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2D ZnO is one of the most attractive materials for potential applications in photocatalysis,
gas and light detection, ultraviolet light-emitting diodes, resistive memory, and pressure-
sensitive devices. The electronic structures, magnetic properties, and optical properties of
M (Li, Na, Mg, Ca, or Ga) and TM (Cr, Co, Cu, Ag, or Au) adsorbed g-ZnO were
investigated with density functional theory (DFT). It is found that the band structure,
charge density difference, electron spin density, work function, and absorption spectrum
of g-ZnO can be tuned by adsorbing M or TM atoms. More specifically, the specific charge
transfer occurs between g-ZnO and adsorbed atom, indicating the formation of a covalent
bond. The work functions of M adsorbed g-ZnO systems are obviously smaller than that of
intrinsic g-ZnO, implying great potential in high-efficiency field emission devices. The Li, Na,
Mg, Ca, Ga, Ag, or Au adsorbed g-ZnO systems, the Cr adsorbed g-ZnO system, and the
Co or Cu adsorbed g-ZnO systems exhibit non-magnetic semiconductor proprieties,
magnetic semiconductor proprieties, and magnetic metal proprieties, respectively. In
addition, the magnetic moments of Cr, Co, or Cu adsorbed g-ZnO systems are 4 μB,
3 μB, or 1 μB, respectively, which are mainly derived from adsorbed atoms, suggesting
potential applications in nano-scale spintronics devices. Compared with the TM absorbed
g-ZnO systems, the M adsorbed g-ZnO systems have more obvious absorption peaks for
visible light, particularly for Mg or Ca adsorbed g-ZnO systems. Their absorption peaks
appear in the near-infrared region, suggesting great potential in solar photocatalysis. Our
work contributes to the design and fabrication of high-efficiency field emission devices,
nano-scale spintronics devices, and visible-light responsive photocatalytic materials.
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INTRODUCTION

The discovery of graphene (Novoselov et al., 2004) has stimulated research into other two-
dimensional (2D) materials, such as transition metal dichalcogenides (TMDCs: MoS2, WSe2,
ReS2, PtSe2, and NbSe2), black and blue scales (Zhu and Tománek, 2014; Li et al., 2015; Zhao
et al., 2017; Sun and Schwingenschlogl, 2020; Sun et al., 2021), silica, and transition metal oxides
(TMOs) (Sahin et al., 2009; Sun and Schwingenschlögl, 2021a; Chen et al., 2021; Lv et al., 2021).
Compared with three-dimensional (3D) bulk and wafer materials, 2D materials exhibit superior
electron transport, optics, mechanics, and magnetic properties (Gong et al., 2017; Tan et al., 2017),
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which have been applied in the fields of gas sensing (Zhang et al.,
2010; Ziletti et al., 2015; Mahabal et al., 2016; Kooti et al., 2019;
Sun et al., 2019), photocatalytic devices (Sun et al., 2017a; Wang
et al., 2018a; Cui et al., 2020a), spintronic devices (Yuan et al.,
2013; Sun et al., 2017b; Sun et al., 2018a; Cao et al., 2018) and
piezoelectric devices (Komsa et al., 2012; Pospischil et al., 2014;
Ross et al., 2014; He et al., 2015; Sun et al., 2017c; Sun et al., 2018b;
Cui et al., 2020b; Cui et al., 2020c; Cui et al., 2021a; Cui et al.,
2021b; Sun and Schwingenschlögl, 2021b).

As one of the II-VI direct bandgap semiconductor materials,
ZnO exhibits the characteristics of a wide bandgap, strong
radiation resistance, and high exciton binding energy, whose
bandgap is about 3.37 eV and the exciton binding energy is up
to 60 meV at room temperature (Tusche et al., 2007). ZnO
exhibits piezoelectric effect, high chemical stability, high
electrochemical coupling coefficient (Weirum et al., 2010),
high activity, environmental friendliness, and low acquisition
cost, therefore owning significant application potential in the
fields of ultraviolet laser emitters, gas, and light detection (Pan
et al., 2014; Sahoo et al., 2016; Zhang and Cui, 2022a), as well as
photocatalysis (Guan et al., 2017; Guan et al., 2018).

