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Summary Malignant mesothelioma cells contain elevated levels of manganese superoxide dismutase (MnSOD) and are highly resistant to
oxidants compared to non-malignant mesothelial cells. Since the level of cellular free radicals may be important for cell survival, we
hypothesized that the increase of MNSOD in the mitochondria of mesothelioma cells may alter the free radical levels of these organelles. First,
MnSOD activity was compared to the activities of two constitutive mitochondrial enzymes; MnSOD activity was 20 times higher in the
mesothelioma cells than in the mesothelial cells, whereas the activities of citrate synthase and cytochrome ¢ oxidase did not differ significantly
in the two cell lines. This indicates that the activity of MNSOD per mitochondrion was increased in the mesothelioma cells. Superoxide
production was assayed in the isolated mitochondria of these cells using lucigenin chemiluminescence. Mitochondrial superoxide levels were
significantly lower (72%) in the mesothelioma cells compared to the mesothelial cells. Oxidant production in intact cells, assayed by
fluorimetry using 2',7'-dichlorodihydrofluorescein as a fluorescent probe, did not differ significantly between these cells. We conclude that
mitochondrial superoxide levels are lower in mesothelioma cells compared to nonmalignant mesothelial cells, and that this difference may be
explained by higher MNnSOD activity in the mitochondria of these cells. Oxidant production was not different in these cells, which may be due
to the previously observed increase in H,0,-scavenging mechanisms of mesothelioma cells.
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Tumour cell lines generate reactive oxygen species (ROS) supdrave recently shown that the mRNA level, immunoreactive
oxide and hydrogen peroxide (Bl), and this generation, if also protein and specific activity of MNSOD are highly expressed in the
occurring in vivo, might have effects on tumour proliferation andtumour cells of malignant mesotheliomas when compared to
drug resistance (Szatrowski and Nathan, 1991; Burdon, 1995healthy pleura or non-malignant transformed human mesothelial
ROS production has also been suggested to have an important radls (Met5A) (Kinnula et al, 1996; Kahlos et al, 1998).
in mitochondrial control of cell survival and apoptosis (Burdon,Mesothelioma is resistant to cytotoxic drugs and radiation, both
1997; Kroemer et al, 1997). Manganese superoxide dismutasé which are known to induce generation of ROS (Sinha and
(MnSOD), a mitochondrial antioxidant enzyme, dismutates supeMimnaugh, 1990; Nakano et al, 1996). Accordingly, mesothe-
oxide to hydrogen peroxide and oxygen (Fridovich, 1975) and iioma cell line cells are very resistant to a superoxide radical-
induced by several cytokines (Wong and Goeddel, 1988; Hirosproducing oxidant, menadione, and to epirubicin, which is an
et al, 1993), changes in the cellular redox state (Warner et al, 199&@hthracycline often used in the treatment of mesothelioma
and asbestos fibres (Janssen et al, 1992). MnSOD eliminates mifg<innula et al, 1996; Kahlos et al, 1998).
chondrial superoxide radicals and may also contribute to the cell We hypothesize that the increase of MNnSOD in mesothelioma
survival of non-malignant and malignant cells. In fact, it has beemwells may affect ROS levels in the mitochondria or cytosolic
reported recently that MNSOD may be anti-apoptotic (Slater et abompartments of these cells. To verify that high MnSOD in
1995; Keller et al, 1998; Manna et al, 1998). mesothelioma cells is related to an increased level of this enzyme in
Human pleural mesothelioma, which originates from mesothethe mitochondrial compartment, and not to an increased number or
lial cells, is a fatal tumour associated with occupational exposureolume of mitochondria per cell, the activities of two constitutive
to asbestos fibres. Its pathogenesis has been postulated to rog#gochondrial enzymes, citrate synthase and cytochrome
associated with the generation of free radicals (Kamp et al, 1992;0xidase, were measured. In order to test the hypothesis that super
Mossman et al, 1996). In contrast to previous observations, whiabxide levels in these cells with different MNnSOD activities may be
have shown that MnSOD is usually low in malignant tumoursaltered, superoxide production was assayed in isolated mitochon-
(Oberley and Buettner, 1979; Oberley and Oberley, 1997), wdria of malignant mesothelioma cell line cells (M38K, high
MnSOD level) and of non-malignant mesothelial cell line cells
(Met5A, low MnSOD level). Then, in order to investigate whether
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, peroxide formation by these cells was estimated with a fluori-
Correspondence to: K Kahlos metric assay using,Z' -dichlorodihydrofluorescein as a probe. To
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further compare ROS generation in these non-malignant and maliGeneration of superoxide by isolated mitochondria

