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SUMMARY

Recent genome-wide CRISPR-Cas9 loss-of-function screens have identified genetic dependencies 

across many cancer cell lines. Associations between these dependencies and genomic alterations 

in the same cell lines reveal phenomena such as oncogene addiction and synthetic lethality. 

However, comprehensive identification of such associations is complicated by complex 

interactions between genes across genetically heterogeneous cancer types. We introduce and 

apply the algorithm SuperDendrix to CRISPR-Cas9 loss-of-function screens from 769 cancer 

cell lines, to identify differential dependencies across cell lines and to find associations between 

differential dependencies and combinations of genomic alterations and cell-type-specific markers. 

These associations respect the position and type of interactions within pathways: for example, 

we observe increased dependencies on downstream activators of pathways, such as NFE2L2, and 

decreased dependencies on upstream activators of pathways, such as CDK6. SuperDendrix also 

reveals dozens of dependencies on lineage-specific transcription factors, identifies cancer-type-

specific correlations between dependencies, and enables annotation of individual mutated residues.

In brief

Using SuperDendrix, Park et al. examine associations between genetic dependencies in 769 cancer 

cell lines. They report 127 genetic dependencies explained by combinations of mutually exclusive 
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somatic mutations congregating into a few oncogenic pathways across cancer subtypes. These 

present a small number of prominent and highly specific genetic vulnerabilities in cancer.

Graphical abstract

Graphical Abstract

INTRODUCTION

A key problem in cancer biology is to identify the genes that cancer cells depend on for 

their growth and survival advantage. This knowledge both informs our understanding of 

cancer development and suggests therapeutic targets.5–7 Some cancer-essential genes are 

altered by somatic mutations and thus identified by high-throughput DNA sequencing,8–10 

but other cancer-essential genes are rarely or not mutated in cancer, such as lineage-specific 

transcription factors or master regulators.11–14 An alternative approach to identify cancer-

essential genes is to perturb genes in in vitro cancer models, such as cell lines, and measure 

growth or viability after such perturbations. Genes whose perturbation results in a change 

in viability reveal potential cancer-specific genetic dependencies. Recent technologies 

such as genome-wide pooled RNAi15 or CRISPR16,17 loss-of-function screens enable high-

throughput genome-wide perturbation screens. Projects such as DRIVE18 and the Cancer 

Dependency Map (DepMap)19,20 have applied these technologies to hundreds of cancer 

cell lines and identified genes that are essential in specific cancer cell lines, often referred 

to as conditionally essential genes, or differential dependencies. Combining differential 
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dependencies with genomic alterations identified in the same cell lines has revealed several 

context-specific dependencies including examples of oncogene addiction21,22 and synthetic 

lethality.23,24

Several recent studies have attempted to systematically identify associations between 

differential dependencies and genomic alterations using data from large-scale RNAi 

and CRISPR datasets.18–20,25–30 One group of studies identifies associations between 

differential dependencies and single genomic biomarkers,18,20,26,27,29,30 recapitulating many 

of the classic oncogene addiction and synthetic lethal interactions, as well as a few 

additional associations. However, restriction to a single biomarker limits the ability to detect 

associations with rare genomic alterations that occur in a small number of cell lines but 

perturb the same cancer pathways as frequently mutated driver mutations.8,9,31,32

A second group of studies identifies associations between differential dependencies and 

sets of multiple biomarkers.19,25,28 Tsherniak et al.19 used a random forest classifier to 

predict dependencies in the DepMap dataset from genomic alterations. However, most 

of the thousands of reported associations were with gene expression markers and other 

frequent events, which is not surprising since the classifier skews toward explaining the 

most frequent associations. REVEALER25 and UNCOVER28 leverage the observation that 

driver mutations in the same pathway tend to be mutually exclusive across tumors, i.e., that 

few tumors have more than one driver mutation in a given pathway.33–35 These methods 

generalize earlier approaches that identify sets of mutually exclusive mutations in cancer 

genomes.35–40 However, REVEALER does not scale to systematic analysis of large-scale 

screens,28 while UNCOVER predicts hundreds to thousands of associations whose quality 

are generally unknown.

