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Rheumatic Diseases
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Metabolic pathways mediate lineage specification
within the immune system through the regulation of glu-
cose utilization, a process that generates energy in the form
of ATP and synthesis of amino acids, nucleotides, and
lipids to enable cell growth, proliferation, and survival.
CD4+ Tcells, a proinflammatory cell subset, preferentially
produce ATP through glycolysis, whereas cells with an anti-
inflammatory lineage, such as memory and regulatory T
cells, favor mitochondrial ATP generation. In conditions of
metabolic stress or a shortage of nutrients, cells rely on
autophagy to secure amino acids and other substrates,
while survival depends on the sparing of mitochondria and
maintenance of a reducing environment. The pentose
phosphate pathway acts as a key gatekeeper of inflamma-
tion by supplying ribose-5-phosphate for cell proliferation
and NADPH for antioxidant defenses. Increased lysosomal
catabolism, accumulation of branched amino acids, glu-
tamine, kynurenine, and histidine, and depletion of glu-
tathione and cysteine activate the mechanistic target of
rapamycin (mTOR), an arbiter of lineage development
within the innate and adaptive immune systems. Map-
ping the impact of susceptibility genes to metabolic
pathways allows for better understanding and thera-
peutic targeting of disease-specific expansion of proin-
flammatory cells. Therapeutic approaches aimed at
glutathione depletion and mTOR pathway activation
appear to be safe and effective for treating lupus, while
an opposing intervention may be of benefit in rheuma-
toid arthritis. Environmental sources of origin for
metabolites within immune cells may include microbiota

and plants. Thus, a better understanding of the path-
ways of immunometabolism could provide new insights
into the pathogenesis and treatment of the rheumatic
diseases.

Introduction

Metabolic pathways exert profound influence over
the development of unicellular and multicellular organisms.
Engagement of antigen receptors and costimulatory mole-
cules, growth factors, hormones, cytokines, environmental
factors, and other regulatory cues shape the development
of the immune system by mechanisms of action that lead to
reprogramming of metabolic gene expression in a cell
type–specific manner. In fact, the heterogeneity of cells
within both the innate and the adaptive immune systems
depends on the supply of metabolites that allow for lin-
eage-specific differentiation. This review integrates recent
discoveries in metabolomics and genetics with immunologic
pathways of pathogenesis to delineate checkpoints for the
diagnosis of autoimmune rheumatic diseases and elucidate
additional targets for the treatment of these diseases.

Role of metabolic pathways as regulators of the
immune response and inflammation

Cells face a tantalizing choice between speed and
efficiency when selecting metabolic pathways to meet their
needs for proliferation, differentiation, and survival. Lin-
eage specification within the immune system depends on
metabolic pathways that regulate glucose utilization for
generation of energy in the form of ATP and for synthesis
of amino acids, nucleotides, and lipids to enable cell
growth, proliferation, and survival. While rapidly prolifer-
ating proinflammatory CD4+ Tcells preferentially produce
ATP through glycolysis, cells with an antiinflammatory
lineage, such as memory and regulatory T cells, favor the
generation of mitochondrial ATP (1). During conditions of
metabolic stress and a shortage of nutrients, cells rely on
autophagy of proteins and organelles to secure amino acids
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and other substrates, while survival of the cells depends on
the sparing of mitochondria and maintenance of a reduc-
ing environment. The pentose phosphate pathway (PPP)
is a key gatekeeper of inflammation, acting via the supply
of ribose-5-phosphate (R5P) for cell proliferation and
NADPH for antioxidant defenses (2).

The PPP enzyme transaldolase (TAL) exerts con-
trol over the production of NADPH, which maintains
glutathione (GSH) in a reduced state in human T cells
(3,4). As originally documented, TAL regulates the eleva-
tion of mitochondrial transmembrane potential (DΨm), a
process that has also been termed mitochondrial hyper-
polarization (MHP) and identified as a checkpoint of T

cell activation and apoptosis (5). Although MHP occurs
transiently during T cell activation, it persists in patients
with systemic lupus erythematosus (SLE), causes the
depletion of GSH and ATP, and leads to a predisposition
to proinflammatory cell death via necrosis (6).

During periods of metabolic stress and nutrient
deprivation, increased catabolism in lysosomes, accu-
mulation of branched amino acids, glutamine, kynure-
nine, and histidine, and depletion of GSH and cysteine
activate the mechanistic target of rapamycin (mTOR),
a kinase that has recently been recognized as an arbiter
of lineage development within both the innate and
the adaptive immune systems (Figure 1). Targeting

