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Phase-selective entrainment of nonlinear oscillator
ensembles
Anatoly Zlotnik1, Raphael Nagao2, István Z. Kiss2 & Jr-Shin Li3

The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is

important for understanding and influencing brain functions, sleep and metabolic cycles, and

many other natural phenomena. However, establishing spatiotemporal structures in biological

oscillator ensembles is a challenging task that requires controlling large collections of

complex nonlinear dynamical units. In this report, we present a method to design entrainment

signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators

without using state feedback information. We demonstrate the approach using experiments

with electrochemical reactions on multielectrode arrays, in which we selectively assign

ensemble subgroups into spatiotemporal patterns with multiple phase clusters. The experi-

mentally confirmed mechanism elucidates the connection between the phases and natural

frequencies of a collection of dynamical elements, the spatial and temporal information

that is encoded within this ensemble, and how external signals can be used to retrieve this

information.
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C
omplex interactions among nonlinear periodic phenom-
ena emerge in many natural and engineered systems1,2.
Numerous instances appear in chemical reactions3,4

and biological systems5,6, which exhibit endogenous and
emergent multiscale oscillations7. There is significant interest in
characterizing synchronization in oscillators interconnected in
networks8,9, which is especially important for understanding the
highly complex dynamics of man-made systems such as
electric power grids10, and elucidating the functions of neural
systems11–13. Understanding entrainment of oscillating systems
to an exogenous forcing signal is crucial to modelling circadian
timekeeping14, dynamic neural regulation15 and for the design
of synchronizing or desynchronizing treatments of cardiac
arrhythmias16, Parkinson’s disease17, epilepsy18 and movement
disorders19.

Even the simplest models of interacting oscillators can exhibit
highly complex behaviour20, and individual oscillating units may
themselves possess complicated dynamics21. These factors are
aggravated in practice by model and parameter uncertainty and
the impracticality of obtaining feedback information, such as for
in vivo biological applications, and pose challenges to
manipulating or controlling oscillating ensembles. Such
tasks require tractable yet accurate simplifications of the
complex dynamic interactions involved, and demand suitable
mathematical approaches that characterize ensemble-level
properties while withstanding experimental uncertainties.

Control-theoretic techniques have been applied to control a
single oscillator22–24. In contrast, finely manipulating individual
subsystems in underactuated ensembles, such as thousands of
neurons in the brain affected by one electrode, rather than
activating them homogeneously remains a fundamental challenge.
Synchronization has been engineered in collections of oscillators
using feedback25–27, or tuning coupling strengths4,28,29. Such
approaches require certain coupling structures, exact model
specification, state feedback information, or precise knowledge
of initial conditions, but still are not able to produce a
prescribed phase pattern corresponding to frequency clusters of
the oscillators.

Versatile open-loop control techniques were developed for
simultaneous control of ensembles of quantum spin systems,
which motivated the field of ensemble control30. Inspired by
selective pulse design in nuclear magnetic resonance (NMR)31,
which enabled revolutionary applications including functional
magnetic resonance imaging (fMRI), we develop a method for
selectively manipulating the subunits of oscillator ensembles
using periodic inputs that are robust to parameter uncertainty
and disturbances. Specifically, we exploit the slight heterogeneity
and high nonlinearity of an ensemble of structurally similar
oscillators far past the Hopf bifurcation, rather than relying on a
known coupling structure, state feedback or initial condition
information.

In this manuscript, we present a methodology for constructing
weak, globally applied, open-loop control inputs that synchronize
a collection of structurally similar yet heterogeneous nonlinear
oscillators while selectively assigning their relative phases on the
periodic orbit. Using the technique, the synchronization structure
of an oscillating ensemble can be manipulated among diverse
phase patterns, seen in relative positions on the limit cycle. Our
theory is developed specifically to overcome the challenges of
experimental implementation when feedback information is
unavailable, initial conditions are unknown and the oscillators
are subject to uncertainty in subsystem parameters and stochastic
disturbances. The control inputs create and maintain such phase
patterns when the coupling between oscillators is weak, while
preserving the intrinsic nature of the ensemble to enable
nondestructive application to fragile biological and chemical

systems. The dynamics of the oscillators may be arbitrary, as long
as all are structurally similar and exhibit sufficient nonlinear
relaxation for the control design to be realizable. A coherent
structure may be established and robustly maintained indefinitely
by a single periodic waveform, which can be altered to switch
between patterns. We demonstrate the theoretical methodology
in practice with experiments to control complex electrochemical
ensembles whose dynamics are variable and unknown, and for
which state information is unavailable26,32.