Spurious associations are a significant challenge in analyzing large-scale RNAi or CRISPR 

screens, since the number of phenotypes (gene perturbations) and number of features 

(genomic alterations) are orders of magnitude larger than the number of samples. This 

challenge is further exacerbated when searching for sets of multiple biomarkers as the 

number of such sets is massive and the optimal set is unknown a priori. Several related 

methods have also been developed to identify associations between genomic alterations 

and cancer dependencies measured from drug response experiments, including LOBICO,41 

CELLector,42 and other methods using a penalized linear regression43–47 and random 

forest.47

We introduce a new algorithm, SuperDendrix, to identify sets of approximately mutually 

exclusive genomic alteration and cell-type features that are associated with differential 

dependencies from large-scale perturbation experiments. SuperDendrix includes several key 

features: (1) a principled approach to identify and score differential dependencies using a 

2-component mixture model; (2) a combinatorial model and optimization algorithm to find 

feature sets associated with differential dependencies; and (3) a model selection criterion to 

select the size of the associated set and a robust statistical test that accounts for different 

frequencies of genomic alterations across samples.
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We apply SuperDendrix to identify associations between somatic mutations in cancer genes 

and differential dependencies in a large-scale CRISPR-Cas9 loss-of-function screens from 

DepMap48 of 18,119 gene knockouts across 769 cancer cell lines from 31 cancer types. 

We identify 127 differential dependencies that are associated with sets of mutations. Many 

of these associations group into well-known cancer pathways including the NFE2L2, 

RB1, MAPK, and Wnt pathways. We observe that associations between differential 

dependencies and mutations within a pathway respect the topology and regulatory logic of 

the interactions within the pathway. Specifically, we find that cell lines containing oncogenic 

mutations in a gene upstream in a pathway—either activating mutations in an oncogene 

or inactivating mutations in a tumor suppressor gene—often have increased dependencies 
on genes downstream in the same pathway. These associations generalize the phenomenon 

of oncogene addiction to oncogene pathway addiction.21,22 On the other hand, we find 

that oncogenic mutations in genes that are downstream in a pathway are often associated 

with decreased dependency on genes upstream in the same pathway. When including the 

cancer type as an additional feature for each cell line, SuperDendrix identifies a total of 

227 differential dependencies that are associated with sets of mutations and/or cancer-type 

features, most prominently dependencies on lineage-specific transcription factors and a 

previously unreported association between TCF3 dependency and myeloma or blood cancers 

with mutations in BCL2.

The SuperDendrix software is publicly available at https://github.com/raphael-group/

superdendrix and results on DepMap datasets are available through the web portal at https://

superdendrix-explorer.lrgr.io/.

RESULTS

SuperDendrix

We introduce SuperDendrix, an algorithm to identify sets of binary features such as genomic 

alterations and/or cell types that are (approximately) mutually exclusive and associated with 

a quantitative phenotype. While SuperDendrix is applicable to any quantitative phenotype, 

in this work we focus on the phenotype of cell viability change following genome-wide 

CRISPR-Cas9 loss-of-function screens. The inputs to SuperDendrix are as follows.

Cell viability measurements are from genome-wide CRISPR-Cas9 loss-of-function 

screens. We represent these measurements in a phenotype matrix P where each 

entry pgj of P indicates the viability of cell line j when gene g is knocked out. 

Each of these scores quantifies the dependency of a cell line on a gene. We refer to 

the dependency scores for a gene across cell lines (i.e., row of P) asa dependency 
profile. A list of somatic alterations in each cell line. Here, we analyze somatic 

missense and nonsense mutations.

(Optionally) Categorical information (e.g., cell type) of each cell line.