Recently,Claeyssens et al. (2005) predicted the stable existence
of graphene-like zinc oxide (g-ZnO). Zhang et al. (2014) report
that B, N, or C doped g-ZnO exhibits strong chemisorption for
CO. Wang et al. (Cui et al., 2019) conducted a mixed density
functional study on the effects of rotation angle and biaxial strain
on g-ZnO/TMDCs heterojunctions. In addition to doping and
building heterojunctions, adsorption (Zhang and Cui, 2022b) is
another efficient way to modify 2D materials. Cui et al. (Wang
et al., 2018b; Cui et al., 2020d; Cui et al., 2021c) demonstrated the
possibility of reducing the work function of g-GaN adsorption
and increasing the absorption of visible light via absorbing
transition metals (TMs). Guan et al. (2020) found that the
adsorption of transition metal atoms onto graphene with
extended-line defects induces magnetism and spin
polarization. Wang et al. (2014) found that V, Cr, Fe, Co, Cu,
Sc, or Mn absorbed MoS2 showed magnetism. Chen et al. (2019)
found that Cr, Mn, Fe, Co, or Cu absorbed g-GaN exhibited
magnetism. Meanwhile, Zhao et al. (2013) successfully prepared
graphene/ZnO composites and applied them to adsorb Cu (II),
Pb (II) and Cr (III) in aqueous solution. Luo et al. (2017)
synthesized g-ZnO nanosheets and used hybridization density
functional theory to calculate cation-anion passivation co-doped
g-ZnO for the design of efficient aqueous redox photocatalysts.
According to our current knowledge, there are relatively few
detailed reports on the adsorption of g-ZnO systems byM (Li, Na,
Mg, Ca, or Ga) and TM (Cr, Co, Cu, Ag, or Au). The electronic
structure, magnetic and optical properties of the g-ZnO after
adsorption require more in-depth exploration.

Here, the electronic, magnetic, and optical properties of M (Li,
Na, Mg, Ca, or Ga) and TM (Cr, Co, Cu, Ag, or Au) adsorbed
g-ZnO systems were studied using the first-principles based on
DFT. The band structure, charge density difference, electron spin
density, work function, magnetic properties, and absorption
spectrum of each system were analyzed, respectively. The
results provide a theoretical basis for the design and
fabrication of high-efficiency field emission devices, nano-scale

spintronics devices, and visible-light responsive photocatalytic
materials.

CALCULATION METHODS AND MODELS

The electronic, magnetic and optical properties of M (Li, Na, Mg,
Ca, or Ga) and TM (Cr, Co, Cu, Ag, or Au) adsorbed g-ZnO
systems are calculated by adopting the first principles based on
DFT. The electron exchange-correlation effects between electrons
are treated using the generalized gradient approximation (GGA)
in the Perdew-Burke-Ernzerhof (PBE) formula. Weak
intermolecular dispersive forces are treated with Grimme’s
DFT-D3 method. The cutoff energy, the K point sampling in
the Brillouin zone, the mechanical convergence standard, and the
energy change of the atoms are set as 500 eV, 3 × 3 × 1,
0.01 eV Å−1, and 10−5 eV, respectively. The model of g-ZnO is
a 4 × 4 × 1 supercell, as displayed in Figure 1A.

Four different stable adsorption sites are named as TZn (above
the Zn atom), TO (above the O atom), TB (above the middle of the
Zn-O bond), and TM (above the center of the hexagonal). The
vacuum layer (20 Å in thickness) is added to reduce the
interaction between periodic adjacent layers. All systems are
geometrically optimized before calculating for obtaining the
stable equilibrium state, which is judged by the adsorption
energy (Ead) calculated as follows:

Ead � Etotal − Eg−ZnO − μM/TM (1)
where Ead represents the adsorption energy, Etotal, Eg-ZnO, and μM/

TM are the total energy of M or TM adsorbed g-ZnO systems,
intrinsic g-ZnO, and the chemical potential of adsorbed atoms,
respectively. The Bader charge method is carried out for
accurately calculating the charge transfer. The spin-polarized
charge density (ρ = ρspin-up-ρspin-down) of the Cr, Co, or Cu
adsorbed g-ZnO systems are calculated.

RESULTS AND DISCUSSIONS

The energy band structure of intrinsic g-ZnO is shown in
Figure 1B, which demonstrates that it is a direct
semiconductor. The total density of state (TDOS) and the
density of states for the contribution of electrons in different
orbits are shown in Figure 1C. The adsorption energy (Ead),
charge transfer (C), magnetic moment (Mtotal), bandgap (Eg), and
adsorption height (D) of the M or TM absorbed g-ZnO systems
are listed in Table 1.

