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ABSTRACT The Australian silver gull is an urban-adapted species that frequents anthro-
pogenic waste sites. The enterobacterial flora of synanthropic birds often carries an-
tibiotic resistance genes. Whole-genome sequence analyses of 425 Escherichia coli
isolates from cloacal swabs of chicks inhabiting three coastal sites in New South
Wales, Australia, cultured on media supplemented with meropenem, cefotaxime, or
ciprofloxacin are reported. Phylogenetically, over 170 antibiotic-resistant lineages
from 96 sequence types (STs) representing all major phylogroups were identified.
Remarkably, 25 STs hosted the carbapenemase gene blaIMP-4, sourced only from
Five Islands. Class 1 integrons carrying blaIMP and blaOXA alongside blaCTX-M and qnrS
were notable. Multiple plasmid types mobilized blaIMP-4 and blaOXA-1, and 121 iso-
lates (28%) carried either a ColV-like (18%) or a pUTI89-like (10%) F virulence plas-
mid. Phylogenetic comparisons to human isolates provided evidence of interspe-
cies transmission. Our study underscores the importance of bystander species in
the transmission of antibiotic-resistant and pathogenic E. coli.

IMPORTANCE By compiling various genomic and phenotypic data sets, we have pro-
vided one of the most comprehensive genomic studies of Escherichia coli isolates from
the Australian silver gull, on media containing clinically relevant antibiotics. The analy-
sis of genetic structures capturing antimicrobial resistance genes across three gull
breeding colonies in New South Wales, Australia, and comparisons to clinical data
have revealed a range of trackable genetic signatures that highlight the broad distri-
bution of clinical antimicrobial resistance in more than 170 different lineages of E. coli.
Conserved truncation sizes of the class 1 integrase gene, a key component of multi-
ple-drug resistance structures in the Enterobacteriaceae, represent unique deletion
events that are helping to link seemingly disparate isolates and highlight epidemiolog-
ically relevant data between wildlife and clinical sources. Notably, only the most
anthropogenically affected of the three sites (Five Islands) was observed to host carba-
penem resistance, indicating a potential reservoir among the sites sampled.
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Multiple-drug-resistant (MDR) infections, particularly those caused by the
Enterobacteriaceae, are among the most threatening infections that directly

impact human health (1). The incidence of MDR Escherichia coli in the healthy human
gut, particularly lineages resistant to extended-spectrum b-lactams, has risen rapidly
over the past 30 years (2, 3), primarily due to mobile genetic elements (MGEs) facilitating
horizontal gene transfer. Horizontally acquired DNA often carries antimicrobial resistance
genes (ARGs), metal resistance genes, virulence genes, or combinations of all three. The
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transfer of genetic material facilitates new combinations of MGEs and genes as well as
new bacterial hosts for genes.

Eating fresh produce and retail meats and interacting with companion animals, live-
stock, recreational waters, and wildlife can introduce ARGs harbored by commensal
bacteria and emergent pathogens into the human gut. This is significant because
many infections caused by MDR bacteria are community acquired (4) or have an animal
origin (5). These factors support the hypothesis that in the gut microbiome of animals,
gene and bacterial host combinations are significant targets in efforts to prevent anti-
microbial resistance (AMR) and pathogen evolution.

Wild birds, implicated as vectors of antibiotic resistance internationally (6, 7), are
colonized by MDR and virulent lineages of E. coli and other Enterobacteriaceae that
pose a threat to human health (8–13). Synanthropic birds, such as the Australian silver
gull (Chroicocephalus novaehollandiae), carry multiply drug-resistant pandemic E. coli
isolates, including globally dispersed extraintestinal pathogenic E. coli (ExPEC) lineages
of sequence type 131 (ST131), ST69, ST10, ST1193, and ST38 (8, 9). The feeding behav-
ior of the silver gull affords opportunities for it to acquire diverse Enterobacteriaceae
from municipal dump sites, wastewater operations, and agricultural manure (14). Two
large studies of E. coli isolated from Australian silver gulls (562 fecal samples and 284
cloacal samples) identified E. coli isolates resistant to critically important antimicrobials
(CIAs) (8, 9). This phenomenon has been observed despite Australia having a long his-
tory of strict regulatory controls over antimicrobial usage in food production. Our
understanding of the role that synanthropic birds play in the ecology and evolution of
AMR and particularly pathogen emergence remains poor.

Previous studies of gull E. coli isolates have performed sampling at sites associated
with human activity, e.g., where gulls congregate on beaches (9) and an island close to
Australia’s populated coast where gulls are known to feed almost entirely on human
refuse (8). These studies have described (i) a rich diversity of drug-resistant E. coli line-
ages, (ii) complete sequences of resistance plasmids carrying genes encoding resist-
ance to CIAs and evidence of their mobility (11), and (iii) emerging MDR (12). Evidence
of nearly clonal E. coli isolates from gulls and humans is suggestive of interspecies
transmission. However, these studies are limited to selected E. coli sequence types or
have a focus on capturing data at the level of multilocus sequence typing (MLST) and
genotyping for antimicrobial resistance and virulence genes. Both sampling of more
pristine regions, ecologically less impacted by anthropogenic activity, and detailed
analyses of plasmid and other MGE contents are notable omissions.

