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Information about the early growth of infectious outbreaks is indispensable to estimate the epidemic spreading. A
large number of mathematical tools have been developed to this end, facing as much large number of different
dynamic evolutions, ranging from sub-linear to super-exponential growth. Of course, the crucial point is that we
do not have enough data during the initial outbreak phase to make reliable inferences. Here we propose a
straightforward methodology to estimate the epidemic growth dynamic from the cumulative infected data of just
a week, provided a surveillance system is available over the whole territory. The methodology, based on the

Newcomb-Benford Law, is applied to the Italian covid 19 case-study. Results show that it is possible to
discriminate the epidemic dynamics using the first seven data points collected in fifty Italian cities. Moreover, the
most probable approximating function of the growth within a six-week epidemic scenario is identified.

1. Introduction

During an outbreak, a major issue to stop or mitigate the virus
diffusion is gathering information as soon as possible about the nature of
the epidemic from a mathematical point of view. Pandemic outbreaks
allow a reasonable amount of data to only ex-post the event. Therefore
the analysis is severely limited. On the other hand, well-timed informa-
tion about the epidemic growth is highly precious and justifies any effort
in this direction. Panoply of tools is available, but their accuracy is
subject to limitations due to the small number of data points available,
which also restricts the choice of models for the epidemic curve, a time-
series of the cumulative number of cases per day [1, 2]. These curves are
produced by different dynamics, ranging from sub-linear to
super-exponential, giving rise to a diversity of the early growth profiles
with profound implications for estimating the disease transmission and
the implementation of the countermeasure [3]. Therefore, at least of the
essential outbreak characteristics, fast detection and estimation would be
beneficial, but the mathematical tools able to deal with those very few
data are rare.

Moreover, epidemic data gathered on the field are always polluted
by human errors, different collection methods, limited territorial
coverage, irregular or random sampling. Even the most recent work [4,
5, 6, 7, 8] have been implemented new sophisticated signal processing
techniques such as the Graph spectral analysis, Compressive Sensing,
the Signal on Graphs method are affected by these problems [9, 10, 11,
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12,13, 14,15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. However, the
Newcomb-Benford law (NBL) seems to reveal the epidemic dynamics
using only a week of infection data. NBL is the statistic of the first
(actually also of the second, third and so on) digit for a set of numbers,
discovered and rediscovered independently by S. Newcomb and F.
Benford (NB), today more known as the Benford law [27, 28, 29]. Its
wide popularity is due to the apparent ubiquity of the NB distribution
and the extreme simplicity of the calculation procedure. In recent years,
the NBL has been used to discover fiscal frauds and to confirm scientific
data reliability, including epidemic data [30]. In our work, we are
interested in studying the capabilities of the NBL to predict the
outbreak growth dynamic using very few initial data. It is only neces-
sary to collect the daily infected cumulative data over a week and in
some of the most critical cities involved in the outbreak to form a
unique sequence of these numbers and then calculate the first digit
distribution. Given the limited amount of data points, the calculated
and the actual Benford distribution will not coincide exactly, thus
defining the accuracy of an appropriate Goodness-of-Fit (GoF) param-
eter is used. At this point, by trial-and-error or any numerical technique,
an approximating function is chosen: if its first digit distribution is
congruent with that of the Italian cities, we can consider the approxi-
mating function as an accurate approximation to the real cumulative
curve (given the GoF is small enough). In the following sections, we will
show how this is possible invoking the Theorems of Berger & Hill and
the ergodicity of the epidemic SIS process during the initial expansion

Received 15 June 2021; Received in revised form 22 October 2021; Accepted 15 November 2021
2405-8440/© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


mailto:marta.chinnici@enea.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2021.e08422&domain=pdf
www.sciencedirect.com/science/journal/24058440
http://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2021.e08422
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2021.e08422

V. Fioriti et al.

Heliyon 7 (2021) e08422

32 |
28
24
20
16

12

PERCENTAGE

32
28
24
o
Q 2
=
S 16 \
&
w12 \
8 .\
o
s “
0|
0 3 2 3 4 5 6 7 8 9 10
a) DIGIT
32
28
24
o
20
=
S 16
&
w12 N
. N
4
0.
0o 1 2 3