Results
Phase model approximation. We approximate the effect of
inputs on periodic dynamical systems using phase models33,
which can be computed for systems with known dynamics34 or
experimentally inferred in practice when the dynamics are
unknown35. These models are used to characterize circadian
cycles36, cardiac rhythms16 and phenomena in neural and
chemical systems11,37, and their simplicity has enabled control
design for neuron models22 given initial conditions and exact
parameters. Control techniques have recently been developed for
individual nonlinear oscillators and finite collections described by
phase models that require exactly known initial conditions,
parameters, and dynamics22,38,39. Many studies on synchro-
nization focus on the network structure of couplings between
oscillators, and the nonlinearity in the phase response of each unit
is simplified to sinusoidal couplings with its neighbours9.
However, for the manipulation and desynchronization of
electrochemical and neural systems11,40,41, complex, hierarchical
interactions must be established or broken in large collections of
nonlinear systems. The dynamics, parameters, and interconne-
ctions of these systems are typically problematic to infer, may be
noisy, variable, or uncertain, and state observations may be
incomplete or unavailable. Such conditions elude tractable
formulation, and require an approach where synchronization
properties of the systems, that is, asymptotic phase structure, are
manipulated rather than steering the system states directly7,42.

Entrainment of an ensemble. Our method relies on entrainment,
which refers to the dynamic synchronization of oscillating
systems to periodic inputs. Each system in an ensemble of N
structurally similar units exhibits endogenous oscillation along an
attractive periodic orbit with period Tj, and is represented by the
Winfree phase model

_cj¼ojþZ cj

� �
u; ð1Þ

where oj¼ 2p/Tj is the natural frequency and Z is the phase
response curve (PRC), which quantifies how a weak perturbation
u advances or delays the phase cj (refs 2,33). A value of cj ¼ 0
(equivalently 2p) corresponds to a measurement of the jth
system reaching its maximum. More details on phase coordi-
nate transformation are given in Supplementary Note 1. We
demonstrate our phase-selective entrainment techniques
using experiments in which nickel electrodes undergo anodic
dissolution in sulfuric acid and exhibit electrochemical oscilla-
tions32, for which the experimental apparatus is described in
section ‘Experimental apparatus’. Before these experiments, the
PRCs of the ensemble elements, which are shown in Fig. 1a,
were estimated and averaged for use as the nominal PRC in
equation (1). This was done using a pulse perturbation procedure
for system identification that was previously used for electro-
chemical oscillators43, and is described in Supplementary Note 2.

To synchronize oscillation of ensemble elements, each
subsystem receives the same weak, periodic forcing input of
frequency O of the form u(t)¼ v(Ot), where v is 2p-periodic.
When the forcing frequency is near the natural frequencies in the
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ensemble, averaging theory44 states that the mean difference jj
between each phase cj and the forcing phase y¼Ot follows the
time-independent dynamic equation

_jj¼DojþLvðjjÞ; ð2Þ

where Doj¼oj�O is called the frequency detuning, and

Lv jð Þ ¼ 1
2p

Z 2p

0
Z yþjð Þv yð Þdy ð3Þ

is a 2p-periodic interaction function that characterizes the
average effect of the periodic input on the oscillation phase43.
Such ergodic averaging is discussed in more detail in
Supplementary Note 3 and illustrated in Supplementary Fig. 1.
If equation (2) has a unique attractive fixed point j�j that satisfies
DojþLvðj�j Þ¼0, then the phase of the jth oscillator becomes
entrained to the forcing phase y with an average offset of j�j . This

analysis is widely applied to determine the interaction function
resulting from a measured PRC and an input waveform, and
equation (2) is used to infer the entrained system’s stability27. We
reverse this approach by choosing the desired asymptotic
behaviour, constructing a suitable interaction function and
using the PRC to obtain the input by circular deconvolution of
equation (3).