Plasmids are important purveyors of accessory genes that provide a competitive
advantage in habitat colonization and resistance to antimicrobials. Two plasmid groups
gaining attention for their appearance in E. coli isolates from diverse source environments,
notably carried by pathogenic clade B ST131 lineages (15, 16), are distinct F plasmid
subtypes known as colicin V (ColV) plasmids (17) and pUTI89 and related (pUTI89-like)
plasmids (18, 19). Both subtypes harbor virulence-associated genes (VAGs) contributing to
extraintestinal pathogenesis in E. coli. ColV plasmids carry a range of iron acquisition sys-
tems (iutA, iucABCD, iroBCDN, and sitABCD) and the additional effectors iss, ompT, hlyF, and
etsABC, which have been identified on several F plasmid subtypes, including F2, F18, and
F24 (17, 20). ColV-like plasmids are also a feature of diverse avian-pathogenic E. coli (APEC)
lineages that cause colibacillosis and other systemic afflictions in commercial poultry (21).
pUTI89-like plasmids are characterized by the replicon sequence types (RSTs) F29:A2B10
and F2:A2B10 and carry three to four separate virulence-associated regions, one of which
includes the enterotoxin TieB (senB) (18). F plasmids have also shaped the evolution of
dominant pandemic ST131 clade C (C1 F1:A2:B20 and C2 F2:A1:B–) lineages (22).

Class 1 integrons are important genetic elements for the evolutionary dynamics
of antibiotic resistance. These elements reside on a variety of mobile genetic ele-
ments, can capture and express diverse resistance gene cassettes (23), and are
important components in the evolution of complex resistance regions (CRRs) (24,
25). Diverse resistance genes, including metal and biocide resistance genes, aggregate
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in a process that is often reliant on the activity of several key insertion elements and
homologous recombination (26–28). The structures of class 1 integrons continue to be
shaped by antimicrobial selective pressures and the activity of insertion elements such as
IS26 (29–31).

Here, we present whole-genome sequencing (WGS) data derived from a large study
(n = 425) of MDR E. coli isolates sampled from Australian silver gulls. The isolates were
selected based on phenotypic nonsusceptibility to three clinically important antibiotics
and were derived from cloacal swabs of gull chicks inhabiting three sites (Five Islands
[FI], Montague Island [MI], and White Bay [WB]) on or near the coast of New South
Wales, Australia, in 2012. Montague Island is a nature reserve geographically distant
from major Australian cities and is home to more than 90 bird species. A comprehen-
sive AMR phenotype and phylogenomic analysis of E. coli and mobile genetic elements
involved in the dissemination of antimicrobial and virulence genes is reported, with
AMR biomarkers that can be validated for their utility as epidemiological markers to
track MGEs carrying combinations of clinically significant resistance genes. For the first
time, we provide a graphical display of antibiotic resistance genes, virulence genes,
and F virulence plasmid carriage with linkage to phylogeny and show that while there
is a striking diversity of E. coli lineages that carry a high antibiotic gene load, only select
lineages carried multiple genes encoding virulence and AMR.

RESULTS
Extreme diversity in Escherichia coli isolates hosting clinical antibiotic resistance

in an urban avian setting. E. coli isolates (425 isolates) from the cloacae of 504 gull chicks
from two human-impacted sites (Five Islands Nature Reserve [FI] and White Bay [WB]) and
one potentially pristine reserve, Montague Island (MI), all in New South Wales, Australia,
were recovered on media supplemented with antibiotics critical for the treatment of
human infections. Reduced susceptibility was identified to cefotaxime (273 isolates [144
from FI, 86 from WB, and 43 from MI]), meropenem (38 isolates, all from FI), and ciproflox-
acin (115 isolates [48 from FI, 28 from WB, and 39 from MI]). Notably, isolates carrying key
carbapenem resistance genes were also recovered on cefotaxime (28 isolates)- and cipro-
floxacin (14 isolates)-supplemented agar plates, also exclusively from FI.

Short-read whole-genome sequences for 424 isolates, referred to as the collection
here, were assembled to examine their population structure. The collection contained
96 sequence types (STs), represented all the major E. coli phylogroups, and was pre-
dominantly comprised of commensal phylogroups A and B1. The collection also
included examples of nearly clonal populations (e.g., ST1139); known ExPEC lineages
such as ST38, ST58, ST69, and ST131 (32); emerging E. coli pathogens of ST457 (12) and
ST216 (11); and a range of multiple-antibiotic-resistant “commensal” lineages that are
also potential ExPEC lineages (e.g., ST10 [33]). Isolate summaries are provided in
Table S1 in the supplemental material.