It is shown that the most stable adsorption sites and the
adsorption heights of each system are both different. All
systems are slightly deformed due to the interatomic
interaction, as shown in Figure 2. Their charge differential
densities (CDD) are calculated as follows:

△ρ � ρtotal − ρZnO − ρM/TM (2)
where ρtotal, ρZnO, and ρM/TM presents the charge densities of M or
TM adsorbed g-ZnO systems, intrinsic g-ZnO, andM or TM atoms,
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FIGURE 1 | The (A) crystal structure, (B) energy band structure, and (C) density of state of intrinsic g-ZnO.

TABLE 1 | The adsorption energy (Ead), charge transfer (C), magnetic moment (Mtotal), bandgap (Eg), and adsorption height (D) of the M or TM absorbed g-ZnO systems.

Type Atom Adsorption sites Ead (eV) C (|e|) Mtotal (μB) Eg (eV) D (Å)

M Li TM −3.374 −0.868 0 0 0.979
Na TM −2.283 −0.814 0 0 1.559
Mg TM −2.975 −1.340 0 0.613 1.065
Ca TM −5.971 −1.478 0 0.908 1.259
Ga TZn −4.203 −0.680 0 0 1.433

TM Cr TO −3.161 −0.360 4 2.068 1.865
Co TM −2.683 −0.254 3 0.511 1.897
Cu TM −1.499 −0.093 1 1.970 1.867
Ag TM −0.946 −0.111 0 2.011 2.139
Au TO −1.395 +0.127 0 1.982 2.019

FIGURE 2 | The differential charge density of M or TM adsorbed g-ZnO systems. The blue area and purple area represent electron aggregation and electron
dissipation, respectively. And the iso-value is set as 5 × 10−4 e Å−3.
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respectively. The differential charge density of M or TM adsorbed
g-ZnO systems are illustrated in Figure 2, where the specific charge
transfer occurred between ZnO and M or TM, which indicates the
formation of a covalent bond between ZnO and M or TM atoms.

The redistribution of charge leads to the creation of a dipole
moment, which causes a change in the work function. The work
functions are shown in Figure 3. Especially, Na adsorbed g-ZnO
system has the lowest work function of 2.667 eV, about 47% lower
than that of intrinsic g-ZnO. All adsorption systems have lower
work functions than the intrinsic g-ZnO. At the same time, M
adsorbed g-ZnO systems have much lower work functions than
those of TM adsorbed g-ZnO systems, indicating that M adsorbed
g-ZnO systems have strong field emission capabilities.

To further investigate the effect of metal adsorption on the
electronic properties and magnetic properties of monolayer

g-ZnO, the energy band structure of the adsorbed system was
calculated. The band structure of M or TM adsorbed g-ZnO
systems are shown in Figure 4. The gap of the Ca, Mg, Ni, or
Pt adsorbed g-ZnO systems are 0.908 eV, 0.613 eV, 2.497 eV, or
2.560 eV, respectively, exhibiting characteristics of non-magnetic
semiconductors. The gap of Cr adsorbed g-ZnO system is 2.068 eV,
exhibiting characteristics of a magnetic semiconductor. The gap of
the Co or Cu adsorbed g-ZnO systems are 0.511 eV or 1.970 eV,
respectively, exhibiting characteristics of magnetic metals.

For further investigating the derivation mechanism of
magnetism, the spin-polarized charge density (ρ = ρspin-up-ρspin-
down) of the Cr, Co, or Cu adsorbed g-ZnO systems are calculated, as
shown in Figure 5. The magnetic moments of the Cr, Co, or Cu
adsorbed g-ZnO systems are 4 μB, 3 μB, or 1 μB, respectively. Cui
et al. reported that the Co andCu adsorbed Pb2Se3 systems produced

FIGURE 3 | The work functions of the intrinsic g-ZnO and (A) M or (B) TM adsorbed g-ZnO systems.

FIGURE 4 | The band structures of M or TM adsorbed g-ZnO systems: (A) Li, (B) Na, (C) Mg, (D) Ca, (E) Ga, (F) Cr, (G) Co, (H) Cu, (I) Ag, (J) Au. Purple line
indicates spin up, and orange line denotes spin down. The Fermi level is shifted to zero.
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magnetic moments of 0.152 μB and 0.491 μB, respectively (Cui et al.,
2022). Our results are similar to theirs. From Figure 5, it can be
observed that the magnetic moments are mainly derived from
adsorbed transition metal atoms. The results suggest the
possibility of tuning the magnetic properties of g-ZnO by
adsorbing Cr, Co, or Cu as well the potential of applications in
nano-scale spintronics devices.