Interaction functions for phase selection. We design the input
v(Ot) so that each system in equation (1) is entrained to a forcing
frequency O, e.g., the mean of natural frequencies
o1oo2oyooN, and such that the jth oscillator cycles its orbit
with a phase offset of j�j relative to the forcing phase y. The set of
pairs ðoj;j�j Þ constitutes a pattern for selective entrainment. We
require that _jj ¼ DojþLvðj�j Þ¼ 0 eventually holds for each
oscillator, that is, equation (2) has an attractive fixed point at j�j
for all j at which the slope of the interaction function Lv is
negative43. The function that best satisfies these ideal conditions
has steep decreases at phase values j�j where entrainment must
occur, and crosses (from above) horizontal lines at frequency
detuning values �Doj. This creates the desired attractive fixed
points for equation (2). Because the interaction function is
periodic, it must then increase so that Lv(2p)¼Lv(0) holds.
Crossings of �Doj from below are unstable fixed points, and do
not affect convergence.

The concept is illustrated in Fig. 1, which describes an
experiment where a phase difference Dj�¼j�2 �j�1 is assigned
between two entrained oscillators. In Fig. 1c we desire in-phase
synchronization at phase offsets of ðj�1;j�2Þ¼ðp; pÞ, so the ideal
interaction function has one steep decrease at j�1¼j�2¼p that
intersects horizontal lines through �Do1 (blue) and �Do2

(red) at p radians. Figure 1d illustrates anti-phase synchroniza-
tion with ðj�1;j�2Þ¼ð0; pÞ, where the interaction function has two
steep decreases at j�1¼0 and j�2¼p that intersect horizontal lines
at �Do1 (blue) and �Do2 (red), respectively. The best
achievable interaction function (solid line) and the PRC estimate
yield the input from equation (3). The right columns of Fig. 1c,d
show the observed current of two oscillators entrained in in-phase
and anti-phase arrangements by the input waveform (shown
above). These configurations are achieved regardless of initial
oscillator phases, because the interaction function crosses the line
�Doj only once from above, so each system has a globally
attractive fixed point. For the electrochemical system, phase
differences in nearly the entire 0 to 2p region are achievable, with
small deviations as Dj� approaches 2p, as seen in Fig. 1b.

Separation of oscillator ensembles into phase clusters. Uniquely
attractive phase patterns are desired, where a common input
synchronizes the oscillators to a pattern independently of their
initial phases. The fixed point j�j of equation (2) must be unique
for each j, which is achieved when the interaction function crosses
each horizontal line Doj from above only once at j�j . This is
possible when the phase offsets are monotonically ordered as
j�1oj�2o . . . oj�N for o1oo2oyooN, as demonstrated by
segregation of 20 inhomogeneous electrochemical oscillators into
clusters in the experiments described in Fig. 2. An anti-phase
configuration ðj1;j2Þ¼ð0; pÞ is achieved for electrodes in
balanced (N1, N2)¼ (10, 10) and unbalanced (N1, N2)¼ (1, 19)
clusters in Fig. 2a,b, respectively. In these two-cluster examples,
the interaction function decreases in two steps, of which the top
and bottom correspond to clusters with slower (blue) and faster
(red) natural frequencies. Figure 2c shows the formation of four
balanced clusters of (N1, N2, N3, N4)¼ (5, 5, 5, 5) oscillators with
the phase structure ðj�1; j�2; j�3; j�4Þ ¼ ð0; 1:1; 2:1; pÞ radians.
The phase offsets j�j are increasing as �Doj decreases (and oj
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Figure 1 | Tuning the phase difference between two electrochemical

oscillators. (a) PRCs measured simultaneously for 20 working electrodes,

and observed current oscillations (inset). (b) Designed versus

experimentally measured phase difference and fit (dotted line). The left

panels in c and d show how phase assignment is constructed using an ideal

interaction function (dotted line), and the respective best achievable

approximation (solid line) for two nonidentical oscillators. The right panel

shows the time-series of the entrained oscillators and the periodic control

signal (above), and the entrained oscillator phases on the unit circle (inset).