Figure 1. Schematic diagram of metabolic pathways controlling activation and lineage specification in the immune system. Depicted surface receptors and
intracellular transducers exemplify those that operate in Tcells, regulate or are regulated by metabolic pathways, and exhibit genetic linkage with systemic
lupus erythematosus (SLE) and other autoimmune diseases. Characteristics of mitochondrial dysfunction include blocked electron transport chain (ETC)
activity, elevated mitochondrial transmembrane potential (DΨm) or mitochondrial hyperpolarization, and diminished mitophagy, which contribute to accu-
mulation of oxidative stress–generating mitochondria and depletion of ATP and glutathione (GSH). Reactive oxygen species (ROS) are generated by elec-
tron (E) transfer to O2 at complex I. These metabolic changes underlie the activation of mechanistic target of rapamycin complex 1 (mTORC1), which
promotes glycolysis in CD4+ Tcells, further enhancing the accumulation of mitochondria in necrosis-prone, proinflammatory double-negative (DN) Tcells
and depleting Treg cells. Thus, key metabolic features of Tcell dysfunction in SLE are balancing of energy production between the mitochondrial ETC and
glycolysis, and securing of amino acids during starvation through autophagy of proteins and organelles while mitochondria are selectively retained. The direc-
tion of signaling is indicated by arrows (red = increase, blue = decrease). Drugs that affect metabolism are shown in green. IL-6 = interleukin-6; NAC = N-
acetyl-cysteine; Drp1 = dynamin-related protein 1; HCQ = hydroxychloroquine; TCA = tricarboxylic acid; 2DG = 2-deoxyglucose; Acetyl-CoA = acetyl-coen-
zyme A; VLDLR = very low-density lipoprotein receptor; MMF =mycophenolate mofetil; LDLR = low-density lipoprotein receptor; G6P = glucose-6-phos-
phate; PPP = pentose phosphate pathway; G6PD = glucose-6-phosphate dehydrogenase; 6PGL = 6-phosphogluconolactonase; GSSG = oxidized
glutathione; TAL = transaldolase; 6PG = 6-phosphogluconate; 6PGD = 6-phosphogluconate dehydrogenase; AMPK = AMP-dependent protein kinase;
PI3K = phosphatidylinositol 3-kinase; R5P = ribose-5-phosphate; PD-1 = programmed death 1; Tfh = follicular helper Tcells.
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the immunometabolism for therapeutic interventions
requires a detailed map of the interconnected pathways
supporting disease-specific expansion of proinflamma-
tory cells (Figure 1). Recent approaches targeting the
depletion of GSH and activation of mTOR appear to
be safe and effective in the treatment of lupus (7),
while an opposing intervention may benefit patients
with rheumatoid arthritis (RA) (8). Importantly,
metabolites within immune cells ultimately derive from
the environment; thus, comprehensive profiling may
pinpoint microbiota and plants as sources of origin.
Therefore, cultivating a better understanding of the
pathways of immunometabolism could provide new
insights into the pathogenesis and treatment of autoim-
mune rheumatic diseases.

Integration of genetic and environmental factors with
immunometabolic pathways in analyses of autoimmune
disease pathogenesis

Both genetic and environmental factors contribute
to the pathogenesis of autoimmune diseases (9). However,
with the exception of complement gene deletions, most of
the lupus susceptibility loci identified in genome-wide
association studies (GWAS) confer only minor changes in
disease risk (10). Integrated analyses in which genetic fac-
tors are included point to the relevance of a limited num-
ber of metabolic pathways in autoimmune rheumatic
diseases (Table 1; specific source citations listed in Supple-
mentary Table 1, available on the Arthritis & Rheumatology
web site at http://onlinelibrary.wiley.com/doi/10.1002/art.

Table 1. Metabolic pathways affected by systemic lupus erythematosus susceptibility genes*

Metabolic pathway, gene Primary function Metabolic pathway, gene Primary function

Glucose metabolism
TCF7 Transcription
TLR7 RNA binding Adipogenesis
SOCS1 Signal transduction ARID5B† Transcription
IRF5† Transcription CXorf21 Unknown
IRF7 Transcription STAT4† Transcription
IRF8† Transcription IL12A Cytokine
LYN Tyrosine kinase CD80 Signal transduction
SLC15A4 Histidine transporter Apoptosis
PRKCB Protein kinase TNFSF4 Signal transduction
BLK† Tyrosine kinase ELF1 Transcription
ITGAM Cell adhesion Autophagy/mTOR
IFIH1 RNA helicase TNIP1‡ Signal transduction
TYK2† Tyrosine kinase IRAK1† Signal transduction
IL10 Cytokine miR146a RNA processing
IKZF2 Transcription ATG5† E3 ubiquitin ligase
PRPS2 PRPP synthesis UHRF1BP1 DNA methylation

Lipid metabolism WDFY4† E3 ubiquitin ligase
BANK1 Scaffold protein ATG16L2 Unknown
AFF1 Transcription PLD2 Phospholipid hydrolysis
RASGRP3 GTPase signaling PRDM1 Transcription
JAZF1† Transcription PTPN22† Tyrosine phosphatase
XKR6 Unknown RAD51B† DNA repair
DHCR7 Cholesterol reductase TET3 DNA methylation
SH2B3† Signal transduction DRAM1 Lysosomal function

Mitochondrial metabolism TNFAIP3†‡ Ubiquitin ligase
TREX1 DNA exonuclease PPP2CA Protein phosphatase
NMNAT2 NAD(P) biosynthesis UBE2L3 Ubiquitin conjugation
CSK Tyrosine kinase SLC15A4 Histidine transport
PDHX Pyruvate dehydrogenase Clearance of cell death debris