Trackable antimicrobial resistance and virulence traits are associated with a range
of mobile genetic elements within the Escherichia coli distribution. Phylogenetic anal-
ysis depicting the distribution of E. coli lineages within the collection is shown in Fig. 1
and 2. The structure of the tree highlighted key split points between the E. coli phy-
logroups (cryptic IV [n = 1], B2 [n = 19], D [n = 60], F [n = 79], E [n = 6], C [n = 8], B1
[n = 101], and A [n = 150]) in midpoint-rooted distance order) and grouped subclades
by sequence type and serotype.

Class 1 integrons carrying clinical resistance genes are heavily impacted by
IS26 activity. Two methods, read mapping and BLASTn alignments to the WGS assem-
blies, were used to interrogate the collection for class 1 integrase genes (intI1) as inser-
tion sequence (IS) elements are eroding the integrity of the integrase by generating
deletions at the 39 end in Australia (34, 35) and internationally (36). The read mapping
method identified intI1 in 176 isolates, associated with the sulfonamide resistance
genes sul1 (n = 151), sul2 (n = 169), and sul3 (n = 16). Notably, the macrolide resistance
genemphA was identified in 114 isolates, most of which (109/114; 96%) simultaneously
carried a copy of sul1. There was also evidence in gulls where the 39-conserved
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segments (CSs) of class 1 integrons were modified by the action of insertion elements,
as has been described previously (24, 27, 29). Twenty-five isolates carried intI1 and floR,
a resistance gene for florfenicol, an antibiotic used to treat animal infections. Together,
these gene combinations are indicative of specific integron subtypes.

Using the BLASTn approach, however, intI1 was identified in 245 isolates, 57% of our
collection, with a notable range of consistent truncation sizes. Twelve intI1 hit sizes (hav-
ing excluded any under 250 bp) that arise from confirmed truncations were identified,
plus seven more that stem from scaffolding in the whole-genome sequence assemblies.

FIG 1 Midpoint-rooted phylogeny of 424 Escherichia coli isolates from Australian silver gulls. The phylogenetic tree (PhyloSift) shows the distribution of
short-read whole-genome sequences of Escherichia coli from this study. Presented around the tree are isolate metadata, including phylogroup, geographic
site, antibiotic used for selection, sequence type, serotype, BLASTn match sizes to the class 1 integrase intI1, plasmid typing data, and pMLST if available.
The key virulence content is identified in colored boxes along with F plasmid RST data on the edge. Intense color indicates a positive hit within the
plasmid typing rings. The tree scale is presented in substitutions per site.
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The latter, while not as useful for making epidemiological linkages to external data sets,
served to characterize some identical structures within this collection. The truncations
were almost exclusively IS26mediated and targeted the 39 end of intI1, hence not disrupt-
ing the cassette promoter but eliminating integrase activity. Annotations for representa-
tive contigs hosting these DintI1 genes are presented alongside seven annotations for
integrons hosting complete intI1 genes in Table S2. Hit sizes for intI1 are also presented
alongside plasmid data (Fig. 1) and genotype data (Fig. 2).

FIG 2 Midpoint-rooted phylogeny of 424 Escherichia coli isolates from Australian silver gulls aligned to genotype data. The phylogenetic tree (PhyloSift)
shows the distribution of short-read whole-genome sequences of Escherichia coli from this study. Presented around the tree are isolate metadata, including
phylogroup, site, antibiotic used for isolation, sequence type, serotype, BLASTn match sizes to the gene intI1, and AMR genotyping data. Darker colors
indicate positive hits within the genotyping rings. The tree scale is presented in substitutions per site. The histogram on the outer edge shows the ARG
count (blue) (range, 0 to 24) and virulence-associated gene (VAG) count (red) (range, 0 to 38) for each whole-genome sequence.

AMR in E. coli from Australian Silver Gulls mSystems

May/June 2022 Volume 7 Issue 3 10.1128/msystems.00158-22 5

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00158-22


Significant insights into understanding the potential human health threat posed by
each of the major ST lineages became evident after overlaying critical virulence and
antibiotic resistance genes carried by each isolate (Fig. 1 and 2). Comprehensive geno-
type profiles detailing the abundance and distribution of ARGs, VAGs, plasmid repli-
cons, and ISs are catalogued in Table S1. Notably, blaIMP-4 and blaSHV-12 (outside a single
isolate carrying blaSHV-12) were identified only in isolates sourced from gull chicks at the
Five Islands site.

Where detectable using BLASTn, each sul3-carrying isolate hosted a DmefB260 signa-
ture, the most common deletion signature observed in sul3-associated integron struc-
tures (37). A novel DmefB2 signature was also identified. Using this approach, we were
able to evaluate how deletion variants partition according to sequence type and plas-
mid type. For example, by comparing isolates carrying blaIMP-4, it highlights the ele-
ments repeatedly involved in its distribution and a clear association with clinically im-
portant multiple-drug resistance (Table S3).