SuperDendrix consists of three modules (Figure 1A): (1) scoring differential dependencies 

and selecting genomic and cell-type features; (2) finding feature sets associated with 

differential dependencies; and (3) evaluating the statistical significance of associations. We 

briefly describe the three modules below.
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Scoring differential dependencies and selecting genomic and cell-type features

The first module in SuperDendrix has two steps: (1) scoring differential dependencies from 

the dependency scores and (2) selecting the genomic alteration and cell-type features that 

will be evaluated for association. In the first step, we derive a differential dependency profile 
for each gene knockout (row of P). This profile quantifies the magnitude of the effect on 

the gene knockout on each cell line relative to a background distribution. We assume that 

the dependency scores pg1; . . . ;pgn for knockout g are generated from two populations: a 

background population that is unaffected by the knockout and a responsive population that 

is affected by the knockout. We fit a two-component mixture model to the dependency 

scores pg1;.;pgn, and decide whether the score distribution is better fit by one-component or 

two-components using the Bayesian Information Criterion (BIC). In the case where the two-

component fit is preferred, we say that the cell lines are differentially dependent with respect 

to the gene knockout g, or that gene g is a differential dependency. We designate component 

1 to be the component with smaller mean and define the differential dependency score, or 

2C score, dgj = log
Pr zgj = 2 ∣ pgj
Pr zgj = 1 ∣ pgj

 for cell line j as the log ratio of the posterior probabilities 

that cell line j is from component 2 zgj = 2  and that cell line j is from component 1 zgj = 1 . 

Thus, negative 2C scores indicate decreased viability, or increased dependency in response 

to knockout. Conversely, positive 2C scores indicate decreased dependency in response to 

knockout. We assume that a minority of cell lines are responsive to gene knockout and thus 

refer to the component that contains fewer cell lines as the responsive component and the 

component with more cell lines as the background component. In summary, we say that 

differential dependencies whose responsive component has negative scores are increased 

dependencies and those whose responsive component has positive scores are decreased 

dependencies.

Next, we construct the genomic alteration and cell-type feature matrix A. This matrix 

contains two types of features. The first type are genomic alteration features. We define 

these features using the OncoKB database49 to select genes and mumutations that confer 

gain-of-function are combined into a single feature labeled GENE(A), inactivating mutations 

that confer loss-of-function are combined into a single feature labeled GENE(I), and the 

remaining unannotated mutations are combined into a single feature labeled GENE(O). The 

second type of features in A are cell-type features. In this analysis, we construct a binary 

feature for each cancer type represented in the analyzed cell lines. By definition, these 

cancer-type features are mutually exclusive across cell lines.

Finding feature sets associated with differential dependencies

The second module in SuperDendrix is a rigorous and practically efficient combinatorial 

optimization algorithm to find sets M of features in A that are (1) approximately mutually 

exclusive and (2) associated with increased (or decreased) dependency. We derive the 

SuperDendrix weight W(M) of a set M that combines criteria (1) and (2) and use an integer 

linear program (ILP) to find the set M* of minimum (or maximum) weight W(M*).
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Evaluating statistical significance of associations

The third module of SuperDendrix includes two steps. First, a model selection step identifies 

a subset M of the features in M* found in the second module, where each feature in M
contributes significantly to the weight W (M). This step uses a conditional permutation test 

to iteratively remove features whose contribution to the weight W(M*) is nearly the same 

as random features. Second, a permutation test assesses the statistical significance of the set 

M. Since the number of somatic mutations varies considerably across cell lines (Figure S1), 

we use a permutation test4 that conditions on both the number of mutations per gene and 

number of mutations per cell line.

We also developed an interactive tool for visualization and exploration of the SuperDendrix 

results which is available at https://superdendrix-explorer.lrgr.io/. Further details of the 

SuperDendrix algorithm are in STAR Methods.