nant cells, additional experiments were conducted in cells pre- o o

treated either with aminotriazole (ATZ) to inhibit catalase or” Chemiluminescent probe, lucigenin, was employed to measure
buthionine sulfoximine (BSO) to deplete glutathione by inhibiting SUP€roxide production by isolated mitochondria with a lumi-
the rate-limiting enzyme in glutathione synthesigjutamylcys-  nometer (1253 Luminometer, Bio-Orbit, Finland). The mito-
teine synthetase{GCS). These pre-treated cells were exposed tghondria were isolated as described by Pitkénen et al (1996).

menadione, which is a quinone known to generate free radicafg©zen-thawed mitochondria ({4 of mitochondrial protein) was
intracellularly (Powis, 1989). added to a solution of 108K ,HPO,, pH 10.5, and the cuvette

was placed into the counter. Background was subtracted and
counting was initiated by adding the reduced form of NAD
METHODS (NADH) (Sigma, 5Qug in 10ul water) (Liochev and Fridovich,
1997) as a substrate for the respiratory chain electron transport.
The luminometer indicates the rates of superoxide production as
Continuous mesothelioma cell line cells (M38K) along with five counts per second measured after 30 s when the steady state has
other mesothelioma cell lines were originally established and chabeen reached. These units were converted to nmot man! of
acterized from tumours of untreated mesothelioma patients (Pelimaitochondrial protein using a standard curve described by
Enlund et al, 1990). M38K cells were chosen because they contaRitkanen and Robinson (1996).
the highest MnSOD activity of these cell lines and are extremely
resistant to oxidant-induced cytotoxicity (Kinnula et al, 1996,
1998; Kahlos et al, 1998). Tr_ansformed humar_l pleural _mesotheli@xidant production by intact cells
cells (Met5A) were SV-40 virus transformed, immortalized, non-
tumorigenic and near-diploid cells (Ke et al, 1989), and were a gifeneration of KD, and other peroxides was measured using a
from the National Cancer Institute, Bethesda, MD, USA (Dr CCfluorimetric microplate assay established by Rosenkranz et al
Harris). Both cell types were cultured on uncoated plastic T2§1992). A fluorescent probe,’,Z-dichlorodihydrofluorescein-
flasks (Nunclon, Nalge Nunc International, Denmark) or ondiacetate (DCDHF-DA) (Molecular Probes, OR, USA), diffuses to
24-well microtiter plates (Falcon Multiwell 3047, Becton the cell, hydrolyses to'Z'-dichlorodihydrofluorescein and is
Dickinson Labware, NJ, USA) in RPMI-1640 medium supple-oxidized to the highly fluorescent compound72-dichlorofluo-
mented with heat-inactivated 10% fetal calf serum, 0.03%escein in the presence of intracellulayyOsiand hydroperoxides
L-glutamine, and the antibiotics streptomycin and penicillin (all(Bass et al, 1983; Cathcart et al, 1983). The cells, cultured on
from LTI Life Technologies, Paisley, UK) at 37 in 5% carbon  24-well microtiter plates (80 000 cells per well) to near-conflu-
dioxide atmosphere. ency (2-3 days), were incubated for 30 min witin6DCDHF-
DA. The cultures were then washed with phosphate-buffered
saline (PBS), and the intensity of fluorescence was measured by a
Enzyme activities spectrofluorimeter (excitation wavelgngth_ 485 nm, emission
wavelength 535 nm) capable of reading microtiter plates (1420
All enzyme activities were measured by spectrophotometrid/ictor multilabel counter, Wallac, Inc., Turku, Finland). The
methods from cells disrupted with 1% Triton X-100. Total super-fluoresence intensity was followed every 10 min for 120 min, and