Evidence of interspecies transmission through exploration of a nationally
distributed lineage. The ST648 (n = 8) isolates in our collection were identified as O1:
H6 (except for one ONT:H42 isolate) and notable for the diversity of carriage of class 1
integrase deletions (DintI1) while carrying essentially the same resistance gene cargo
(dfrA17-aadA5-sul1-mphA). Notably, the resistance cargo coaligned with different F
plasmid RSTs, including F1:A1:B1 (DintI1682 and DintI1665 signatures) and F36*:A4:B1
(complete intI1 gene; 1,014 bp). This sequence type was of additional interest due to
the occurrence of Australian avian and human ST648 isolates in EnteroBase. A phyloge-
nomic analysis, which included 43 Australian ST648 reference genome sequences with
appropriate metadata, identified several sublineages of O1:H6 isolates, an O45:H6 line-
age, and a cluster of O153:H42 isolates from humans and gulls (Fig. 3). A class 1 inte-
grase gene was detected in 28 ST648 isolates, and 19 (68%) of these carry the DintI1682
signature (seemingly) on F1:A1:B1 plasmids. Several isolates carry a full copy of intI1
(1,014 bp; 4 isolates; multiple F RSTs), DintI1746 (2 isolates; F1:A1/A6:B20 associated),
DintI1665 (1 isolate; F1:A1:B1), DintI1869 (1 isolate), and DintI1962 (1 isolate), highlighting
the potential of using intI1 deletions as epidemiological markers to track bacteria and

FIG 3 Phylogenetic distribution of Australian Escherichia coli ST648 isolates with associated metadata and genotyping. Clades including isolates from this
study are colored. Darker colors represent positive hits within the genotyping data. The tree scale is presented as SNVs per site. The single nucleotide
polymorphism (SNP) analysis spans an average of 70% of each whole-genome sequence. UTI, urinary tract infection.
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the mobile elements that carry these markers (Fig. 3). Two human-sourced isolates
(IA1971AA and IB9092AA) from the EnteroBase data set were positive for senB, critically
in combination with a DintI1746 signature that also correlates with ST131, ST12, and
ST10 isolates observed in our collection.

Carbapenemase-encoding plasmids of subtype HI2 pST3 are important distributors
of multiple-drug resistance. In our collection, isolates simultaneously carrying HI2 plas-
mid sequence type 3 (pST3) plasmids, DintI1931 signatures (among others [Table S2]), and
the b-lactamases blaIMP-4 and blaOXA-1 were prevalent. The complete sequences of several
HI2 pST3 plasmids were resolved using long-read sequencing, including pCE1681_A
(ST216; HI2 pST3), p1566m1 (ST58 O100/O154:H25; HI2 ST3), and p1585m1_A (ST58
O100/O154:H25; HI2 nontypeable). Note that it was common for HI2 plasmid subtyping
to fail when the signature DintI1931 was present, particularly in ST58 and ST1139 isolates;
however, HI2 plasmid replicons were detected in these strains. Plasmid p1585m1_A was
included to represent this mistyping. Comparisons of the annotated plasmid sequences
and phylogenetic analyses were used to test the similarity of these pST3 plasmids to
each other and to reference HI2 plasmids belonging to HI2 pST1 and pST3 (Fig. 4A and
C). The HI2 pST3 plasmids sourced from Australian silver gulls grouped distantly from
other HI2 pST3 plasmids (Fig. 4B). An analysis of variant sites attributed this segregation
to a set of over 100 single nucleotide variants (SNVs) that were confined to the ter region
in these plasmids. Reanalysis of HI2 pST3 plasmids with the ter region excluded (approxi-
mately 10 kb) placed the plasmids among a clade of three Australian HI2 pST3 plasmids
of porcine origin, in a cluster separated by approximately 25 SNVs (data not shown). This
suggests that an endemic Australian lineage of HI2 pST3 plasmids exists, mobilizing AMR
in multiple settings, and that the ter operon(s) may be utilized to distinguish future plas-
mids (25, 38).

An alignment (Fig. 4C) of the Australian gull HI2 pST3 plasmid lineage with pSTM6-
275 (GenBank accession number CP019647.1) (39), a representative plasmid isolated
from Salmonella enterica in an Australian commercial swine operation, demonstrated a
consistent plasmid structure with the acquired ARGs and MGEs linked to similar sites in
the backbone. In contrast, two separate regions of the plasmid (;100 kb) comprising
the plasmid backbone and acquired cargo were absent from the nontypeable HI2 plas-
mid of ST58. Annotation of two class 1 integron structures in the HI2 pST3 plasmids
resolved here (Fig. 4A) determined that the cassette contents of integron structures in
p1566m1_A were almost identical to those of the integron hosting blaIMP-4 in an HI2
ST1 plasmid in Australian Salmonella enterica serovar Typhimurium from cats (40).
Points of difference included the following: (i) the genes aacA4, catB3, and arr3
remained present but were linked here to the DintI1931/mphA class 1 integron structure
alongside blaOXA-1; (ii) blaIMP-4 appeared as a lone cassette in a class 1 integron structure
bounded by IS26 elements in a distinct insertion point near tetAR; (iii) an N plasmid rep
gene had been captured on these plasmids, which can be seen in the correlation
between HI2 and N replicon typing from our collection; (iv) the class 1 integron
resolved within the nontypeable HI2 plasmid had cassettes in the order intI1-blaIMP-4-
qacG-aacA4-catB3, matching the gene organization reported previously for the HI2 ST1
plasmid (11), although here, it did not include the mphA-associated region; and (v)
from genotyping, it appears that the presence of mer was highly variable on these
plasmids (Fig. 2). These observations point to ongoing evolution shaping these impor-
tant drug resistance plasmids.