Oxidative stress C1Q Ig binding
MSH5 DNA repair FCGR2B† Ig binding
IKZF1 Transcription FCGR2A† Ig binding
IKZF3 Transcription CR2 EBV receptor
ETS1† Transcription C1R Ig binding
NCF2 NADPH oxidase C4B Ig binding

mTOR C4A Ig binding
SLC15A4 Histidine transport DNASE1 DNA degradation

* Literature references are listed in Supplementary Table 1 (available on the Arthritis & Rheumatology web site at http://onlinelibrary.wiley.com/
doi/10.1002/art.40223/abstract). PRPP = phosphoribosylpyrophosphate; mTOR= mechanistic target of rapamycin; EBV = Epstein-Barr virus.
† Gene also associated with rheumatoid arthritis.
‡ Gene also associated with psoriatic arthritis.
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40223/abstract). These pathways include the following: 1)
glycolysis; 2) the mitochondrial tricarboxylic acid (TCA)
cycle, electron transport chain (ETC), and oxidative phos-
phorylation, which provide energy in the form of ATP; 3)

the pentose phosphate pathway (PPP), which is an essen-
tial source of R5P for the production of nucleic acids in
support of cell proliferation, and NADPH for lipid biosyn-
thesis and maintenance of a reducing environment and

Figure 2. Interactome of lupus susceptibility genes, constructed using Strings software (version 9.0; http://string-db.org) via evidence-based pro-
tein–protein interactions. A, Panel of imputed genes linked to the pathogenesis of systemic lupus erythematosus via polymorphic genetic markers
or functionally relevant mutations. B, Panel of imputed genes (expanded from the panel in A) based on evidence allowing for inclusion of 10 addi-
tional interactors, appearing to center around the mechanistic target of rapamycin–autophagy pathway.
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protection against oxidative stress (2); 4) lipid metabolism
and adipogenesis; 5) uptake and biosynthesis of amino
acids; and 6) selection of cell death pathways between the
physiologic process of apoptosis and pathologic process of
proinflammatory cell necrosis and clearance of cell death
debris (Figure 1).

As shown in Figure 2A, the evidence-based inter-
actome of lupus susceptibility genes reveals a network of
relationships that are connected through kinases and
phosphatases. The serine/threonine kinase mTOR has
been imputed to play a role in this network on the basis
of observations of lupus development in patients harbor-
ing activating gene mutations (11). Allowing for the
inclusion of 10 more interactors in this network leads to
recentering of the network around the mTOR-autophagy
pathway (Figure 2B). Notably, several lupus susceptibil-
ity genes have also been associated with RA and with
psoriatic arthritis (PsA) (Table 1 and Supplementary
Table 1). Construction of a map of these integrated
metabolic and genetic pathways, as shown in Figure 1,
could provide further insights into the pathogenesis of
autoimmunity. Of note, the influence of metabolic genes
on rheumatic diseases is not solely exerted through the
immune system. In fact, the susceptibility genes often
indirectly regulate the immune system by influencing the
metabolism of adipocytes (12), hepatocytes (13), or
endothelial cells (14). It is intriguing to consider that
individual single-nucleotide polymorphisms that, by
themselves, confer a relatively minor genetic risk can
coalesce to bring about major changes in metabolite
fluxes, such as shifting glucose utilization from glycolysis
to the PPP, TCA cycle, or biosynthesis of amino acids or
lipids (Figure 1). As noted in Table 1 (see also Supple-
mentary Table 1), most autoimmune disease susceptibil-
ity genes transduce metabolic signals.

Influence of the environment on the host
immunometabolome

Disease concordance rates in identical twins are
only 15% for RA (15) and 25% for SLE (16), which sug-
gests that environmental factors have an important role in
the pathogenesis of these autoimmune diseases (9). These
environmental factors include microbiota, such as viruses
and bacteria, and also nutrients, drugs, and toxins, such as
ultraviolet (UV) light, smoke, and other pollutants. Clearly,
each of these ecologic factors affect the metabolism, as
substrates, inducers, or suppressors of metabolic genes
both inside and outside of the immune system. With
respect to microbiota, both exogenous and endogenous
viral RNA and DNA activate intracellular nucleic acid
sensors (17). Viral RNA stimulates Toll-like receptor 7

(TLR-7)/TLR-8 as well as retinoic acid gene I (RIG-I)–like
helicases. RIG-I associates with the mitochondrial antiviral
signaling (MAVS) protein, which is then activated by
oxidative stress in patients with SLE (18).