Identification of differential dependencies and genomic features in DepMap
—We used SuperDendrix to analyze the Avana dataset (20Q2/5.20.2020) from Project 

DepMap containing results of CRISPR-Cas9 loss-of-function screens of 18,119 genes across 

769 cancer cell lines from 31 cancer types.19,48 DepMap provides a CERES dependency 

score48 for each gene knockout across all cell lines. CERES scores are scaled across all 

gene knockouts so that the median score for known “essential” genes is – 1 and the median 

score for genes with “no dependency” is 0. We define a set of differential dependencies from 

the CERES scores using the “6σ” criterion of Tsherniak et al.,19 obtaining 2,074 genes that 

have at least one cell line with a CERES score at least six standard deviations below or 

above the mean. We refer to CERES score profiles for these 2,074 genes as 6σ differential 

dependencies (Table S1).

The first module of SuperDendrix computes that 511 (25%) of the 6σ differential 

dependencies are better fit by the two-component mixture model. We refer to these genes 

as two-component (2C) differential dependencies (Figure 1B, Table S2). These 511 2C 

differential dependencies include 446 genes with increased dependency and 65 genes with 

decreased dependency and are enriched for 108 GO molecular functions50,51 including 

protein binding, enzyme binding, and catalytic activity (Table S3). Moreover, 88 of the 

2C differential dependencies are in the COSMIC Cancer Gene Census (CGC)52 (p ≤ 

0.001)—including BRAF, KRAS, NRAS, and PIK3CA (Figure S2)—a significantly higher 

proportion than for non-2C genes (2C: 17.2%, non-2C: 11.2%, p ≤ 0.001; two-sample 

proportion test). In addition, the 2C differential dependencies include a significantly higher 

proportion of priority targets—differential dependencies identified based on gene knockout 

effect and biomarker correlation from CRISPR screens by the Sanger Institute20—than for 

non-2C genes (2C: 29.0%, non-2C: 13.4%, p ≤ 0.001; two-sample proportion test). The 

2C differential dependencies have higher precision and recall for the priority targets than 

the differential dependencies identified by Normality Likelihood Ratio Test (NormLRT)18 

applied to the same dataset (see Comparison with NormLRT in STAR Methods). Finally, 

we find that the 6σ differential dependencies that are not 2C differential dependencies either 

contain only a few outlier samples (e.g., 86.8% have fewer than 5 outlier samples) or have 

dependency score distributions that are unimodal with large variance (Figure S3).
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We derive genomic features for SuperDendrix using 399,559 non-synonymous coding 

mutations reported in Cancer Cell Line Encyclopedia (CCLE)44 for 767 of the 769 cell 

lines analyzed by DepMap. We also include the annotated cancer type of each cell line 

as a feature. The feature selection step in the first module of SuperDendrix produces a 

genomic alteration matrix with 897 mutation features (76 activating and 258 inactivating) 

in 621 genes with a total of 20,089 mutations across the 767 cell lines. Further details 

are in STAR Methods. We also evaluated SuperDendrix using different inputs including 

dependency probabilities provided by DepMap and all of the 399,559 non-synonymous 

mutations instead of the 897 mutation features obtained using OncoKB (see Analysis 

of CERES dependency probabilities and SuperDendrix analysis of all non-synonymous 

mutations in STAR Methods).

Associations between mutations and differential dependencies—We used 

SuperDendrix to identify associations between sets of mutations and the 511 2C differential 

dependencies. SuperDendrix identified 91 single mutations and 36 sets of approximately 

mutually exclusive mutations that are significantly associated (FDR ≤ 0.2) with 127 

differential dependencies (Figure 2A and Table S4). 113 of these sets are associated with 

increased dependency and 14 are associated with decreased dependency. Many of these 

associations are well-known dependencies including examples of oncogene addiction (e.g., 

BRAF(A) and increased dependency on BRAF53) and synthetic lethality (e.g., ARID1A(I) 

and increased dependency on ARID1B54). We find that the 127 genes with significant 

associations are enriched for 241 pathways annotated in the Reactome database.55 

Furthermore, 16 of the associations group into three well-known cancer pathways (NFE2L2, 

RB1, and MAPK). We highlight the novel findings of SuperDendrix in these pathways 

below.