Figure 1. a) The Benford distribution: digits 1-9 and their percentages: 30.1, 17.6, 12.5, 9.69, 7.92, 6.69 5.80, 5.12, 4.58. First digit distribution with a limited
amount of data: b) 2n first 42 data-points (blue) and c) 2n first 84 data-points (blue). The curve of Figure 1c is close to the real Benford distribution; in this case, gof =

0.99813, to be compared to the gof = 3.5803 for the previous one.

phase. In this work, the authors assume that the outbreak is uniformly
distributed across an area but that the epidemic SIS process during the
initial expansion phase is ergodic if [31]:

Ry=2(fN—pu—y) /N> >1

where y is the birth rate, y is the cure rate, and f is the contact rate [31].
This means, broadly speaking, that the ensemble statistics is equivalent to
the time average. Therefore, it would be reasonable to use a very long
sequence from only one city or very short sequences of many towns to get
some mathematical insights. In particular, in this paper, the authors focus
their interest on the second case. In other words, the local properties of an
outbreak may be different, but the global behaviour is identifiable. It
remains to define what it should be intended as “country” or “area”. Since
a national authority collects data, it seems natural to consider a country
within its borders; that could be a bad idea if the state is so significant to
generate too variable situations (meaning the economic development,
social relations, languages, roads, etc.)

The paper is organised as follows: Section I — Introduction; Section I —
Background: Newcomb — Benford Law; Section III — Application; Section
IV —Conclusion.

2. Background: Newcomb - Benford Law

This section presents our proposal's essential points; we discuss the
main statistical tool, namely the Newcomb-Benford Law. Since an
extensive treatment can be found in the fundamental work of Hill and
Berger [27, 28, 29], we will give just a brief introduction to the NBL from
a practical point of view. S. Newcomb and F. Benford independently
observed that the leading digits in many real-life numerical data sets such
as macroeconomic, census, financial, fiscal data, were not distributed

uniformly, as the common sense would suggest, instead they follow the
logarithmic distribution of Figure 1a (see Figure 2).
More formally, the Benford distribution is a logarithmic curve:

Pr (D) =dy) = logio (1 + 1/dy), foralldy = 1,2,...,9 (1)

where, D; is the first significant decimal digit. First significant digit means
4in 0.467, 5 in 58.34, 3.7 in 3.7%10% 8.21 in 8.21*10~*. When a set of
numbers follows exactly the NBL, the digit “1” will appear about the 30%
of the times, the digit “2” the 17%, “3” the 12% etc. Actually, the
Generalized NB Law considers also the second, third etc. digit.

The compliance to the Benford distribution may be found also in some
natural data-sets such as molecular weight tables, sport statistics,
drainage areas of rivers that taken individually do not follow the NBL:
what satisfies completely the NBL is the union of all those data-sets.

Some numerical sequences follow strictly the Benford first digit dis-
tribution. Let us consider the sequence of powers 2™: {2 4 8 16 32 64 128
256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144
524288 1048576 ...}. The powers of 2 follow the Benford distribution
(we say “is Benford”, for short), but to verify it numerically, we would
need of a large set of numbers. This constitutes one first difficulty,
because it is not easy to determine the minimum cardinality of the set
that guarantees a priori to reveal exactly the Benford distribution.
Moreover, most of the time we do not have enough data to satisfy
correctly the NBL, and, as a consequence, an error is introduced. In
Figure 1b, c the effect of a limited data set is clearly illustrated: using only
42 data points we obtain a poor fit to the actual Benford distribution,
although simply doubling the data-points reduces greatly the error.
Hence, it is convenient to use a goodness-of-fit parameter to measure the
error committed; here, we use a standard measure to this end:

GoF = v/ (UNgar)* (S (i - x{D) i = 1,2 ... Ngara @)
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Figure 2. Visually, all the blue curves are similar to the Benford distribution (black). a) In blue: IT real, the Italian cumulative data first digit distribution, GoF =
1.7313. b) Blue: the 50_cities first digit distribution, GoF = 1.8081. c) Blue: the logistic curve, GoF = 1.8206.

But, other statistical tests may be used as well. Of course, generally
the first digit distribution of a data-set may or may not be a Benford (first
digit) distribution; if this is the case, it will be clearly specified. In any
case, the gof indicates the distance between the calculated firs digit
distribution and the Benford distribution.