In a study that performed metabolome finger-
printing of fresh stool samples, SLE patients were
effectively distinguished from matched healthy subjects
(19). Colonization with segmented filamentous bacteria
has previously been found to enhance interleukin-17
(IL-17) receptor signaling (20). A survey of 16S ribosom-
al RNA genes showed that body mass index (BMI)
has an effect on SLE at the level of the metabolite
landscape, but not at the level of microbial composi-
tion. Moreover, the depletion of N-acetyl-muramic acid
and N-acetyl-glucosamine, which are peptidoglycans of
the bacterial cell wall, is a distinguishing feature in
patients with SLE. Of note, N-acetyl-muramic acid is
an inducer of inflammatory arthritis (21). Accumulation
of plant-derived shikimate-3-phosphate and its respon-
siveness to N-acetyl-cysteine (NAC) may be attributed
to distortions in the activity of the PPP in SLE (22).

Disease-specific changes to the immunometabolism

Genetic and environmental factors influence the
immunometabolism in a disease-specific manner. Dif-
ferences among autoimmune syndromes are reflected
by preferential involvement of cell types that mediate
organ-specific proinflammatory changes, such as fibro-
blasts in scleroderma skin and fibroblast-like synovio-
cytes (FLS) in RA joints. Conspicuously, T cells in SLE
patients and T cells in RA patients show opposite
changes in redox signaling, as discussed in detail below
and depicted in Figure 3.

SLE. Role of oxidative stress as a central pathway of
lupus pathogenesis. Compartmentalized oxidative stress is
a prominent feature of metabolic changes in SLE (23). As
recently unveiled, oxidative stress underlies the interferon
(IFN) signature via the stimulation of MAVS protein

Figure 3. Contrasting influence of oxidative stress between systemic
lupus erythematosus (SLE) and rheumatoid arthritis (RA) in terms of
pentose phosphate pathway activity, depletion of glutathione (GSH)
and NADPH, and generation of pathogenic antinuclear antibodies
(ANAs) and antiphospholipid autoantibodies (aPL). Peptidylarginine
deiminase (PAD) converts arginine to citrulline and triggers immuno-
genicity of self antigens and production of anti–citrullinated peptide
antibodies (ACPAs) in patients with RA. DN = double-negative.
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oligomerization in SLE (18). Mitochondrial reactive oxy-
gen species are generated by electron transfer to molecu-
lar oxygen at complex I of the ETC (Figure 1). Oxidative
stress may also be triggered by environmental factors, e.g.,
UV light, drugs, viruses, and bacteria. Oxidized mitochon-
drial DNA initiates the IFN signature via netosis (24).
Paradoxically, NADPH production by the PPP is required
for NADPH oxidase activity in neutrophils (25), indicating
that glucose metabolism contributes to netosis. Expansion
of necrosis-prone double-negative (DN) T cells promotes
inflammation, a process that has been attributed to the
release of the proinflammatory cytokines IL-4 (26) and
IL-17 (27) and oxidized DNA and proteins (28). Alter-
natively, an inability to generate oxidative stress in
phagocytic cells due to mutations of NADPH oxidase
contributes to the development of discoid lupus (29).
Presumably, the persistence of bacterial DNA and their
CpG motifs triggers inflammation in these patients (30).

Balance of oxidative stress maintained by PPP and
GSH metabolism. A key feature of oxidative stress is the
depletion of GSH and cysteine, which is detectable in the
lymphocytes of SLE patients (6). Comprehensive metabo-
lome studies all point to the depletion of cysteine (22),
which is a molecular target and rationale for the use of
NAC for the treatment of SLE (31). Although the loss of
GSH suggests that it has a causative role in oxidative
stress, the underlying metabolic pathways remain incom-
pletely characterized. GSH depletion occurs subsequent
to a loss of NADPH and the accumulation of 3-carbon to
7-carbon sugars in SLE (22), indicating that glucose uti-
lization in the PPP is diminished or inefficient. In CD4+ T
cells, increased glycolysis may siphon glucose-6-phosphate
(G6P) away from the PPP and limit the production of
NADPH (32) (Figure 1). G6P is metabolized by G6P
dehydrogenase (G6PD) to generate NADPH in the
oxidative branch of the PPP. In a subsequent enzymatic
reaction, 6-phosphogluconate dehydrogenase also gener-
ates NADPH as well as R5P, an essential substrate for
nucleotide biosynthesis and cell proliferation (Figure 1).
Increased metabolic flux through the nonoxidative branch
of the PPP is supported by enhanced expression and enzy-
matic activity of TAL (2,33). The accumulation of sedo-
heptulose-7-phosphate, a unique substrate of TAL (2,34),
is also consistent with involvement of this PPP enzyme.

Kynurenine was found to be a top metabolic indica-
tor of SLE, when assessed relative to that in matched
healthy donors (22,35). Importantly, the accumulation of
kynurenine may stem from the depletion of NADPH,
which is a cofactor of kynurenine hydroxylase (36). This
mechanism is compatible with previous observations of the
concurrent reversal of NADPH depletion and kynurenine
accumulation in patients treated with NAC (22). Similar

to branched amino acids (valine, leucine, and isoleucine)
(37), kynurenine also stimulates mTOR complex 1
(mTORC1) (22). Thus, the NAC-responsive accumulation
of kynurenine is a biomarker of oxidative stress and a
metabolic trigger of mTORC1 activation in SLE (22).

