weight of 31-47kg. All experimental studies followed an approved Old 

Dominion University’s Institutional Animal Care and Use Committee protocol, in 

accordance with the Guide for the Care and Use of Laboratory Animals at an AAALAC-

accredited facility, including a 12:12-hour light cycle. An ACLAM board certified 

veterinarian determined all animals were free of disease through the use of health 

examinations. Animals were quarantined and acclimated for a 7-day period before any 

procedures were conducted. In addition, an echocardiography exam was conducted on each 

animal to obtain baseline measures of cardiac health.

Plasmid

A commercially prepared plasmid, pVax1-hVEGF165(pVEGF-A), was used for these studies 

(Aldevron, Fargo, ND). DNA was suspended in sterile saline at 2mg/ml. Endotoxin levels 

were <0.1 EU/μg plasmid, confirmed by Aldevron via a Limulus Amebocyte Lysate assay.

Myocardial Infarction

Surgical procedure and induction of acute ischemia were performed as previously 

described 21, with more details available in supplemental methods. After induction of 

anesthesia by ketamine (20mg/kg) and diazepam (3-5mg/kg), pigs were anesthetized with 

isoflurane via a nose mask and intubated, with respiration maintained by a volume-

controlled BonAir mechanical ventilator. A medial sternotomy incision was made for 

exposing the heart. The sternotomy was chosen less invasive methods, to allow adequate 

view of the entire ischemic surface area for SPY measurements. The pericardium was 

removed to expose LAD coronary artery. The LAD was ligated with a 4-0 silk suture below 

the second diagonal branch, inducing downstream ischemia, with the suture left in place 

following treatment. A radiopaque thread was tied to the silk ligature for marking the LAD 

Bulysheva et al. Page 8

Gene Ther. Author manuscript; available in PMC 2016 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



occlusion site in x-ray imaging. Ischemic areas of the heart wall were identified by perfusion 

assessment after the ligation of the LAD by SPY and arteriograms.

Perfusion Assessment

Tissue perfusion through the left ventricular wall was assessed with the SPY® System 

(LifeCell Corporation, Branchburg, NJ) prior and immediately after the occlusion of the 

LAD. Indocyanine green (IC-Green) fluorescent dye was injected intravenously followed by 

SPY scanning of the anterior left ventricular wall for the presence of the dye. Higher 

fluorescence intensity was interpreted as higher perfusion. The images collected prior to the 

LAD ligation and immediately after the ligation were used to determine the relative loss in 

perfusion, the precise location and size of ischemic area in the left ventricle (ischemia of the 

septum or the right ventricle are not visible in the field of view of the SPY).

Arteriograms

X-ray fluoroscopy (Advantx® Systems Fluoroscope, GE Medical Systems, Wauwatosa, WI) 

was utilized to view the coronary arteries of the heart prior to LAD occlusion, after the 

occlusion, 2 and 7 weeks after myocardial infarction. The femoral artery was accessed via a 

cut-down followed by a modified Seldinger technique with a J-tipped angiographic 

guidewire (Bard Medical, Covington, GA). A 6-French catheter (Boston Scientific, 

Marborough, MA) was guided to the LAD. Arteries were visualized with injection of 

Isovue-300 iodine contrast agent (Bracco Diagnostics Inc., Monroe Township, NJ) into the 

catheter. A TIMI score of 0, 1, 2 or 3 was assigned to assess flow through the LAD 

immediately after the occlusion, at 2 weeks and at 7 weeks. A score of 0 indicated no flow 

past occlusion site, a score of 1 indicates slow flow past the occlusion site, but no filling of 

the distal regions of the arteries, a score of 2 indicates slow flow past the occlusion with 

filling of the distal arteries, and a score of 3 indicates unimpeded flow 22. Arteriograms 

performed prior to occlusion and after 7 weeks were compared to assess angiogenesis at the 

macroscopic level. The number of animals with new vessels was recorded along with the 

vessel length and compared among different experimental groups.