The light absorption coefficients [α(ω)] of intrinsic g-ZnO and
M or TM adsorbed g-ZnO systems are calculated as follows:

α(ω) � ���
2ω

√ [ ������������������
ε21(ω) + ε22(ω) − ε1(ω)

√ ]1
2

(3)

where ω, ε1(ω), and ε2(ω) are the frequency of the photon, real part,
and imaginary part of the dielectric constant, respectively. The
absorption spectrum of the intrinsic ZnO and metal adsorbed
g-ZnO systems are shown in Figure 6. It is shown that the
intrinsic g-ZnO has almost no absorption of visible light, while
M or TM adsorbed g-ZnO systems have several firm absorption
peaks in the visible light region. For example, the absorption peaks of
the Li, Na, or Mg adsorbed g-ZnO system are located at 406.6 nm
and 534.2 nm, 492.4 nm and 689.2 nm, or 567.6 nm and 704.8 nm,
respectively. In addition, the absorption peaks of the Cu adsorbed
g-ZnO system are located at 465.1 nm and 733.7 nm. In particular,
the α(ω) of the Mg adsorbed g-ZnO system is up to 8.633 ×
104 cm−1 at 704.8 nm. At the same time, Cui et al. (2018)
reported the optical properties of g-GaN adsorbed by alkali
metals with an absorption peak in the range of 551 nm–708 nm
with an absorption coefficient of 2.5 × 104 cm−1. Ren et al. (2019)

reported a two-dimensional van derWaals heterostructure based on
ZnO/Mg(OH)2 with an absorption peak of 4.8 × 104 cm−1 at
415.75 nm. Xia et al. (2022) reported a two-dimensional GaN/
ZnO heterostructure with an absorption peak in the visible range
with an intensity of about 2 × 104 cm−1. The reports of the above
scholars are similar to our results. This indicated significant potential
value in visible-light photocatalytic. In addition, the Mg or Ca
adsorbed g-ZnO systems have prominent absorption peaks for
the near-infrared region, also meaning the potential in solar
photocatalysis. Therefore, the optical properties of g-ZnO can be
effectively tuned by adsorbing Li, Na, Mg, Ca, or Cu.

In general, compared with the TM absorbed g-ZnO systems,
the M adsorbed g-ZnO systems have more obvious absorption
peaks for visible light, particularly for Mg or Ca adsorbed g-ZnO
systems. Their absorption peaks appear in the near-infrared
region, suggesting great potential in solar photocatalysis.

CONCLUSION

The electronic, magnetic and optical properties ofM (Li, Na,Mg, Ca,
or Ga) and TM (Cr, Co, Cu, Ag, or Au) adsorbed g-ZnO systems
were studied using the first-principles on DFT. It is found that the
band structure, charge density difference, electron spin density, work
function, and absorption spectrum of g-ZnO can be tuned by
adsorbing M or TM atoms. The work functions of M adsorbed
g-ZnO systems are obviously smaller than that of intrinsic g-ZnO,
implying great potential in high-efficiency field emission devices.

FIGURE 5 | The spin-polarized charge density of Cr, Co, or Cu adsorbed g-ZnO systems. The purple areas represent spin up, and the orange areas represent spin
down. And the iso-value is 1 × 10−3 e Å−3.

FIGURE 6 | Absorption spectrum of intrinsic g-ZnO and (A) M or (B) TM adsorbed g-ZnO systems.
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The Li, Na, Mg, Ca, Ga, Ag, or Au adsorbed g-ZnO systems, the Cr
adsorbed g-ZnO system, and the Co or Cu adsorbed g-ZnO systems
exhibit non-magnetic semiconductor proprieties, magnetic
semiconductor proprieties, and magnetic metal proprieties,
respectively. In addition, the magnetic moments of Cr, Co, or Cu
adsorbed g-ZnO systems are 4 μB, 3 μB, or 1 μB, respectively, which
are mainly derived from adsorbed atoms, suggesting potential
applications in nano-scale spintronics devices. Compared with
the TM absorbed g-ZnO systems, the M adsorbed g-ZnO
systems have more obvious absorption peaks for visible light,
particularly for Mg or Ca adsorbed g-ZnO systems. Their
absorption peaks appear in the near-infrared region, suggesting
great potential in solar photocatalysis. Our work contributes to the
design and fabrication of high-efficiency field emission devices,
nano-scale spintronics devices, and visible-light responsive
photocatalytic materials.
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