First, SuperDendrix finds an association between the set {KEAP1(O), KEAP1(I), 

NFE2L2(A)} of three mutations and increased dependency on NFE2L2 (Figure 2B). The 

KEAP1-NFE2L2 pathway is frequently perturbed in cancer with inactivating mutations in 

KEAP1 or activating mutations in NFE2L2 reported in more than 30% of lung squamous 

tumors.60,61 NFE2L2(A), KEAP1(I), or KEAP1(O) mutations occur in 69 of the 767 

DepMap cell lines including 31% (5/16) of lung squamous cancer cell lines. Moreover, 

the three mutations are nearly mutually exclusive with only 3/69 altered cell lines having 

more than one mutation (Figure 2A). NFE2L2 is an oncogene in various cancers including 

lung, pancreas, breast, and gall bladder,61,62 and thus increased dependency on NFE2L2 in 

cell lines with NFE2L2(A) mutations is consistent with the oncogene addiction model.21,22 

The increased NFE2L2 dependency in cell lines with KEAP1 inactivating mutations is 

consistent with KEAP1’s role in inhibiting NFE2L2 by targeting NFE2L2 for degradation 

via ubiquitination.56,63 Thus, the increased dependency on NFE2L2 in cell lines with 

KEAP1 inactivating mutations can be viewed as another form of oncogene addiction. 

These associations generalize the phenomenon of oncogene addiction to oncogenic pathway 

addiction:21,22 mutations of genes in an oncogenic pathway confer strong dependency on 

other genes in the same pathway.
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Note that only a fraction of the associated mutations occurs in cell lines whose CERES score 

is below the 6σ threshold (Figure 2B), demonstrating the advantages of SuperDendrix’s 2C 

differential dependency score.

The associations with differential dependencies reported by SuperDendrix are also useful 

for annotating individual missense mutations. Specifically, several of the mutations in the 

KEAP1(O) feature—which include missense mutations that are unannotated in OncoKB—

occur in cell lines with strong evidence of increased dependency on NFE2L2. For example, 

the KEAP1 G364C mutation is not reported as functional in OncoKB, but is located at a 

position that is reported to disrupt NFE2L2 repression.57 Two other mutations are located 

in the BTB/POZ domain, a domain that is important for KEAP1 dimerization and KEAP1-

CUL3 binding56 (Figure 2C). Finally, the mutation R413L is located in Kelch domain and 

at the protein-protein interface with NFE2L2,58 suggesting strong functional relevance of 

the mutation to KEAP1-NFE2L2 interaction. These findings prioritize these mutations for 

functional validation studies.

Second, SuperDendrix identifies associations between RB1 inactivating mutations and 

differential dependencies in E2F3, CCND1, and CDK6, three members of the RB1 

pathway (Figure 3). We find that cell lines with RB1 inactivating mutations have increased 

dependency on E2F3. Active RB1 binds and inhibits E2F3 transcription factor activity, 

and dissociation of the RB1-E2F3 complex results in E2F3-initiated transcription of target 

genes that promote G1/S transition.64 Our results suggest that cell lines with inactivating 

mutations in RB1 become highly dependent on E2F3 activity, a phenomenon analogous to 

oncogene addiction.21,22 On the other hand, we observe that cell lines with RB1 inactivating 

mutations are associated with decreased dependency on CCND1 and on CDK6. This 

association is consistent with the role of CCND1-CDK4/6 complex in inactivating RB1. 