Gene Electrotransfer

Gene electrotransfer, plasmid DNA injection only, or sham injection of saline were 

administered following SPY perfusion assessment, within an hour of LAD occlusion. This 

time point was chosen to minimize stress to the animals, by performing only one invasive, 

open-heart procedure and avoiding separate surgeries for LAD occlusion and GET 

treatment. Four sites bordering ischemia were selected for GET. A 7mm, 4 needle (5 mm 

electrode gap) penetrating electrode with an injection port was used for DNA delivery to the 

heart as previously described 20, 21. For each treatment site, the electrode was placed on the 

surface of the myocardium, with electrode needles penetrating into the myocardium to 7mm. 

A hypodermic needle was used to inject 100μl of plasmid DNA encoding VEGF-A 

(pVEGF-A) in saline at 2mg/ml, centrally between the electrode needles through the 

injection port. The hypodermic needle was withdrawn, to prevent electrical interference. An 

electric field was established between and around the electrode needles with applied voltage 

to accomplish electroporation and DNA delivery at the treatment site. Our custom-built 

pulse generator and software continuously captured the echocardiogram (ECG) of the 

Bulysheva et al. Page 9

Gene Ther. Author manuscript; available in PMC 2016 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



animal and enabled synchronizing pulsing with the R-wave of the ECG (Accusync Medical 

Research Company, Milford, CT). Each site was immediately pulsed eight times with 20ms 

pulses at an amplitude of 60V. Animals randomly assigned to the negative control groups 

received either saline injections or plasmid DNA injection without electrotransfer.

Immunofluorescence Staining

Seven weeks post myocardial infarction, animals were euthanized and tissue samples were 

collected, fixed in 10% formalin, paraffin embedded and sectioned. Slides were stained for 

von Willebrand Factor (vWF) to identify microvasculature with a blood vessel staining kit 

(Millipore, Billerica, MA). The number of vessels per field of view was counted and 

averaged over 10 randomly selected fields of view within each treatment region. 

Experimental groups were then compared based on the average number of vessels for vessel 

density.

Echocardiography

Cardiac ultrasound was performed with a Sonosite 180 Plus SonoHeart Ellite Ultrasound 

(Bothell, WA) 21, 23 prior to the occlusion of the LAD, immediately after myocardial 

infarction, two weeks after MI and 7 weeks after MI. Two dimensional and M-mode 

echocardiography was used to measure left ventricular end-systolic diameter, left ventricular 

end-diastolic diameter, left ventricular wall (LVPW) thickness, and intraventricular septum 

during systole and diastole. The Teicholz method was used to calculate left ventricular end-

systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV), cardiac output 

(CO), fractional shortening (FS), stroke volume and ejection fraction (EF) 24.

Enzyme-linked Immunosorbent Assays

Blood samples were collected prior to MI, 24 hours post occlusion and at 7 weeks, for 

analysis of changes cardiac protein levels. Plasma samples were tested for porcine cardiac 

troponin-1 (Kamiya Biomedical, Seattle, WA) and creatine kinase MM (Kamiya 

Biomedical, Seattle, WA) according to the ELISA kit manufacturer’s instructions, for 

indications of initial myocardial damage and presence of heart failure.

Myocardial Infarct Size Measurements

At seven weeks, hearts were harvested for infarct size assessment and histological analysis. 

Harvested hearts were sectioned into 1cm coronal slices (perpendicular to long axis of the 

heart). The slices were incubated with 1% triphenyltetrazolium (TTC) (Sigma-Aldrich, St 

Louis, MO) at 37°C for 30 minutes. Each side of each slide was then photographed and the 

infarct size was measured using ImageJ software to trace the infarct in each image.

In order to calculate the total volume of the infarct, the area measurement from each side of 

individual slices was averaged and multiplied by the thickness of the slice. The total infarct 

volume is the sum of individual infarct volumes from each heart slice 25. The total 

myocardial infarct volume included measurements from both ventricles and the 

intraventricular septum.
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Left ventricular MI surface area was also measured in order to compare the area of left 

ventricular ischemia induced by occlusion of the LAD to the area of MI after treatment of 

the left ventricle. ImageJ software was used to outline the perimeter of the MI on the 

pericardial surface of the left ventricle from each slice. The average from each side of the 

slice was multiplied by the thickness of the slice. The sum of areas from each slice was then 

used to determine the area of left ventricular MI.