(c) In-phase phase assignment: ðj�1 ;j�2Þ ¼ ðp;pÞ, with natural frequencies

(o1, o2)¼ (0.330, 0.348) Hz shown in (blue,red) with O¼0.339 Hz.

(d) Anti-phase phase assignment: ðj�1 ;j�2Þ ¼ ð0;pÞ and natural

frequencies (o1, o2)¼ (0.443, 0.480) Hz in (blue,red), with O¼0.462 Hz.
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increases), and the designed interaction function decreases
monotonically as it crosses the required intersections. Observe
that the assumption of a common PRC is reasonable, because the
functions in Fig. 1a are very similar, yet the oscillator frequencies
are sufficiently heterogeneous for our technique to create the
patterns in Fig. 2.

Control of pattern transitions in an ensemble. In addition, we
establish patterns without monotone phase ordering by designing
an interaction function of the form at the bottom of Fig. 3d,
which crosses a horizontal line at �Doj from above twice,
yielding multiple possible entrained phases and dependence on
initial conditions. We apply precursor waveforms to steer subsets
of the ensemble into attractive regions for the desired phase

offsets j�j , then finalize and hold the pattern with an ultimate
input. This procedure is applied to steer an ensemble between
spatially associated clusters by alternating selective inputs. Fig. 3
illustrates input design for itinerant formation of letters in the
word ‘OK’ in the array of 20 electrochemical oscillators used in
the experiments in Fig. 2. We produce anti-phase assignment
between clusters to display the letter ‘O’, then switch the input to
produce the letter ‘K’. Rhythmic elements are assigned desired
phase offsets of j�j ¼ 0 or j�j ¼ p, which correspond to ‘on’
(pattern) or ‘off’ (background) states, respectively, that are
visualized using a colour scale where 0 (‘on’) is blue and p (‘off’) is
yellow. Switching between two patterns is accomplished using
four numbered clusters, where 1 is ‘on’ for both, 2 switches from
‘on’ to ‘off’, 3 switches from ‘off’ to ‘on’, and 4 is always ‘off’.
Electrodes in clusters of (N1, N2, N3, N4)¼ (7, 7, 3, 3) elements
with mean natural frequencies (o1, o2, o3, o4)¼ (0.390, 0.406,
0.427, 0.442) Hz are positioned in the spatial arrangement in
Fig. 3a. Figure 3b–d each have panels that show, from top to
bottom, the spatial distribution of phase offsets, the structure on
the unit circle, and a sketch of the ideal interaction function.

The pattern ‘O’, shown in Fig. 3b, is realized using the
phases ðj�1;j�2; j�3; j�4Þ¼ð0; 0; p; pÞ, which are achieved
by an interaction function as in Fig. 2a. The phases
ðj�1;j�2;j�3;j�4Þ¼ð0; p; 0; pÞ used for ‘K’ are not monotonically
ordered, so a precursor waveform is applied to generate globally
attractive phase offsets j�2¼p and j�3¼0 for clusters 2 and 3. This
anti-phase pattern establishes initial conditions for the final input
waveform, while clusters 1 and 4 lose their entrainment, as shown
in Fig. 3c. Figure 3d illustrates the design of the finalizing control
for pattern ‘K’, where the phase assignments for clusters 1 and 4
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Figure 2 | Phase assignment for 20 electrochemical oscillators. The first

column shows the frequency detunings and the intersections with the

interaction function at the phase offsets j�j . The second column represents

the entrained time-series with the respective periodic waveform of the

control signal (above) and a plot of the phase offsets on the unit circle

(inset). Phase assignment for: (a): (N1, N2)¼ (10, 10) clusters; cluster 1

(blue): j1¼0 and o1¼0.450 Hz; cluster 2 (red): j2¼p and o2¼0.471 Hz;