oxide dismutase activity was measured according to the method ehch experiment was done in quadruplicate at the time. The
Crapo et al (1978). The activity was assessed following thé&ackground (the fluorescence of cells without DCDHF-DA pre-
decrease in the rate of reduction (the rate of change in absorbariepelling) was subtracted from the results. A similar initial amount
at 550 nm) of 12.8m cytochromer (Sigma, St Louis, MO, USA)  of cells was co-cultured in equal conditions for each experiment,
in the presence of 0.5nmxanthine (Sigma) and xanthine oxidase and at the time of the fluorimetric analysis the cell protein content
(Boehringer Mannheim, Germany). MnSOD activity was distin-was assessed from these co-cultured plates according to the
guished from copper—zinc superoxide dismutase (CuZnSODBio-Rad method (Bio-Rad, Hercules, CA, USA) (Bradford, 1976).
activity by its resistance to Inmpotassium cyanide (Riedel-de- The final results are expressed as fluorescence intensity per cell
Haen, Seetze, Germany). The activity of citrate synthase, a markprotein (means of three independent experimesstsl.).
enzyme for the mitochondrial matrix, was assessed according to
the method of Shepherd and Garland (1969). The cell sample
was added to the reaction solution containing iOuymalate, Pre-treatment with aminotriazole or buthionine
41pg mk* malate dehydrogenase and 0. micotinamide— ¢ ifoximine
adenine dinucleotide (NAD) (Sigma), and the reaction was
initiated with 0.1 nw acetyl-CoA (coenzyme A). Citrate synthase The cells were pre-treated either with ATZ (Sigma, 30 for
activity was measured by following the rate of reduction of NAD60 min) to inactivate catalase, or with BSO (Sigma, Qv2for
(Shepherd and Garland, 1969). As a marker enzyme for the mitd5 h) to inhibity-GCS in order to cause glutathione depletion. The
chondrial inner membrane cytochromeoxidase activity was concentrations and effects of these inhibitors have been reported in
assayed by the method of Wharton and Tzagoloff (1969). The ratarlier investigations (Margoliash et al, 1960; Buckley et al, 1991,
of oxidation of 3Qum reduced cytochromein 50 nm potassium  Kinnula et al, 1992, 1998). These concentrations are not toxic,
phosphate buffer was measured by following the decrease in ttad they have caused at least 85% inhibition of catalase and deple-
absorbancy of itsx band at 550 nm (Wharton and Tzagoloff, tion of glutathione in these same cells (Kinnula et al, #p9%ter
1969). The protein concentration was measured according to ttiee pre-treatments the cells were washed and incubated with 5
method of Lowry and co-workers (1951). DCDHF-DA for 30 min, washed and measured for fluorescence.

Cell culture
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Figure 1  The ratio of MNnSOD activity to the activities of citrate synthase (A)
and cytochrome c oxidase (B) in non-malignant mesothelial Met5A cells and
mesothelioma M38K cells.* P < 0.05 compared to Met5A cells (n = 3)

nmol min~* mg™ protein

Met5A M38K

Figure 2 Superoxide production in isolated mitochondria of Met5A
mesothelial cells and M38K mesothelioma cells.* P < 0.05 compared to
Met5A cells (n = 3)
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Oxidant exposure

Washed cells prelabelled with DCDHF-DA were exposed to a
superoxide producing oxidant, menadione |{0in PBS), and
measured immediately for fluorescence. This concentration was
chosen because our previous studies have shown it to be margin
ally toxic to these cells in these incubation conditions in vitro
(Kahlos et al, 1998).