2.1. Theoretical justification and technical background

The main idea is to estimate an approximating function for the
epidemic growth curve within a time horizon of Tf days, using only the
first seven epidemic data points of fifty Italian cities, accounting for
about 30% of the population, considered as a unique sequence formed
of 50 x 7 data-points, called 50_cities sequence. We show that the first
digit distribution of the 50_cities sequence converges to the first digit
distribution of the cumulative daily infected Italian national sequence,
formed summing the infected over all the national territory each day
during the early Tf days of the epidemic ascending phase. Therefore, if
the convergence exists, it is possible to know the compliance to Ben-
ford for the cumulative Italian curve in advance of Tf — 7 days. In turn,
the level of compliance is used as a criterion to predict the accuracy of
an approximating function to the actual epidemic national curve
during the initial phase of Tf days (starting from the 21st February
2020).

Now we will sketch the theoretical justification of the above method.
First of all, we have to ensure that the Italian national cumulative data
first digit distribution is Benford during the initial spreading period.
Based on the Berger & Hill theorems [27, 28], if the sequence is a power
law, exponential or super-exponential, its first digit distribution is almost
always Benford. Thus, we have only a sufficient condition. Below some of

Berger & Hill's main results to support our method (formal demonstra-
tions can be found in [28, 29, 30]).

Theorem. (Berger & Hill 1). None of the classical probability distribu-
tions or random variables, such as the normal, uniform, exponential, beta,
binomial, or gamma distributions are Benford. Specifically, no uniform dis-
tribution is even close to Benford, no matter how large its range or how it is
centered. However, some distributions come close to being Benford, such as the
Pareto and the Log-normal distribution.

The next Theorem states that the solutions of an ordinary or differ-
ential equation system such as many of the classical epidemic models,
under general conditions are Benford. Thus, the NBL is not restricted to
discrete dynamics; on the other hand, general results for partial differ-
ential, delay or integral-differential equations are not known.

Theorem. (Berger & Hill 2). Consider the dynamic system:

X = F(x), x(0) = xo 3)

where, F: R — R is continuously differentiable with F(0) = 0, and x, € R. Let
F: R — R be C? with F(0) = 0 and assume F'(0) < 0. Then, for every xo #
0 sufficiently close to 0, the solution of the system is Benford.

In the theory of differential dynamical systems related to Theorem 2
we have the so-called Shadowing Lemma. The Lemma describes the
behavior of the pseudo-trajectories (or sequences) near a locally struc-
turally stable hyperbolic invariant set [27].

Shadowing Lemma. Let T: R — R be a map, and §§ a real number with
[B] > 1. If supg€ R |T (x) — x| < +oo then there exists, for everyx € R,
one and only one point x° such that the sequence (T"(x)—f"x°) is
bounded.
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Table 1. Various approximating functions are ordered according to the GoF value
(second column). In the last column is described the speed of growth within the
first 42 days with respect to the real speed of growth of the case-study. The GoF of
the actual Italian cumulative curve (IT_real) is 1.7313, very close to the 50_cities
GoF; the best approximating function function is the cubic I(ti)n3. Samples is the
number of data-points used to calculate the first digit distribution and therefore
also the GoF; they are 42, except for the 50_cities GoF, whose distribution is
calculated using not more than 294 data-points, the first 7 data from each city. In
bold * are indicated the non-congruent dynamics: for example, 4*4n has a very
large GoF, nonetheless belongs to the class of fast dynamics, instead of the slow
one.

function Benford goodness-of-fit samples growth to 42 days

5%3" 0.9182 42 very fast
12%(1.342)" 1.0269 42 fast

3%5" 1.4893 42 very fast
16*n° 1.4934 42 fast

2*8" 1.5819 42 very fast
2%9™ 1.6308 42 very fast
IT real 1.7313 - 42

50_cities 1.8081 + 4.4 % 294

1.675*n° 1.8110 + 4.6 % 42 as IT real
logistic 1.8206 + 5.1 % 42 as IT real
2%7" 2.0493 + 18.0% 42 very fast *
16*n* 3.1133 42 very fast *
8¥2" 3.1237 42 very fast *
16*n* 5.0668 42 slow

3%6" 5.6255 42 very fast *
16*n 6.9965 42 linear
4%4" 7.1002 42 very fast *
16* \/n 10.783 42 Sub-linear
50*1og0(n) 15.312 42 Sub-linear