Activation of the mTOR pathway elicited by oxida-
tive stress. Oxidative stress has been implicated in abnor-
mal sphingolipid production, a biomarker of lupus
nephritis (38). The sphingosine-1-phosphate (S1P) recep-
tor (S1PR) pathway involves mTORC1, acting to pro-
mote the development of Th1 cells over Treg cells (39)
(Figure 1). Accordingly, sphingosine kinase and S1PR-
mediated signaling have been targeted for the treatment
of autoimmunity in patients with multiple sclerosis, those
with lupus, those with RA, and those with inflammatory
bowel disease (Table 2; specific source citations are listed
in Supplementary Table 2, available on the Arthritis &
Rheumatology web site at http://onlinelibrary.wiley.com/
doi/10.1002/art.40223/abstract).

Contribution of oxidative stress to the immuno-
genicity of autoantigens.Oxidative stress triggers the immuno-
genicity of phospholipid antigens (40). As a model of
oxidative stress–induced production of antiphospholipid
antibodies (aPL), mice deficient in the PPP enzyme TAL
display oxidative stress in the liver, which is attributed to
mTORC1-dependent expression of NADH:ubiquinone
oxidoreductase core subunit S3 (NDUFS3), a pro-oxi-
dant subunit of ETC complex I. Notably, rapamycin
selectively blocks NDUFS3 expression and aPL produc-
tion in both TAL-deficient and lupus-prone mice. The
PON1 gene is secreted by the liver into the bloodstream,
where it degrades oxidized phospholipids. PON1 is
depleted in the serum of TAL-deficient mice, as well as
in the serum of patients with the antiphospholipid syn-
drome (APS) (41) and patients with SLE (42). There-
fore, PON1 may be a transmitter of metabolic liver
disease that instigates APS (43).

Dysregulated autophagy underlying oxidative stress.
During increased demand for or short supply of nutrients,
cells turn to alternative resources, such as degradation of
dispensable organelles via autophagy. Given that en-
hanced autophagy involves an increase in endosome traffic
and elevated expression of Rab4A, the resulting depletion
of dynamin-related protein 1 facilitates cell survival by
retention of oxidative stress–generating mitochondria
(44,45). In addition to oxidative stress, cell traffic to the
lysosomal membrane and sensing of amino acid suffi-
ciency account for the activation of mTORC1 (7).
Whereas mTORC1 is activated (31,33), mTORC2 is
reduced in patients with SLE (46) (Figure 1).

The involvement of mTOR in lupus pathogene-
sis is further supported by the therapeutic blockade of
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T cell hyperactivity and nephritis by rapamycin both in
mice and in patients with lupus (Table 2 and Supple-
mentary Table 2). The contraction of proinflamma-
tory, necrosis-prone DN T cells and expansion of Treg
cells have each been proposed as mechanisms of action
for rapamycin (26). Oxidative stress apparently lies
upstream of mTORC1 activation in T cells, since NAC
has similar immunologic effects (31). Activation of
AMP-dependent protein kinase (AMPK), which inhibits
mTORC1, has been shown to have clinical benefit in
mouse models of lupus (32). Moreover, mTORC1 is
activated in B cells (47) and promotes plasma cell
development in lupus-prone mice (48). Thus, similar to
that observed in T cells (33,44), mTORC1 activity and
autophagy are also enhanced in lupus B cells (48,49).

RA. Unlike in SLE (32), CD4+ T cells in RA
exhibit diminished glycolytic activity (50), thus rendering
them more inclined to utilize the PPP for production of
NADPH (8). CD4+ Tcells in patients with RA also show
diminished autophagy without changes in mTOR activity
(50). In contrast to the above-mentioned elevations in
NADPH levels, GSH is diminished in the peripheral
blood (51) as well as synovial Tcells (52) of patients with
RA. Whereas cysteine production is reduced, cystine and
homocysteine levels are elevated in the sera of RA
patients (53), reflective of the effects of oxidative stress
in RA. These findings suggest that oxidative stress is
compartmentalized and there is a discordance between
the NADPH and GSH pools in RA Tcells (Figure 3). In

contrast to the findings in SLE, peripheral blood RA T
cells do not exhibit MHP (6) and do not have increased
mitochondrial ETC activity (54).

The concept of increased glycolysis occurring in
RA is supported by observations of the accumulation of
lactate in RA joints (55). Combined studies of metabolic
flux and genetic factors in RA FLS unveiled evidence of
synovial hypoxia with mitochondrial dysfunction and a
switch to glycolysis. These findings apparently support
the typical RA characteristics of abnormal angiogenesis,
cellular invasion, and pannus formation. Importantly,
such metabolic changes were found to be correlated
with the extent of inflammation, as detected by hybrid
positron emission tomography/magnetic resonance imag-
ing (56). Although T cells do not show mTOR activa-
tion, monocytes and FLS do, and therefore these cells
have served as targets for therapeutic intervention with
rapamycin in animal models and in patients with RA
and those with juvenile RA (Table 2 and Supplementary
Table 2). In particular, rapamycin blocks the invasiveness
of FLS in RA patients (57). Deficiency of indoleamine
2,3-dioxygenase, which catabolizes tryptophan into
kynurenine, has been implicated in the pathogenesis of
RA and its animal model, type II collagen–induced
arthritis (CIA) (Table 3; specific source citations are
listed in Supplementary Table 3, available on the Arthri-
tis & Rheumatology web site at http://onlinelibrary.wiley.
com/doi/10.1002/art.40223/abstract). Changes in the levels
of tryptophan and kynurenine have also been shown in