forcing at O¼0.463 Hz. (b): (N1, N2)¼ (1, 19) clusters; one electrode

(blue): j1 ¼ 0 and o1¼0.419 Hz, cluster 2 (red): j2 ¼ p and

o2¼0.454 Hz; forcing at O¼0.450 Hz. (c): (N1, N2, N3, N4)¼ (4, 4, 4, 4)

clusters; cluster 1 (blue): j1¼0 and o1¼0.386 Hz, cluster 2 (red): j2¼1:1

rad and o2¼0.404 Hz; cluster 3 (green): j3¼2:1 rad and o3¼0.421 Hz;

cluster 4 (yellow): j4¼p and o4¼0.440 Hz; forcing at O¼0.413 Hz.
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Figure 3 | Schematic of pattern switching ‘O-K-O’ by phase-selective

entrainment. (a) Natural frequencies for four spatially distributed oscillator

clusters of sizes (N1, N2, N3, N4)¼ (7, 7, 3, 3) in an ascending order:

o1oo2oo3oo4. Cluster 1 contains electrodes n¼ 1 to 7 (blue), cluster 2

contains n¼8 to 14 (cyan), cluster 3 contains n¼ 15 to 17 (yellow) and

cluster 4 contains n¼ 18 to 20 (red). Items b to d depict snapshots of

phase patterns at the forcing phase y¼0 (top row), the description of the

phases on a unit circle (middle row), and a sketch of the interaction

function (bottom row). Phase assignment for: (b): Pattern ‘O’:

ðj�1 ;j�2;j�3;j�4Þ¼ð0;0;p;pÞ. (c): Precursor of pattern ‘K’: ðj�2;j�3Þ¼ðp;0Þ.
(d): Pattern ‘K’: ðj�1 ;j�2;j�3;j�4Þ¼ð0; p;0;pÞ.
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are globally attractive, as seen in the bottom panel of Fig. 3d,
while clusters 2 and 3 stay at phase offsets established in the
precursor stage. The transition from pattern ‘K’ back to ‘O’ is
accomplished by applying the initial control for the pattern in
Fig. 3b. We provide additional descriptions of interaction
function construction (Supplementary Note 4; Supplementary
Figs 1 and 2), pattern realizability (Supplementary Note 5),
control design for monotonically ordered patterns (Supple-
mentary Note 6; Supplementary Fig. 3), and precursor wave-
form engineering (Supplementary Note 7; Supplementary
Figs 2 and 4).

Measurements of the ‘O-K-O’ pattern switching experi-
ment appear in Fig. 4. Figure 4a shows current oscillations for the
reaction units given zero input, when no pattern forms. When the
controls (shown above the current) are applied, the ensemble
is entrained within several cycles, selectively forming the patterns
for ‘O’, the precursor, and ‘K’. These results are shown in
Fig. 4b–d, and correspond to Fig. 3b–d, respectively. The
ensemble is returned to pattern ‘O’, as shown in Fig. 4e, to
demonstrate switching. The automatically generated interaction
functions and control waveforms are presented in section

‘Automatic control waveforms generated in experiments’. An
animation produced using the experimental current traces and
oscillation phases is included as Supplementary Movie 1.

Discussion
Phase-selective entrainment enables the use of a single global
signal to robustly assign elements of a noisy nonlinear oscillator
ensemble to specific phases without using coupling or feedback
information. Control design using interaction functions simplifies
the creation of complex synchronization patterns to drawing or
automatically generating curves through sets of crossing points
and computing the resulting controls with a simple formula,
which is an accessible technique for experimentalists. Greater
relaxation in the oscillation and ensemble heterogeneity increases
pattern controllability, and performance is improved as the
oscillations move farther away from the Hopf bifurcation. The
asymptotic nature of entrainment yields robustness to noise,
disturbances and model parameter variability while preserving
the intrinsic nature of the ensemble.