Statistical analysis

The results are expressed as mears.d. of three to seven
experiments. Two groups were compared using a two-tailed
Student's-test and multiple groups were compared using analysis
of variance and Scheffe’s post hoc tésk 0.05 was considered
significant.

RESULTS
MnSOD, citrate synthase and cytochrome ¢ oxidase

Previous studies on alveolar type Il cells of hyperoxic rats and
human renal carcinoma cells of granular type have shown that the
elevated level of MNSOD in these cells is at least partly explained
by increased volume of mitochondria per cell (Oberley et al, 1994;
Vincent et al, 1994). The results of the present study confirm our
earlier finding on elevated MnSOD activity in M38K cells as
compared to Met5A cells (Kinnula et al, 1996), the specific
activity of MnSOD being 36.& 3.4 U mg? protein in M38K cells

and 1.8+ 1.0 U mg? protein in Met5A cells. Moreover, the activi-
ties of the mitochondrial enzymes citrate synthase and cytochrome
¢ oxidase, which have been used as constitutive mitochondrial
enzymes (Freeman et al, 1986; Oberley et al, 1987; Vuorinen et al,
1995), did not differ significantly between the two cell lines. The
activity of citrate synthase was 45%%.3 nmol min*mg- protein

in M38K cells and 32.% 10.7 nmol mintmg! protein in Met5A

cells ;¢ = 0.127), the corresponding activities for cytochrome
¢ oxidase being 3.2 1.0 and 2.4t 0.9 nmol min! mg! protein

(P = 0.340). The ratios of MNSOD to these enzymes in these two
cell lines are presented in Figure 1, and they show the increase o
MnSOD activity to be due to the elevated level of the enzyme per
mitochondria.

Mitochondrial superoxide production

Superoxide generation in the mitochondrial compartment of
M38K mesothelioma cells and Met5A mesothelial cells was
assessed by lucigenin chemiluminescence. Very small amounts of
superoxide were generated before respiratory chain was initiated
(i.e. background which was subtracted). Isolated mitochondria of
M38K cells generated significantly less superoxide than Met5A
cells (0.1+ 0.01 vs 0.3% 0.03 counts per s for every i of
mitochondrial protein respectively,= 0.00007). Figure 2 shows
mitochondrial superoxide generation standardized with xanthine
oxidase (Pitk&nen and Robinson, 1996).

Oxidant production by intact cells

To further assess ROS generation in these cells, DCDHF-DA
fluorescence was used to follow oxidant generation in intact cells
and in cells that had been pre-treated with ATZ or BSO to inhibit
catalase or to cause glutathione depletion respectively. When
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Figure 4 The relative DCDHF-mediated fluorescence of Met5A cells and
M38K cells exposed to menadione (10 pm) with pre-treatments with either
B aminotriazole or buthionine sulfoximine (menad. = menadione exposure
300 - without pre-treatment; menad.ATZ = menadione exposure on cells pre-
treated with aminotriazole; menad. BSO = menadione exposure on cells pre-
treated with buthionine sulfoximine). The results are presented as the
2+ 250 percentage of the fluorescence of unexposed and untreated control cells
S (means of three to seven experiments each done in quadruplicate * s.d.).
= * P < 0.05 compared to unexposed control cells, # P < 0.05 compared to
E 200 o menadione-exposed cells
L3
=
=, 150 -
z counterparts (Sun, 1990), MnSOD has been shown to be high in
w 100 7 human thyroid tumours (Nishida et al, 1993), human renal adeno-
E carcinoma of granular cell type (Oberley et al, 1994), human brain
T 507 tumours (Cobbs et al, 1996) and human malignant mesothelioma
(Kahlos et al, 1998) as compared to corresponding non-malignant