End of Study Euthanasia

On final day of study, animals were anesthetized as follows. After induction of anesthesia by 

ketamine (20mg/kg) and diazepam (3-5mg/kg), pigs were anesthetized with isoflurane via a 

nose mask and intubated, with respiration maintained by a volume-controlled BonAir 

mechanical ventilator. A final arteriogram was performed followed by sternotomy as 

described above. Following final assessment of perfusion by SPY procedure, animal was 

euthanized by an intracardiac injection of 5 ml of fatal plus.

Statistical Analyses

All quantitative data with calculated means were compared using a one-way or two-way 

analysis of variance (ANOVA) with p<0.05 considered to be statistically significant. For 

ANOVA analysis yielding statistically significant differences, the Tukey’s multiple 

comparisons test was performed to determine which data sets were significantly different. 

All quantitative data was reported with the standard error of the mean (SEM). All 

proportions were compared with the Chi-Square test for proportions, with p<0.05 considered 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Permanent ischemia was induced via LAD occlusion
A) TIMI flow index drops significantly after occlusion, with no significant difference in 

TIMI between treatment groups (Two-way ANOVA and Tukey’s multiple comparisons test, 

alpha=0.05, P = <0.0001). B) SPY based measurement of ischemic surface area of the left 

ventricle indicates consistent occlusion between treatment groups, with no significant 

difference in ischemic area (One-way ANOVA, alpha = 0.05, P=0.6388). C) SPY based 

measurement of drop in perfusion in the ischemic area of the left ventricle indicates a 

consistent reduction in perfusion, with GET group receiving a slightly larger drop in 

perfusion than the IO group (One-way ANOVA, Tukey’s multiple comparisons test 

alpha=0.05, P=0.0012).
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Figure 2. GET of VEGF-A has no deleterious effects on survival or heart performance over 7 
weeks post MI and gene delivery
A) Kaplan-Meier Survival curve with no significant difference between the groups (Logrank 

test for trend, P=0.4639), B) Ejection fraction (P=0.9240), C) Cardiac Output (P=0.5603), 

D) Fractional Shortening(P=0.3775), E) Left ventricular end systolic volume (P=0.5603), F) 

Left Ventricular end diastolic volume(P=0.92), with no significant difference between 

treatment groups based on echocardiographic analysis (Two-way ANOVA and Tukey’s 

multiple comparison test, alpha=0.05)
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Figure 3. GET of pVEGF-A induces angiogenesis in ischemic myocardium at treatment sites
A) Arteriograms of GET and IO animals, before occlusion, immediately after occlusion and 

7 weeks after occlusion, with new arteries visible in the GET heart. *LAD occlusion site, red 

arrows point to new vessels. B) The proportion of hearts with new arteries visible via 

arteriogram 2 (P=0.152313) and 7 weeks (P=0.243917) after treatment is higher in hearts 

treated with GET of pVEGF-A (Chi-square test). C) vWF staining for blood vessels at a 

treatment site of GET of pVEGF-A seven weeks after MI and treatment. D) Blood vessel 

density at treatment sites seven weeks after MI and treatment is not significantly different 

between treatment groups on a microscopic level (One-way ANOVA, alpha=0.05, 

P=0.9704).
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Figure 4. Myocardial infarct size is reduced at GET of pVEGF treatment sites 7 weeks post 
treatment
A) Infarct area to ischemic area ratio is significantly lower in GET treated left ventricles 

than in Sham control group, (One-way ANOVA, and Tukey’s multiple comparison test, 

alpha=0.05, p=0.0349), B) Total myocardial infarct size including untreated septum and 

untreated right ventricle, with no significant differences between the groups (One-way 

ANOVA, alpha=0.05, P=0.2028).
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