F plasmid subtypes mobilizing key uropathogen virulence genes. Using the cri-
teria described previously by Liu et al. (17), 18% (n = 74) of our collection carried a
ColV F virulence plasmid. This remarkably high level of carriage warrants further scru-
tiny, with at least 20 sequence types being implicated in carriage. To determine the
presence of known virulence regions and an F plasmid backbone, we compared repre-
sentative isolates from each sequence type and RST combination against plasmid
pSDJ2009-52F (GenBank accession number MH195200.1), an F2:A2B1 ColV plasmid
taken from a clinical Australian E. coli ST58 isolate (24) (Fig. 5). All but the F1:A1:B2
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representative showed high coverage of the reference plasmid backbone and viru-
lence regions.

The F2:A2B1 representatives were distinctly similar to the clinically sourced reference
plasmid, highlighting a concerning connection between microbiomes. Additionally, inves-
tigation into the AMR region of isolate CE1572 (ST88) revealed an interesting distinction
not clearly discernible from the otherwise highly similar visual comparison presented in
Fig. 5. These plasmids host an unusual CRR distinguished by a Tn21/Tn1721 fusion trans-
poson, a class 1 integron hosting dfrA5, and several IS26-mediated structures hosting
blaTEM, sul2, and strAB in a Tn6029 structure (24). Tn6029 and variants of it have a history
of association with plasmids found in zoonotic pathogens (27, 41–43). The ST88 lineage,

FIG 4 Analysis of HI2 pST3 plasmids and comparison to pST1 plasmid pIMP4-SEM1. (A) The annotation of p1566m1-A is presented on the outer ring, with
an internal BRIG alignment of all other HI2 pST3 plasmids plus pIMP4-SEM1. (B) SNV phylogeny of pST3 plasmid sequences. (C) Linear annotated diagrams
of key HI2 plasmids coupled with BLASTn alignment data visualized using EasyFig. Note that the short-read whole-genome sequence of isolate 1566m1
was excluded from other analyses due to quality cutoffs. ORF, open reading frame.
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represented by CE1572, was notable in that it still carried sul1, unlike in pSDJ2009-52F,
where it had been removed by IS26 activity, suggesting that it is a progenitor of the clini-
cal structure.

Using the senB toxin gene as a proxy for identifying isolates carrying pUTI89-like F
virulence plasmids, we aligned senB-positive isolates of various sequence types in this
collection, plus two ST648 isolates from EnteroBase notably sharing key gene signa-
tures, against reference plasmid pUTI89 (GenBank accession number CP000244.1)
(Fig. 6). Outside singular exceptions of apparent DNA loss, plasmids of subtypes F1, F2,
F29, F31, F36, and F51 all appeared to carry the known virulence genes found on
pUTI89, with notably high synteny shown between the reference backbone and iso-
lates hosting both F2 and F29 subtype plasmids. The loss of alignment coverage at
IS26 in many of the isolates indicates potential AMR gene capture, a notable observa-
tion given that diverse E. coli isolates that carry pUTI89 are often pansusceptible and
carry restricted plasmid contents (44).

Antibiotic resistance phenotypes were concordant with genotypes. Phenotypic
resistance was determined against 16 antibiotics (Table S1), with the highest rates of
resistance belonging to ampicillin (99.3%) and cephalothin (93.2%). Phenotypic resist-
ance to streptomycin (58.0%), sulfonamides (57.3%), sulfamethoxazole-trimethoprim
(52.6%), and tetracycline (50.9%) was also observed. With the exception of colistin
(only 2 isolates), all tested antibiotics had a resistance rate of .16% (i.e., a minimum of
70/425 isolates were phenotypically resistant to each antibiotic), an observation that
attests to the MDR status of E. coli inhabiting the gastrointestinal tract of silver gulls.

FIG 5 Alignment of ColV-positive isolates against plasmid pSDJ2009-52F. The annotation of pSDJ2009-52F is presented around a BRIG alignment of
representative whole-genome sequences containing ColV plasmid genotypes. Rings are grouped by F RST.
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Except for streptomycin (discordance of 32.8%), there was concordance between phe-
notypic antimicrobial susceptibility (AS) testing and WGS-based AS prediction
(Table S4). The discordance for streptomycin was due to “intermediate” phenotypes
with no gene detection and was primarily associated with isolates that carry blaCMY in
103 of the 127 isolates with intermediate phenotypes.