0 control tissues. The mesothelioma tumour biopsies and cell lines

Met5A M38K ) .
Figure 3 (A) Oxidant production by intact mesothelioma M38K cells (a) and used in (_)ur St_UdleS are from untr_eated mesothellqma patients.
mesothelial Met5A cells (O) using DCDHF-DA as a fluorescent probe. The results Mesothelioma is a tumour which arises from the malignant trans-
are expressed as fluorescence units per pg of protein per well at different time formation of mesothelial cells. Met5A cells, though not primary
points during the first 120 min incubation (mean + s.d. of three individual . . . . .
experiments done in quadruplicate). (B) The effect of catalase inhibition by meSOthe“_al_ Ce”S' an_e considered repr(_esentatlve n VItI’_O models
aminotriazole (ATZ) pre-treatment and GSH depletion by buthionine sulfoximine for examining the biology of non-malignant mesothelial cells
(BSO) pre-treatment on H,0, generation by Met5A and M38K cells. The results are (Ke et al 1989).
presented as the percentage of the fluorescence of untreated control cells. P .
* P < 0.05 compared to control cells (n = 3). No significant differences were found ) MnSOD is _COded by_ a nuclear gene and, therefor_e1 IS tranSIat_ed
between the two cell types in the extramitochondrial compartment. The translation product is

a precursor which contains a mitochondrial targeting sequence so
standardized against the cell protein, the fluorescence intensitiiat practically all enzyme is found in the mitochondrion
did not differ significantly between M38K and Met5A cells (Shimoda-Matsubayashi et al, 1996). The elevation of MNSOD in
(Figure 3A). In particular, catalase inhibition caused a potentells may be associated either with an increased level of this
increase in the fluorescence of M38K cells and Met5A cells, th&nzyme in the mitochondria or with an increased number of mito-
enhancement being 213% in M38K cells and 244% in Met5Achondria per cell. In fact, an elevated expression of MnSOD in
cells. On the other hand, glutathione depletion did not cause lsuman renal carcinoma of granular cell type (Oberley et al, 1994)
significant change in the fluorescence of these cells (Figure 3B). and in alveolar type Il cells of hyperoxic rats (Vincent et al, 1994)

Additional experiments were conducted to assess the effectgas associated not only with increased MnSOD expression per
of exogenous oxidant on the ROS generation of these cellgnitochondrion, but also with an increased number or volume of
Menadione (1Qum) caused 68% and 59% increases in the fluoresmitochondria per cell. Cytochrome oxidase, a mitochondrial
cence in M38K and Met5A cells, respectively, and this responsiéner membrane enzyme, is known to be stable, and it has been
was parallel in the two cell types. The fluorescence in menadionaetsed as a mitochondrial marker enzyme (Vuorinen et al, 1995),
exposed cells was markedly enhanced by ATZ pre-treatment Whereas citrate synthase is a marker for the mitochondrial matrix.
both cell types, while the enhancement by BSO pre-treatment wa¥hen compared to the activities of these enzymes, MnSOD

less intense and only significant in M38K cells (Figure 4). activity was sixfold higher in mesothelioma M38K cells compared
to Met5A cells, reflecting markedly enhanced MnSOD activity per
DISCUSSION mitochondrion.