Cell lines with RB1 inactivating mutations do not require CCND1 or CDK6 to inactivate 

RB1, making these cell lines less sensitive to knockout of CCND1 and CDK6. These 

results suggest a correspondence between the direction of dependencies and the patterns 

of activation/inactivation in a pathway. Similar to the oncogenic pathway addiction in the 

KEAP1-NFE2L2 pathway described above, we observe an increased dependency on the 

downstream transcription factor E2F3 in cell lines with RB1 inactivating mutations. On the 

other hand, we observe decreased dependency on the upstream regulators of RB1.

Third, SuperDendrix finds associations between 12 differential dependencies in the MAPK 

pathway and subsets of the approximately mutually exclusive mutation set {BRAF(A), 

KRAS(A), NRAS(A), HRAS(A)} (Figure 4A). These include well-known associations 

between activating mutations in BRAF, KRAS, NRAS, or HRAS and increased dependency 

on the corresponding gene.53,65–67 Other associations involving RAS genes include an 

association between NRAS(A) and increased dependency on SHOC2,68 as well as an 

association between the set {KRAS(A), NRAS(A)} of approximately mutually exclusive 

mutations and increased dependency on RAF1. The later association is consistent with the 

role of RAF1 as a mediator of RAS for signal transduction in the MAPK pathway during 

transformation.69
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Also among associations identified in the MAPK pathway are associations between 

BRAF(A) mutations and increased dependencies on other downstream members of the 

MAPK signaling pathway including MAP2K1, MAPK1, MITF, and DUSP4. Associations 

with MAP2K1, MAPK1, and MITF are consistent with previous reports on conditional 

dependency on these genes in BRAF(V600E) melanoma.70–72 The association with 

increased dependency on DUSP4 is intriguing because there are conflicting reports 

regarding DUSP4’s role in cancer. On the one hand, DUSP4 is reported to be a tumor 

suppressor that inhibits ERK1 and MAPK1 (ERK2) activity in the nucleus.73,74 As a tumor 

suppressor, DUSP4 knockout is expected to result in decreased dependency. On the other 

hand, there are also reports of high DUSP4 expression in colorectal cancer73,75 and skin 

cancer76 with RAS or RAF mutations, suggesting that DUSP4 activity may contribute to 

oncogenesis in these cancers. Our finding that cell lines with BRAF(A) have increased 

dependency on DUSP4 is consistent with the oncogenic role. To investigate these competing 

hypotheses, we investigated the relationship between DUSP4 dependency and MAPK1, as 

DUSP4 is a negative regulator of MAPK1. We found that in cell lines with BRAF(A), 

DUSP4 dependency scores were significantly negatively correlated (R: −0.32, p ≤ 0.01; 

Pearson correlation) with expression of MAPK1 (Figure 4B); i.e., cell lines with BRAF(A) 

and highest MAPK expression were the most dependent on DUSP4. In contrast, in cell 

lines without BRAF(A) mutations, there is no significant correlation between DUSP4 
dependency and MAPK expression (R: 0.01, p = 0.72). These observations are consistent 

with the Goldilocks principle77 which states that precise levels of biological factors must be 

maintained for strong fitness, with either overdose or lack of oncogenic signal resulting in 

regression of tumor. In this case, DUSP4 inhibition of MAPK1 is most essential in cell lines 

with hyperactive MAPK signaling due to BRAF(A) mutations.

SuperDendrix also identifies associations between sets of mutations and decreased 

dependency on PTPN11 and GRB2 in the MAPK pathway. Specifically, we find decreased 

dependency on PTPN11 in cell lines with KRAS(A); BRAF(A); or NRAS(A) mutations 

and decreased dependency on GRB2 in the same cell lines. The decreased dependency 

on PTPN11 is consistent with a previous report that cell lines with constitutive RAS or 

RAF signaling were insensitive to suppression of PTPN11.78 While we are not aware of 

previous reports of associations with GRB2, it is intriguing that both proteins with decreased 

dependencies—PTPN11 and GRB2—are upstream of the RAS/RAF mutations that result in 

constitutive MAPK signaling. Thus, it makes sense that cell lines with constitutive activation 

of RAS or RAF signaling are insensitive to upstream activators of RAS signaling, analogous 

to the insensitivity of RB1-deficient cell lines to knockout of upstream regulators CDK6 and 

CCND1 reported above (Figure 3).