Chloramphenicol, with 7.55% discordance, was associated with the detection of
catB family genes in isolates that were phenotypically susceptible. The only other anti-
microbial tested with a genotype/phenotype discordance rate higher than 5% (6.13%)
was ceftazidime. In this case, it appeared that blaCTX-M-14 (12/14 isolates) was not confer-
ring its expected resistance. Regarding colistin, only two isolates demonstrated resist-
ance, one of which was positive formcr-1. Only potential mutations in pmrAB explained
resistance in the other. Unknown mutations were also used to provide a potential rea-
son for resistance in cases of intermediate or resistant phenotypes to nalidixic acid. We
had 22 such isolates and found mutations in quinolone resistance-determining regions
(QRDRs) in each. Interestingly, we frequently detected a parC E62K mutation, with it
being the only detected mutation in 10 isolates.

The results of Mastdiscs corresponded well with the phenotype unless the carbapene-
mase genes, including blaOXA-1 or blaOXA-10 alleles, were present. The presence of these
b-lactamases resulted in differing results across the collection. Of the remaining 252
tested isolates, phenotypic results of 249 correspond with the predicted AMR from WGS.
Phenotypic data are presented against the collection phylogeny in Fig. S1.

Final assessment. Across the collection, lineages either were often multiple-drug
resistant or carried a heavy virulence gene load. This observation suggests that line-
ages carrying both were uncommon at the time of isolation, but examples like ST624
and ST38 were exceptions. The general trend of isolates favoring heavy AMR carriage
or heavy virulence carriage indicates that multiple-drug resistance was often mobilized
by different elements to virulence genes, with HI2 pST3 plasmids being responsible for
the most severe AMR carriage. The genes blaIMP-4 and blaSHV-12 were centered around
the Five Islands site, indicating that anthropogenic contact could play a role in AMR
gene persistence for these critical resistances.

FIG 6 Alignment of senB-positive isolates against plasmid pUTI89. The annotation of pUTI89 is presented around a BRIG alignment of senB-positive whole-
genome sequences. Two ST648 reference sequences were included.
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DISCUSSION

Here, we demonstrate that bird populations adapted to forage from landfills, despite
never receiving antimicrobials to treat infection, carry a full spectrum of highly and crit-
ically antibiotic-resistant E. coli lineages. Among others, ST10, ST648, ST351, ST1139,
ST457, ST216, ST963, ST93, ST23, ST88, and ST5857 should be monitored as potential
emerging human pathogens due to the capture of critical ARGs and virulence gene
cargo, potentially on ColV and pUTI89-like F virulence plasmids. Studies of E. coli ST457
and ST216 showing evidence of interspecies transmission and carriage of drug resist-
ance plasmids have been reported (11, 12), and ST58 has been flagged as a sequence
type of emerging significance (24, 45). Despite the distance separating the sampled
sites along the New South Wales coast, the transfer of lineages between the separate
breeding populations is suggested based on the detection of isolates of the same ST
and serotype and hosting the same mobile genetic elements (e.g., ST624, ST457, or
ST351). A notable exception, however, is meropenem resistance, mediated by the blaIMP

genes, which was sourced exclusively from Five Islands. Based on previous observations
of gull diet at these sites, it is likely that the Five Islands birds have the most frequent
contact with contaminated food sources, in proximity to a municipal sewage plant and
landfill sites (46).

A previous study used fecal samples taken from adult gulls from 2015 to 2017 from
across Australia (9). A comparison of the E. coli sequence types isolated in both studies
demonstrates the persistence of numerous sequence types at the three New South
Wales sites and elsewhere but also demonstrates potential site-specific clusters (Fig. 7).
Across the two studies, a total of 30 sequence types were found to be conserved,
approximately one-third of the total sequence type diversity in either study. Whether
this infers that some drug-resistant E. coli isolates are only transient colonizers of the
gull microbiome remains to be determined. Previous work has demonstrated that
Salmonella species can persist in the soil of gull breeding sites (47), suggesting that
certain sites could become hot spots for certain microbes and MGEs.

We provide substantial evidence from these data of the diversity and abundance of
atypical integrons where the class 1 integrase is subjected to multiple IS-mediated dele-
tions as well as IS-mediated decay of the 39-CS, providing a sage reminder to exercise
caution when setting cutoffs while interrogating genomic data. The conspicuously low
abundance of merA, in comparison to intI1 and sul1 particularly, also points to the
ongoing evolution of CRRs. Multiple-drug resistance was common among the critically
resistant isolates within our collection and strongly correlated with the presence and di-
versity of class 1 integrons. The most common integron structures disseminated interna-
tionally are associated with individual sul genes (primarily sul1, sul2, or sul3) (29, 48, 49).