Such resilience is required for nondestructive control of
underactuated, noisy and uncertain biological and chemical
ensembles that cannot be readily observed. For example, an
effective technology for neurological treatment of Parkinson’s
disease17 is provided by deep brain stimulation, which alleviates
pathological synchronization in the brain. Selective entrainment
could be extended to ensembles with weak coupling to design
robust desynchronization inputs, which would potentially benefit
noninvasive neurostimulation technology41. The goal could be a
target distribution that is found to be optimal for leveraging
neuroplasticity to prevent resynchronization after the stimulus is
ended. The technique could also improve phase regulation to
treat cardiac arrhythmias16 and sleep irregularities45. The
formalism could also represent the entrainment that occurs in
circadian timekeeping14.

We note that a simple sinusoidal forcing of the form
v(Ot)¼ sin (Ot) results in a sinusoidal interaction function,
because of orthogonality of the trigonometric Fourier basis.
Sinusoidal forcing can thus be used to create monotone ordered
phase patterns, and could also be used for desynchronization.
However, because such an interaction function is decreasing on
an interval of length p, the maximum achievable distance between
extremal phase offsets j�1 and j�N is j�N �j�1

�� ��op. Thus, a
sinusoidal input cannot produce anti-phase synchronization. Our
approach enables more versatile manipulation of phase relation-
ships beyond this limitation. We describe the application to
desynchronization in Supplementary Note 8 and Supplementary
Fig. 5, and quantify how our approach increases the achievable
relative phase desynchronization difference over sinusoidal
forcing. More rigorous mathematical characterization of ensem-
ble desynchronization by periodic inputs is a compelling direction
for further investigation.

In our methodology, we take advantage of approximations that
are possible in the specific experimental setting. In our
experiments, the distribution of natural frequencies of ensemble
oscillations varies by ±20% from the (non-zero) mean, the
oscillators are very weakly coupled, the amplitude of the required
external forcing signal is relatively small, and the entrainment
process is approximated well by averaged phase models. In
addition, although the ensemble subsystems are slightly hetero-
geneous and noisy, with variation in natural frequencies and
dynamic properties, the phase response curves are very similar.
We expect the methodology to function well in other experi-
mental settings in which these conditions are satisfied. Moreover,
the method holds promise for extension to other scenarios, e.g., in
sub- and superhamornic entrainments (the oscillations are locked
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to different frequency ratios), where the interaction function-
based phase description is possible.

The arrangement of frequency clusters in an oscillator
ensemble can also be viewed as encoding information within
the spatial pattern produced when selective entrainment is
applied. One of several encoded messages can then be retrieved
using the phase-selective entrainment process, for which the
passkey for retrieving the message is the temporal information
contained in a periodic input signal. The passkey is constructed
using the PRC and natural frequencies of the dynamical
subsystems, and after that input signal is applied, the spatial
phase pattern produced in the ensemble reveals the message. This
approach may be incorporated in neurocomputing architec-
tures46 that mimic neural systems in nature. Future investigation
is required to understand how network coupling could be
suppressed or taken advantage of to improve pattern resilience
and information capacity, or effectively encrypt the message
by preventing estimation of PRCs and natural frequencies of
oscillators in the spatial array.

Methods
Experimental apparatus. Our methodology for controlling the phase structure of
an ensemble of heterogeneous oscillators is experimentally verified in the electro-
chemical dissolution of nickel in 3 mol l� 1 sulfuric acid solution using potential
actuation. A schematic description of the experimental set-up is depicted in Fig. 5.
The apparatus consists of 20 nickel wires that function as working electrodes (WE),
with diameters of 0.69 mm, spaced by 2.0 mm and embedded in epoxy resin. Prior
to the electrochemical measurements, the WE were polished with sandpaper in six
levels of roughness, ranging from 180 to 4,000 grit. The current of all electrodes is
monitored independently. Under such conditions, the spontaneous formation of
self-sustained electrochemical oscillations driven by the presence of a negative
differential resistance47 is observed in the anodic dissolution of nickel.