This means that every hyperbolic set has the shadowing property,
thus every pseudo-trajectory (or sequence) stays uniformly close to some
true trajectory, i.e. a pseudo-trajectory is "shadowed" by a true one.
Considering the epidemic curve as the solution of a dynamic system, the
Shadowing Lemma allows to believe that very close to it a pseudo-
sequence exists, is related to the dynamic system and is structurally
stable. In other words, finding an approximating function to the cumu-
lative epidemic Italian curve would not be a mere accident, at least
locally. Moreover, small perturbations of the system initial conditions do
not change the approximation: therefore, errors during the initial data
collections do not alter the result.

Theorem. (Berger & Hill 3). Let X be exponential with mean 1, that is
Fx(f) = max(0, 1 — e "), t € R. Even though X is not exactly Benford, it is
close to being Benford for all t €[1, 10).

Theorem. (Berger & Hill 4). The sequences: 2", 3" are Benford; n, n +1,
n!, \/ 10", 10" 4*4™ are not. In general, a*x, witha > 0 and b > 1 is Benford
almost always, but not always, therefore x* is almost always Benford.
Moreover, every mixture of 2" with a random unbiased sequence, is Benford.

Berger and Hill also state that apart from some particular cases,
processes with linear growth are not Benford. This allows identifying the
slow epidemic growths, which are a phenomenon more common than
previously though [1]. By slow we mean a linear, sub-linear or a poly-
nomial growth.

Theorem. (Berger & Hill 5). If X and Y are Benford sequences, also their
sum X + Y is Benford. If the sequence Z is not Benford, X + Y + Z is Benford.

Hence, if the cumulative infected sequence of the Italian cities is
Benford, also the national cumulative sequence is Benford as well, during
the weeks of the increasing phase. Note that an epidemic cumulative
sequence cannot be random, being non-decreasing, therefore by Theo-
rems Berger & Hill 1, 3, 4, 5 the fast cumulative epidemic curves are all
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Benford, but could exist also fast non-Benford curves in particular cir-
cumstances. Thus, we cannot rule out the possibility of non-Benford
growth curves to have a fast dynamics, thought this would be seldom
the case, see Table 1.

Now we can discuss the convergence of the 50_cities distribution to
the distribution of the cumulative daily infected of the Italian national
sequence after Ty days. The 50_cities sequence is the union of the first 7
days data for each city, but to fix ideas, let us considers only three cities,
A, B, C, whose sequences of seven elements are:

A={1,1, 34,54,60,75,94},B=13,3,3,6,6,7,14},C={5, 7, 10,
13, 15, 40, 55}

Thus the union U of A, B, C clearly reads:

U{A, B, C}=1{1,1, 34,54, 60, 75,94, 3,3,3,6,6,7,14,5,7,10, 13,
15, 40, 55 }

The cumulative number of cases per day is simply the total sum per
day of the infected cases collected over all the Njr towns and cities of
Italy, during the first Ty days of the outbreak:

Seh K k=1,2 ... Npr.h=1,2... Ty

Indicating B(...) as the operator of the first digit distribution calcu-
lation, i.e. the Benford distribution, we show the following.

2.2. Remark on the convergence

Bl ¥() }) = B(Zkn (/(1)+00m, N) Q)
N — Nir

where,i=1,2,..m.j=1,2,..NNk=1,2, ... Nrnh=1,2, ... T

In the trivial case, when the sequences X are (almost all) Benford with
m = Trand N = Njr are the cities, the Berger & Hill (Theorem 5) gua-
rantees that the summation of Benford sequence is Benford as well. If m
<< Ty, on the right side we still have a Benford distribution, but on the
left side we have m*N samples not selected randomly, as requested to
form a Benford dataset, see [28] (see T. 6.20), [32]. Indeed, the cities can
be chosen at random, but the m samples are always the first, therefore are
not randomly chosen. Furthermore, consider that the sequences xj
depend on a beta distribution, meaning that the real observed values
during the data collection undergo a deterioration process described by a
beta distribution [33] (this assumption may be relaxed, but for
simplicity, we keep it). Ruankong and Sumetkijakan demonstrate that the
truncate sequences union converges to Benford [34], provided the total
number of sample m*N is sufficiently large. Therefore, the intuitive
reasoning that the ergodic nature of the epidemic should allow somehow
to calculate the Benford distribution by a limited number of samples rests
upon a solid basis. Of course, even if both sides of (4) converge to Ben-
ford, the error concerning the exact distribution of Figure 1a increases
since we have very few samples.