Table 2. Pharmacologic targeting of metabolic pathways in the rheumatic diseases*

Drug Mechanism of action Molecular target Disease

Methotrexate Purine metabolism DHFR RA, PsA
Azathioprine Guanine metabolism TPMT/PRT RA
Mycophenolate Guanine synthesis IMPDH SLE
Leflunomide Pyrimidine metabolism DHODH RA
Apremilast PKA PDE4 PsA
Hydroxychloroquine Autophagy Lysosomal ATPase RA, SLE, PsA
Corticosteroid Glycolysis, autophagy GCR SLE, RA, PsA
Rapamycin Autophagy mTORC1 SLE, lupus nephritis, SSc,

RA/JRA, SS
Everolimus Autophagy mTORC1 PH
OSI-027 ATP-competitive mTORC1/mTORC2 SSc, RA
NAC Antioxidant GSH SLE, RA/CIA, SS, ILD
Metformin Antioxidant ETC complex I SLE, CIA
Fingolimod Receptor modulator S1P receptor SLE, RA, MS, IBD
DHS1P S1P antagonist PTEN SSc
PAT-048 Autotaxin inhibitor LPA synthesis SSc

* Literature references are listed in Supplementary Table 1 (available on the Arthritis & Rheumatology web site at
http://onlinelibrary.wiley.com/doi/10.1002/art.40223/abstract). DHFR = dihydrofolate reductase; RA = rheumatoid
arthritis; PsA = psoriatic arthritis; TPMT/PRT = thiopurine methyltransferase/phosphoribosyltransferase; IMPDH =
inosine monophosphate dehydrogenase; SLE = systemic lupus erythematosus; DHODH = dihydroorotate dehydro-
genase; PKA = protein kinase A; PDE4 = phosphodiesterase 4; GCR = glucocorticoid receptor; mTORC1 = mech-
anistic target of rapamycin complex 1; SSc = systemic sclerosis; JRA = juvenile RA; SS = Sj€ogren’s syndrome; PH =
pulmonary hypertension; GSH = glutathione; ILD = interstitial lung disease; ETC = electron transport chain;
CIA = type II collagen–induced arthritis; S1P = sphingosine-1-phosphate; MS = multiple sclerosis; IBD = inflamma-
tory bowel disease; LPA = lysophosphatidic acid.
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the sera and synovial fluid of patients with RA and
patients with ankylosing spondylitis (AS) (Table 3 and
Supplementary Table 3).

Other rheumatic diseases. In patients with AS, in
addition to the role of HLA–B27, GWAS studies have impli-
cated endoplasmic reticulum aminopeptidases (ERAPs)
in disease pathogenesis. ERAPs process peptides for presen-
tation by major histocompatibility complex class I (58). Pro-
tective variants confer reduced enzymatic activity.
Interactions between ERAP-1 and HLA–B27 affect peptide
handling during antigen presentation (59). Activation of the
insulin-like growth factor 1 receptor in Tcells from patients
with AS has been shown to stimulate the phosphatidylinosi-
tol 3-kinase (PI3K)–Akt–mTOR axis (60). Thus, mTOR
activation and enhanced autophagy may interact to shape
the development of proinflammatory Tcells in patients with
AS (Figure 1).

Activation of mTORC1 drives the expansion of
Th17 cells, which orchestrates the emergence of inflamma-
tion in the skin and joints of patients with PsA (61).
GWAS studies have linked Raptor, a component of
mTORC1, to psoriasis (62). Moreover, the activation of
mTORC1 is supported by evidence of increased phosphor-
ylation of mTOR and S6 kinase in psoriatic skin lesions
(63). The activation of mTORC1 may result from
increased expression of programmed death 1 (PD-1) in T
cells of patients with PsA (64). Up to 40% of PD-1 anti-
body–treated patients with cancer developed a skin disease
resembling psoriasis (65). Such an impact of PD-1 block-
ade involves mitochondrial oxidative stress–dependent
mTORC1 activation (66), indicating that the outcome of
PD-1 signaling in terms of its effects on the mTOR

pathway may be specific to cell type. Therefore, a combi-
nation treatment regimen involving anti–PD-1 in conjunc-
tion with NAC or rapamycin may offer clinical benefit.

Genetic factors and metabolic pathways that regu-
late oxidative stress have been linked to scleroderma and
progressive systemic sclerosis (67,68). Oxidative stress is a
trigger of transforming growth factor b (TGFb) (69), which
plays a central role in the activation and production of col-
lagen by fibroblasts in the skin and parenchymal organs
(70). In response to TGFb, mTORC1 activity appears
essential to sustain the proliferation of fibroblasts (71).
Expectedly, rapamycin blocks the TGFb-induced prolifera-
tion of fibroblasts (72) and production of type I collagen
(73). In accordance with the concept of a pathogenic role
of oxidative stress, intravenous NAC may have clinical effi-
cacy in scleroderma patients with Raynaud’s phenomenon
(74) and those with interstitial lung disease (75).