FIG 7 Histogram of counts of sequence types from studies of E. coli in Australian silver gulls in 2012 and from 2015 to 2017. Included are sequence types
with more than 10 isolates total from either study.
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The most dominant type of integron in our collection was the sul1-associated class 1
integron hosting the macrolide inactivation gene cluster, defined by the capture of a
region carrying IS6100-mphR-mrx-mphA. This dominant integron type has several nota-
ble characteristics and has been reported in clinical settings in Australia (34, 35, 50).

The most intriguing meropenem resistance vectors identified were HI2 pST3 plas-
mids. These plasmids were significant both for the range of E. coli sequence types that
harbored them and for the diversity of intI1 variants associated with them. This plasmid
subtype is a noted vector for antimicrobial resistance genes, mostly in the Asia-Pacific
region (25, 51, 52). In Australia, HI2 pST3 plasmids have been reported to mobilize a
range of resistance in both E. coli (38) and Salmonella enterica serovar Typhimurium
(25) in agricultural settings. Here, we report HI2 pST3 plasmids acquiring known class 1
integron structures hosting blaIMP-4 and the further capture of blaOXA-1. Phylogenomic
analyses of these plasmids also revealed a set of variant sites within the ter region of
the HI2 plasmid backbone that can serve to distinguish the plasmid lineage resolved
here from other plasmids in the future.

Many molecular signatures, most of which are likely the product of deletion events
caused by insertion elements, particularly IS26, were also identified here. These trunca-
tions were notable for the fact that they do not affect the cassette promoter but have
implications for cassette shuffling via the loss of integrase activity. Tracking these deleted
sequences may have merit from an epidemiological standpoint and highlights potential
pitfalls in using PCR-based methods to detect intI1 and class 1 integrons more broadly.
This was highlighted particularly by associations between blaIMP-4 and intI1D931 and
qnrS1/intI1D1006, which were responsible for numerous meropenem- and ciprofloxacin-re-
sistant isolates, respectively. Isolates hosting intI1D931 demonstrated the broadest range
of phenotypic resistance. Our work highlights pitfalls in standard automated annotation
and gene detection pipelines in being able to reliably characterize CRRs.

In our E. coli collection, different combinations of virulence genes were carried by
different lineages, with some examples like ST648 (group F) being notably poor in rec-
ognized virulence potential. The F plasmids designated ColV and pUTI89-like/senB pos-
itive are key components for the success of several extraintestinal pathogenic E. coli lin-
eages, particularly within the classically pathogenic phylogroups B2 and D/F, with
additional considerations for the cocarriage of iron uptake systems represented by irp2
and fyuA, which were consistently cocarried within the collection (53). The virulence
content of these plasmids includes genes for iron acquisition, serum resistance, and bio-
film formation, key attributes needed to colonize host gastrointestinal and extraintestinal
sites (54). With the unusually high carriage of ColV plasmids within phylogroups B1 and C
as well as the rare carriage of both plasmid types in phylogroup A, there is a broad dis-
semination of pathogenic potential among critically drug-resistant E. coli isolates hosted
by Australian silver gulls. Although these ST648 isolates were poor in recognized virulence
potential, locally sourced whole-genome sequences suggest a propensity to cause extra-
intestinal disease in humans and the carriage of similar CRRs.

The identification of ColV and pUTI89-like plasmids in potential ExPEC lineages
inhabiting the Australian silver gull populations was a major observation in this study.
pUTI89-like virulence plasmids are not known for their ability to carry AMR genes and
are typically associated with lineages of E. coli that are pansensitive (44). However,
pUTI89-like plasmids carry a copy of IS26, an insertion element noted for mobilizing an-
tibiotic resistance genes and forming CRRs. Our analyses indicate that pUTI89 and var-
iants of it carry antibiotic resistance genes (Fig. 6). It remains premature to speculate if
the gastrointestinal tracts and feeding behaviors of gulls overtly influence plasmid and
genome evolution. A limitation of our study is that we biased our sample collection to-
ward isolates that display resistance to clinically important antibiotics. Studies are
needed to determine if carriage rates of virulence attributes in E. coli isolated without
an antibiotic are comparable. Further studies should seek to understand which E. coli
lineages are natural colonizers of urban-adapted birds, whether drug-resistant and
human-pathogenic E. coli lineages persist during the life span of individual birds, and
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if birds play a significant role in advancing the evolution of virulence and antibiotic
resistance in clinically important enterobacterial populations.

In conclusion, high-resolution genomic methods were used to examine the diver-
sity of E. coli lineages resistant to critically important antimicrobials from Australian sil-
ver gulls living in human-associated and natural environments. Genomic diversity was
a feature of the study not only from a chromosomal perspective but also in resistance
and virulence gene profiles, integron structures, and plasmid lineages. Our analysis
provides indications that E. coli isolates—resistant to critically important antimicrobials
and living in gulls—frequently harbor virulence factors and are often equipped with a
rich toolkit for horizontal gene transfer. Taken together, our results support the hy-
pothesis that gulls and likely other urban wildlife visit anthropogenic sites contami-
nated by antibiotic residues and drug-resistant microbial populations, become colon-
ized, and transmit these diverse E. coli lineages. The diversity of integron signatures
points to evidence of an environment in the gull microbiome that supports the
ongoing evolution of genetic vectors that harbor drug resistance and virulence genes.