Instead, if the sequences X' are not Benford, generally, the conver-
gence is not present.

2.3. Remark on the existence of an approximation

Given that the reproduction number is R%, > 1 and that the Nyt local
realizations of the epidemic process are almost all Benford, there is an
approximation f to the solution T" of the SIS system expressible as Ben-
ford summation sequence such that:

L T"(h)-fh) | < B"hg ©)

with > 1 and hy # 0.

By the Shadowing lemma there exists f close to T"(h) solution of the
SIS model such that (5) is true. From the Theorem Berger & Hill 2 we
know T"(h) is Benford, thus any good approximation f must be Benford
too (and in our case this means also a low gof).
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Figure 3. The first day is the 21th February 2020. a) 42 days scenario. From left
to right in the color code the dynamics of Table 1; dotted magenta and red: very
fast dynamics; black: the Italian cumulative curve and in blue the cubic and
logistic approximations; green: slow dynamics. b) 7 days scenario. The cubic
function (blue-yellow) approximate well the actual cumulative curve (black)
also in this scenario, confirming the same result suggested in [35], while the
logistic in this scenario performs poorly, and is not in the figure. Note the red
dotted curve (12*1.342n), that seems slow, actually is a fast one; instead, the
green black dotted curve (16n2) seems fast, but is very slow.

The SIS epidemic stochastic model during the initial phase of the
outbreak is an ergodic process if Ry > 1, as stated in [31], thus the local
realization sequences of the cities have similar statistics (basically the
time average is equal to the ensemble average). A natural candidate (but
not the only one) for the approximation then could be:

Sen ¥(h), for N < N h=1,2, ... Ty

Since the ergodic properties prevent to consider Ty — oo (provided N
and Ty are not too small), while its “benfordness” can be readily
calculated.

When m = 7, since it is not known an analytical method to determine
a priori the values of m that guarantees a small gof, one can only calculate
the first digit distribution B(Uj;{ xj(i) }) and compare it to the Benford
distribution of Figure la. If the gof stays high, the simplest heuristics
would be to increase m, yet reducing the forecasting time-span of Ty 7.
Of course, the number of city-sequences N may well be expanded to all
the cities Nz here we have restricted it to fifty cities only for demon-
stration purposes. Therefore, we do know that (4) is true, but cannot
determine the minimum m necessary. Actually, we have chosen m = 7
because it is well below the prediction thresholds often suggested in the
literature [2, 3]. Instead, to determine Ty = 42, we consider that during
the initial phase of the outbreak if:

Heliyon 7 (2021) e08422
Ro=2(fN—pu—y)/c*N*>1 (6)

where, u is the birth rate, y is the cure rate, and f is the contact rate, the
overall epidemic process is ergodic [31]. Hence, all the local realizations
have similar statistics, are non-random non decreasing sequences, and by
the Shadowing lemma there exists an approximant function f to > xn

d(h):
IS en G)-fo) | < e )

As a consequence, the first digit distribution of f(x) approximates that
of Y kn €Y (h)), but by the (4) also that of B(U;;{ X () 1. Therefore Ty can
be determined heuristically or numerically as the value that get B(f(x))
closer to B(Uy;{ ¥() }) in terms of Benford Goodness-of-Fit.

From Table 1 it is readily seen that both the cubic and the logistic
curve approximate the IT real GoF very well for Ty = 42. In addition, Ty =
42 is very close to the inflection point of the real Italian cumulative curve,
which indicates the end of the initial phase for the outbreak.

3. Application: the Italian case-study

Basically, we have three dynamics, very fast, fast, and slow (see
Figure 3); we want to determine which one of them is prevailing by
means of the Benford” GoF, and possibly to find an approximating
function.

As said in the above Section, each city provides a sequence of 7
positive integers, and putting them together the fifty sequences make up
a unique sequence of 50 x 7 integers called 50 cities. Note that sequences
suchas{1222222}{3111111},{11111111},{10.3...0.01},
or {16 160 ... 16000000}, are not taken into consideration; actually, 8
out of the 50 sequences have been discarded, thus the length of the
50_cities sequence is of 294 samples instead of 350.