Metabolic targets of treatment in rheumatic diseases

Glucocorticoids have revolutionized the treat-
ment of patients with arthritis and other inflammatory
diseases since the mid-20th century (76). They bind to
the glucocorticoid receptor and regulate transcription of
genes involved in metabolism (77). The efficacy of gluco-
corticoids has been linked to inhibition of glycolysis (78),
while the stimulation of autophagy (79) and mTOR
activity (80) are mechanisms that have been identified as
underlying the resistance to glucocorticoids.

Most conventional disease-modifying antirheu-
matic drugs (DMARDs), including methotrexate, myco-
phenolate mofetil, and leflunomide, target purine or

Table 3. Nutraceutical targeting of metabolic pathways in the rheumatic diseases*

Nutrient Mechanism of action Disease or model Outcome

Extra-virgin olive oil Antioxidant Pristane nephritis Protection
Acidic drinking water Microbiome shift SNF1 lupus Protection
Polyunsaturated fatty acid CD4+ T cells (NZB 9 NZW)F1 lupus Protection
Fish oil IL-1, IL-6, TNF (NZB 9 NZW)F1 lupus Protection
Apo A-I mimetic L-4F aPL ApoE–/CD95– lupus Protection
Taurine Antioxidant (NZB 9 NZW)F1 hepatitis Protection
Indole-3-carbinol Antioxidant (NZB 9 NZW)F1 lupus Protection
Triterpenoid Antioxidant/mTOR MRL/lpr nephritis Protection
Omega-3 fatty acid TNF blockade CIA Protection
Curcumin BAFF CIA Protection
Fructo-oligosaccharides Microbiota Colitis/HLA–B27 Protection
Weight gain Oxidative stress MRL/lpr nephritis Exacerbation
High-fat diet Apo E Lupus-like nephritis Exacerbation
High-fat diet LDL receptor Lupus-like nephritis Exacerbation
High-fat diet TLR-4 CIA Exacerbation

* Literature references are listed in Supplementary Table 2 (available on the Arthritis & Rheumatology web
site at http://onlinelibrary.wiley.com/doi/10.1002/art.40223/abstract). IL-1 = interleukin-1; TNF = tumor
necrosis factor; Apo A-I = apolipoprotein A-I; aPL = antiphospholipid antibodies; mTOR = mechanistic
target of rapamycin; CIA = type II collagen–induced arthritis; LDL = low-density lipoprotein; TLR-4 =
Toll-like receptor 4.
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pyrimidine nucleotide metabolism (Table 2 and Supple-
mentary Table 2). The newly introduced DMARD apremi-
last also targets purine metabolism, since it increases
cAMP levels and cAMP-dependent protein kinase A activ-
ity (Table 2 and Supplementary Table 2). Although hydrox-
ychloroquine has long been used as a DMARD, its
mechanism of action is newly attributed to blockade of
autophagy through the inhibition of lysosomal acidification
(81) (Figure 1). Surprisingly, the autophagy inducer rapa-
mycin and other rapalogs are also beneficial in autoim-
mune diseases (7). Inhibitors of PI3K or AKT and
activators of AMPK, which act upstream of mTORC1, are
also being tested for efficacy in autoimmunity (Table 2 and
Supplementary Table 2). However, unlike rapamycin, the
AMPK activator metformin has not reduced the severity of
nephritis in lupus-prone mice, except when this treatment
was combined with 2-deoxyglucose (2DG), which blocks
glycolysis (32).

The therapeutic use of NAC in SLE has been sup-
ported by its effects on oxidative stress and the depletion
of GSH in T cells (6) as well as by the depletion of
cysteine in both the lymphocytes and plasma of patients
with SLE (22,35). DHS1P and fingolimod block S1P
signaling and the downstream activation of mTORC1
(Table 2 and Supplementary Table 2). Based on their
synergistic mechanism of action, rapamycin, NAC, fin-
golimod, and metformin may be combined for the block-
ade of mTORC1 activity at multiple levels (Figure 1).
Future clinical trials should be directed at rigorously test-
ing such combination treatments in order to maximize
the therapeutic benefit, rather than relying on the clinical
efficacy of single medications that target distinct meta-
bolic pathways either sensed or impacted by mTOR.