Once the WE are placed in the electrochemical cell, a slow positive sweep of
0.01 V s� 1 from 0 V to a constantly applied potential V0 was conducted to form a
thin passive layer on the electrode surface. This baseline is set in reference
to an Hg/Hg2SO4/sat. K2SO4 reference electrode (RE) in an electrochemical cell,
containing a 1.6 mm diameter Pt coated Ti wire counter electrode at constant
temperature of 10 �C. The potential V0 was initially set using a potentiostat
(Bank Instruments) at a value for which the oscillation is close to the Hopf
bifurcation, which is B1.15 V. Inputs to the oscillating system consist of an
additional potential u superimposed onto the baseline potential V0 using the
potentiostat.

Soon after, the PRCs were measured simultaneously for the WE by the
automatic procedure of applying a pseudorandomly timed potential pulse
sequence of � 0.20 V with pulse-width of 0.05 s and post-processing the observed
current using the pulse perturbation procedure as described in section
‘Entrainment of an ensemble’. Measurements of the current oscillation in the
electrochemical reactions were carried out by a real-time data acquisition by a
high-speed multifunction M Series DAQ PXI-6255 (National Instruments)
interface with a sample rate of 200 Hz. Simultaneously, the periodic potential
perturbations u were applied in the electrochemical oscillator ensemble using the
potentiostat to superimpose the waveform onto the applied baseline voltage V0.
Each control waveform was generated based on the PRC obtained preliminary to
the experiment and the targeted interaction function generated from the desired set
of phase offsets for the oscillators.
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Figure 5 | Electrochemical set-up. The working electrode (WE) is

composed of an array of nickel wires, the counter electrode (CE) is a Pt

coated Ti wire, and the reference electrode (RE) is Hg/Hg2SO4/sat. K2SO4.

The control waveform is a potential signal generated by the multifunction M

Series DAQ PXI-6255 (National Instruments) and implemented in the WE

by a potentiostat (Bank Instruments) as a superimposed signal on the

applied baseline potential V0. Each nickel wire is connected in series to an

individual resistance Rind¼ 2,500 Ohm.
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Figure 6 | Interaction function and control waveform for pattern

switching ‘O-K-O’ described in Fig. 4. Left: the best approximation to

the desired interaction function; Right: one cycle of the resulting control

waveform, obtained using the control design procedure described in section

‘Control of pattern transitions in an ensemble’, which is applied to entrain

the electrochemical oscillators. The ensemble is grouped into four clusters

of quantities (N1, N2, N3, N4)¼ (7, 7, 3, 3). Cluster 1 for oscillators j¼ 1 to 7

(blue), cluster 2 for j¼ 8 to 14 (cyan), cluster 3 for j¼ 15 to 17 (yellow) and

cluster 4 for j¼ 18 to 20 (red). Phase assignment for: (a): Pattern ‘O’:

ðj�1 ;j�2;j�3;j�4Þ¼ð0;0;p;pÞ. (b): Precursor of pattern ‘K’: ðj�2;j�3Þ ¼ ðp;0Þ.
(c): Pattern ‘K’: ðj�1 ;j�2;j�3;j�4Þ¼ð0;p;0; pÞ.
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Automatic control waveforms generated in experiments. Figure 6 displays
the interaction function (left column) and the respective control waveform
(right column) used to entrain the electrochemical oscillators for the pattern
switching procedure ‘O-K-O’ described in Fig. 4 (see main text for additional
details). An electrochemical oscillator ensembles with clusters of size (N1, N2, N3,
N4)¼ (7, 7, 3, 3) were selected by tuning the mean natural frequency of the
oscillations in the following order: cluster 1 with o1¼ 0.390 Hz (electrodes j¼ 1 to
7 in blue), cluster 2 with o2¼ 0.406 Hz (electrodes j¼ 8 to 14 in cyan), cluster 3
with o3¼ 0.427 Hz (electrodes j¼ 15 to 17 in yellow) and cluster 4 with
o4¼ 0.442 Hz (electrodes j¼ 18 to 20 in red). The phase assignments for pattern
switching ‘O-K-O’ are listed in Fig. 6.
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