MATERIALS ANDMETHODS
Sampling and strain isolation. The sampling of Enterobacteriaceae from Australian silver gull sam-

ples in 2012 has been described previously (8). Briefly, cloacal samples (n = 504) were collected from gull
chicks at three sites in New South Wales, Australia. Cloacal samples were enriched in buffered peptone
water and then cultured on three MacConkey agar plates supplemented with one of the following clini-
cally important antibiotics (CIAs): cefotaxime (2 mg/L), meropenem (0.125 mg/L), or ciprofloxacin
(0.05 mg/L). From these, a total of 425 Escherichia coli isolates were obtained. Regarding the sites, Five
Islands Nature Reserve (FI) (n = 231) (34°299S, 150°569E) sits off the coast of Port Kembla, 10 km from the
city of Wollongong (population, 295,000), and hosts a breeding colony known to feed on human refuse
almost exclusively. White Bay in Sydney (WB) (n = 114) (33°869S, 151°189E) acts as a second human-asso-
ciated site. Montague Island (MI) (n = 80) (36°159S, 150°149E) is a nature reserve about 9 km from
Narooma, a small village on the South Coast of NSW home to about 3,300 people.

Phenotypic antimicrobial susceptibility testing. A total of 424 strains were tested for susceptibility
to a set of 15 antimicrobials (see Table S5 in the supplemental material) using the disk diffusion method
on Mueller-Hinton agar (Oxoid, UK) with the E. coli ATCC 25922 control strain. Nonsusceptibility was
determined according to Clinical and Laboratory Standards Institute (CLSI) guidelines (55, 56). Colispot
tests were used to determine susceptibility to colistin as disk diffusion is not a suitable method for this
antibiotic (57). A Mastdiscs Combi test for the evaluation of AmpC and extended-spectrum-b-lactamase
(ESBL) production was performed for a total of 312 isolates, including all isolates from media containing
cefotaxime and selected isolates from media with ciprofloxacin where the ESBL/AmpC phenotype was
expected according to preliminary PCR screening.

DNA isolation and whole-genome sequencing. Genomic DNA for short-read sequencing was iso-
lated using the NucleoSpin tissue kit (Macherey-Nagel GmbH & Co., Düren, Germany) according to the
manufacturer’s protocols. DNA libraries were prepared using a Nextera XT DNA sample preparation kit
with modifications (37) and sequenced on a NovaSeq platform (Illumina, San Diego, CA, USA), resulting
in 424 successful E. coli whole-genome sequences. Genomic DNA of two E. coli ST58 isolates was
extracted using a NucleoSpin microbial DNA kit (Macherey-Nagel) and used to prepare DNA libraries
according to standard Pacific Biosciences (PacBio) protocols. Sequencing was performed on a Sequel
platform (PacBio, USA). Only one of these isolates (1585m1) is also represented in the short-read assem-
blies and phenotypic testing.

Genotyping. Detection of individual genes and sequence types and in silico serotype prediction determi-
nation were performed using ARIBA (58) in combination with ARIBAlord (https://github.com/maxlcummins/
pipelord/tree/master/aribalord). The following gene databases were included: PlasmidFinder (59), ResFinder,
and VirulenceFinder (60). Insertion sequences were identified with ISfinder (61). Plasmid multilocus sequence
typing was performed using the Centre for Genomic Epidemiology server (59) (https://cge.cbs.dtu.dk/
services/pMLST/). Phylogrouping was performed using the ClermontTyping server (62) (http://clermontyping
.iame-research.center/). Point mutations conferring antimicrobial resistance were identified with PointFinder
(63) through ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/).

Phylogenetics. Sequences were confirmed to be E. coli using Kraken2 (64). A maximum likelihood
phylogeny was constructed using PhyloSift (65) and FastTree 2 (66), using standard settings for both and
the –gtr flag in FastTree 2 to use a general time-reversible model. Phylogenetic analyses of sublineages
and plasmid sequences were performed using the Harvest suite (67). All visualization of phylogenetic trees
was performed in iTOL (68). Reference whole-genome sequences were sourced from EnteroBase (69)
(https://enterobase.warwick.ac.uk/species/index/ecoli). Reference plasmid sequences were sourced from
GenBank (70) (https://www.ncbi.nlm.nih.gov/genbank/).

Comparative genomics. Whole-genome alignments were performed with progressiveMauve (71)
for analytical purposes. Circular and linear visualizations of genome comparisons were generated with
BRIG (72) and EasyFig (73), respectively. Annotations and their visualizations were handled using
SnapGene (https://www.snapgene.com/). Automated annotations were generated by RASTtk (74).
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Data availability. Sequences have been deposited under BioProject accession number PRJNA630096.
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