Effect of nutrients on autoimmune rheumatic diseases

In addition to conventional drugs, diet and nutra-
ceuticals may influence autoimmunity. Studies both in
humans and in animals have shown that a high-calorie
and high-fat diet predispose individuals to the develop-
ment of RA and lupus and its serious comorbidities,
glomerulonephritis and atherosclerosis (Table 3 and Sup-
plementary Table 3). However, subsets of lipids, e.g., fish
oil, extra-virgin olive oil, and terpenoids, have antioxidant
properties and reduce the severity of nephritis in patients
with SLE (Table 3 and Supplementary Table 3). Along
these lines, calorie intake and the composition of dietary
lipids can affect the levels of adipokines, oxidative stress,
and disease activity in patients with RA (Table 3 and Sup-
plementary Table 3). A predisposition to multiple autoim-
mune diseases in patients with celiac disease, which is

characterized by sensitivity to the wheat protein gluten, is
attributed to multiple genetic factors, although secondary
deficiency of nutrients may also be a contributing factor
(82). The lysosomal receptor SLC15A4, which transports
histidine, has been genetically linked to lupus via the
mTOR pathway–mediated activation of B cells and den-
dritic cells (Table 1 and Supplementary Table 1). Among
the amino acids, kynurenine is a natural ligand of the
aryl hydrocarbon receptor (AhR) (83). Activation of
mTORC1 by kynurenine (22) is consistent with the con-
cept of a regulatory cross-talk occurring between the
AhR and mTOR pathways (84). Whereas the levels of
kynurenine and its precursor, tryptophan, are increased,
the levels of cysteine, histidine, glutamine, and glutamate
are depleted in patients with SLE (22,35). Thus, designer
diets with a predetermined composition and concentra-
tion of amino acids may represent a new avenue in
patients with SLE and other rheumatic diseases.

Unmet needs and future directions

For the future, the large number of unidentified
metabolites and mapping of their origin from nutrients,
host cell metabolism, or microbiota represent significant
instrumental, data-handling, and theoretical challenges.
While rheumatic disease susceptibility genes regulate meta-
bolic pathways in a cell type–specific manner (Table 1 and
Supplementary Table 1), metabolites themselves also exert
control over gene expression through epigenetic mecha-
nisms (85). Moreover, commonly used and clinically effec-
tive DMARDs, such as methotrexate, and medications that
target metabolic diseases, such as metformin (Table 2 and
Supplementary Table 2), affect the immune system in intri-
cate ways, dictated by various genetic, nutrient, and envi-
ronmental factors (Figure 1). Taking into account such
levels of complexity represents a significant unmet need of
clinical trial design, since the chosen end points should
inform about efficacy and predict responders and nonre-
sponders. Focused efforts should further delineate the
metabolites that control the skewing toward a proinflam-
matory lineage, as these metabolites represent biomarkers
of pathogenesis and targets for treatment. Given that
checkpoint blockade with anti–PD-1 involves mitochon-
drial oxidative stress–dependent mTORC1 activation (66),
a combination treatment regimen with NAC or rapamycin
may offer clinical benefit by averting iatrogenic autoimmu-
nity in patients with cancer. Importantly, the use of
nutraceuticals in combination with biologic agents that tar-
get pathways of pathogenesis could also eliminate or
reduce the unwanted side effects of traditional immuno-
suppressants.
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Conclusions

Metabolic pathways regulate the development of
the immune system, including lineage specification and
cell proliferation and survival, which occurs in a cell type–
specific manner in response to cues from growth factors,
hormones, cytokines, deprivation or overload of nutrients,
and microbiota. This review has mechanistically con-
nected the specific metabolites and their receptors that
have been genetically linked to disease susceptibility with
nutrient-dependent immune system activation. The meta-
bolites identified include those that regulate lineage speci-
fication within the adaptive and innate immune systems
during the pathogenesis of common and potentially fatal
autoimmune rheumatic diseases.

Rapidly proliferating proinflammatory T cells
and B cells and macrophages generally favor glycolysis
over fatty acid oxidation for ATP generation. Mito-
chondrial ATP production is reduced in patients with
SLE (6), a process that has been attributed to blocked
ETC activity, GSH depletion, and oxidative stress (54).
There is a clear contrast in glucose utilization and
redox signaling in T cells between patients with SLE
and patients with RA. Whereas patients with SLE exhi-
bit increased metabolism of glucose through glycolysis
and the PPP, glucose is preferentially metabolized by
the PPP in RA T cells, which exhibit greater NADPH
production due to the activation of G6PD (7). Based
on the efficacy of blockade of glycolysis by 2DG in
mice (1) and the enhancement of NADPH by NAC
(8), an approach that has shown remarkable clinical
efficacy in patients with SLE (9,10), an increased flux
of glucose through the PPP appears to be a desirable
outcome in lupus (Figures 1 and 3). Thus, SLE patients
(9) and mice with lupus benefit from treatment with
antioxidants (1), whereas RA patients and mice with
CIA apparently do not experience such a clinical bene-
fit (7). Unlike in RA (11), oxidative stress–induced
mTOR activation contributes to autoimmunity in lupus,
psoriasis, PsA, AS, and rheumatic diseases in cancer
patients treated with checkpoint inhibitors (12). Impor-
tantly, mTOR activation also underlies glucocorticoid
resistance (6). Therefore, these considerations warrant
an integrated genetics- and metabolome-based systems
biology approach toward understanding the pathogene-
sis and development of personalized treatments in the
autoimmune rheumatic diseases.
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