Although many studies have shown that MnSOD is lower in Although lucigenin chemiluminescence is not specific to super-
malignant tissue and malignant cells than in their non-malignar@xide alone, the use of lucigenin permits a rough estimation of the
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rate of superoxide production (Pitkdnen and Robinson, 1996). Themntiproliferative in malignant cells (Oberley and Oberley, 1997). It
method does not measure total superoxide generation but its rfeds been shown that transfection of the MnSOD gene leads to &
appearance which is the difference between its total productiosuppression of the malignant phenotype and decreased cell prolif-
and scavenging. This study showed that the mitochondrial supeeration. The situation is more complicated in vivo, where simulta-
oxide levels of malignant M38K cells with their higher MNSOD neous induction of multiple antioxidant enzymes is possible
activity per mitochondrion were 72% less than that of non<{Tew, 1994; Kahlos et al, 1998; Kinnula et al, 1998). The same is
malignant Met5A cells. Thus, the observed level of superoxide inrue of M38K cells, which represent an immortal cell line estab-
mitochondrial preparations seemed to be highly dependent on tiished from one of our mesothelioma patients. In fact, M38K
level of active MnSOD. Such a correlation between mitochondriamesothelioma cells are not only high in MnSOD, but also have
superoxide level and MnSOD has been previously shown imigher catalase, glutathione-S-transferase and glutathione content:
cultured human fibroblasts (Pitkdnen and Robinson, 1996). In ondan Met5A mesothelial cells (Kahlos et al, 1998; Kinnula et al,
previous study, the mitochondria of rat hepatoma cells were showt998).
to have low MnSOD activity, which was associated with normal The relative role of various antioxidants in scavengin®,H
mitochondrial superoxide generation (Bize et al, 1980). No studiesiay vary considerably in different cell types. Previous studies
are available on mitochondrial superoxide production in tumourfave indicated that catalase activity is high in alveolar pneumo-
expressing high mitochondrial MnSOD. cytes and macrophages, and catalase inhibition significantly
Mitochondrial free radical generation may have a significantreduces HO, consumption by these cells (Kinnula et al, 1992
effect on the cellular redox state, cell proliferation and apoptosisRietarinen et al, 1995). On the other hand, endothelial cells appeat
which are important features in cancer biology (Slater et al, 1993p protect themselves by the glutathione redox cycle, but not by
Burdon, 1997). ROS and changes in the redox state of the cell caatalase (Schraufstétter et al, 1985; Andreoli et al, 1992; Kinnula
initiate reactions leading to the disruption of mitochondrialet al, 1992). To further examine which antioxidant enzyme
membrane, depletion of high-energy nucleotides, disturbance @hechanism plays a major role as a free radical scavenger in these
calcium homeostasis and activation of genes, which may result icells, we inhibited catalase with ATZ ¢fGCS with BSO and
cell death (Kroemer, 1997). In fact, our recent study showed thaheasured oxidant generation in both intact unexposed cells and
M38K cells are much more resistant than Met5A cells in maincells exposed to menadione. Both unexposed and exposed cells
taining their cellular energy state, ATP level and cell survivalgenerated significantly more g, if catalase had been inhibited
(Kahlos et al, 1998). than the cells in whiclrGCS had been inhibited. This effect was
Although MnSOD dismutates superoxide to oxygen ag@,H  similar in non-malignant mesothelial and malignant mesothelioma
which is freely diffusible, increased superoxide elimination in thecells, which also suggests that other undefined mechanisms
mitochondria did not lead to increasegChH production in intact ~ contribute to the oxidant generation in these cells.
mesothelioma cells. One explanation could be that these mesothedn conclusion, human mesothelioma cells contain highly
lioma cells express higher levels of@®j-scavenging enzymes and elevated MnSOD levels and simultaneously decreased generatior
glutathione (Kahlos et al, 1998; Kinnula et al, 1998). On the otheof superoxide in the mitochondrial compartment of these cells.
hand, the generation of ROS in intact cells is not necessarilyhis phenomenon, if also occurring in vivo, may prolong cell
parallel with the free radical generation of the mitochondria. ROSurvival and contribute to the oxidant resistance of these cells. The
can also be scavenged by mitochondrigDscavenging mecha- production of HO, or other peroxides by intact mesothelioma
nisms (Radi et al, 1991). They are also generated and scavengecé@ils did not differ between non-malignant mesothelial cells and
other parts of the cell. DCDHF-DA, which was used for the detecmalignant mesothelioma cells, possibly due to the previously
tion of ROS in intact cells, diffuses across the cell membrane anobserved effective J,-scavenging capacity of these mesothe-
incorporates into the hydrophobic lipid regions in the cell (Basdioma cells. The effects of the lowered free radical generation on
et al, 1983). Although this method is widely used to measur¢he cell survival and drug resistance of these cells remains to be
H,O, production, it detects also various peroxides (Royall andnvestigated.
Ischiropoulos, 1993). Since the probe can theoretically move from
one area to another both inside and outside the cell, its localization
does not indicate the precise compartment, where the origin&cKNQWLEDGEMENTs
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