In the Section above we have indicated that:

B(U{ ¥G) }) = BC ki (V())) ®)
N - N[T

where,i=1,2,...7.j=1,2,...50k=1,2,....N;rh=1,2,... 42, Tf=42
are now specified to the actual case-study scenario.

To classify the various possible approximant curves, we have calculated
their Benford GoF, showed in the Table 1, together with the GoF of the real
Italian epidemic data, the logistic curve, the cubic curve and of the 50_cities.

Keeping in mind that the union of the 50 sequences of seven data
points from some of the most important Italian cities, converges to the
Benford distribution of the sum of all the 6-week sequences for all the
cities (5), Theorem Berger&Hill 3 [27] guarantee that almost always the
exponential growth provides numbers according to the NB distribution.
Therefore, as explained in other Sections, a good Benford gof obtained
from the epidemic cumulative data of the 50_cities, should be able to
identify the type of outbreak dynamic.

In Table 1 the 50 cities GoF is 1.8081, very close to the GoF for the
real Italian data of the first six weeks, GoF _IT = 1.7313, while the cubic
curve GoF I(t)*n® = 1.8110 has the minimal distance from the 50 _cities
GoF. Therefore n® is the most probable approximating function, whereas
in Figure 3a the Italy’ real epidemic curve is almost coincident with the
cubic growth, confirming the results of [35]. Actually, the logistic curve
GoF is in good agreement with the 50_cities GOF too, and fits very satis-
factorily the Italy’ real data after the fourth week (Figure 4b), but the
cubic curve has an advantage in terms of Benford GoF and till the fourth
week is also the best approximant. Therefore, Table 1 reveals that the
cubic curve determines the initial stage of the growth.

Again a note of caution: a small GoF, say in the interval [0, 3] as in
Table 1, is only a sufficient condition that guarantees a fast dynamic, but
not a necessary one, meaning that a large GoF > 3 could represent a rapid
growth too, as for the case of the function By*6". Thus, most of the times,
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Figure 4. Dotted blue: the Italian cumulative curve, red: cubic approximant, black: logistic approximant. a) first four weeks, the cubic curve is very close to the real

growth. b) first six weeks: the logistic curve now is a better approximant.

but not always, a large GoF indicates a linear or sub-linear dynamics;
instead, a small GoF guarantees a rapid growth.

Summarizing, the first digit distribution of the 50_cities sequence
converges to the first digit distribution of the cumulative infected curve
that is Benford during the ascending epidemic phase. If the 50_cities GoF
is small, on the basis of the Berger-Hill's Theorem we have a fast epidemic
growth; instead, if the GoF is poor, the growth will be probably slow,
although this cannot be assured formally. Moreover, in order to deter-
mine the form of the approximating function that shadows the real
epidemic growth, one might extrapolate it analytically or heuristically.
At this point, it suffices to choose the approximating curve whose GoF is
close to that of the 50_cities. If the difference between the two GoF is small
(in our case study less than 5%), we assume that the approximating
function shadows correctly the real epidemic growth.

4. Conclusion

In this paper, we show how to estimate an approximating function of
the epidemic curve within a time horizon of a five or six weeks, using
only the first seven epidemic data points of fifty Italian cities, considered
as a unique sequence. The level of compliance of the sequence to the
Benford test is used as a criterion to predict the approximating function
accuracy with respect to the real epidemic national curve. This procedure
is made possible by the convergence of the unique sequence first digit
distribution to the Benford distribution, since the national Italian cu-
mulative data first digit distribution is Benford (almost always) when its
sequence is a power, exponential or faster curve. Therefore, when a fast
epidemic spread is taking place on the territory, its fingerprint will be the
Benford distribution, otherwise the spreading will be, with high proba-
bility, slow (quasi-linear) or made of sporadic outbursts. Unfortunately,
the Benford compliance of the fast growth is only a sufficient condition,
not a necessary one. Our results make this point clear. On the other hand,
early indications about the dynamic nature of the outbreak are made
available through a simple statistical test applied to a handful of data.
This method has been applied to the Italian covid 19 case study, where
the most probable approximating function of the first five weeks has been
identified clearly as a cubic curve.
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