Beyond those in the three pathways described above, SuperDendrix identified other 

associations between members of the same protein complex and associations in 

other cancer-implicated pathways. Associations in protein complexes include increased 

dependency on ARID1B in cell lines with ARID1A(I) mutation,54 increased dependency 

on SMARCA2 in cell lines with SMARCA4(I) mutation,79 and increased dependency on 

STAG1 in cell lines with STAG2(I) mutation.80 Notable associations in pathways include 

associations in the Wnt pathway:81 increased dependency on CTNNB1 with the mutation 
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set {APC(I), CTNNB1(A)} and increased dependency on TCF7L2 with the same set (Figure 

S4).

Several of the associations described above conform to the paradigm of oncogenic pathway 

addiction.21,22 As a preliminary step for automatically identifying pathway addiction in 

a data-driven way, we performed a network analysis which integrates the associations 

identified by SuperDendrix with prior knowledge of physical interactions in a protein-

protein interaction (PPI) network. This analysis identified a subnetwork (Figure S5) 

containing genes in multiple addicted pathways including the NFE2L2, MAPK, and Wnt 

pathways (see Network analysis of pathway addiction in STAR Methodsfor details).

We find that associations for 45 of the 127 differential dependencies reported by 

SuperDendrix are validated in the Score dataset of CRISPR screens from Behan et al.,20 

where we consider an association to be validated if there is a significant difference (p ≤ 

0.05; Wilcoxon rank sum test) in dependency scores between cell lines containing associated 

mutations and those without such mutations (Table S4). Many of the associations that did 

not validate are in cancer types with few cell lines in the Score dataset. For example, several 

associations with BRAF(A) did not validate in the Score dataset; this is not surprising since 

the majority of BRAF(A) mutations in the Avana dataset are in the 54 skin cancer cell lines, 

while the Score dataset contains only 4 skin cancer cell lines (Figure S5). Further details are 

in Validation on the Sanger CRISPR-Cas9 screen data in STAR Methods.

Finally, we compared the associations between mutations and dependencies identified by 

SuperDendrix with those reported in other perturbation screens19,20 (see Comparison with 

other perturbation screen results in STAR Methods) and to associations identified by other 

methods including a simple univariate test, UNCOVER,28 and SELECT40 (see Univariate 

analysis of the DepMap data, Comparison with UNCOVER, and Comparison with SELECT 

in STAR Methods). We found that SuperDendrix performed favorably in these comparisons.

Cancer-type-specific differential dependencies—Next, we investigated associations 

between differential dependencies and cancer types. We augmented the mutation matrix 

with 31 cancer-type features, each feature representing one of the 31 cancer types in the 

Avana dataset. We ran SuperDendrix on the augmented mutation matrix and identified 

298 differential dependencies that are significantly associated (FDR ≤ 0.2) with mutations 

and/or cancer types (Table S6), with 227 of these including at least one cancer-type feature 

in the association. Among the 227 differential dependencies that are associated with at 

least one cancer-type feature are 68/127 differential dependencies that were identified in 

the SuperDendrix analysis of mutations described above. The sets associated with these 

differential dependencies include cancer-type features and result in higher SuperDendrix 

weights. For example, MITF dependency has stronger association with skin cancer 

(SuperDendrix weight = −0.69) than with BRAF(A) (SuperDendrix weight = −0.37).

Of the 227 differential dependencies, 195 are increased dependencies upon gene knockout 

and the other 32 are decreased dependencies. These 227 differential dependencies are 

enriched (FDR ≤ 0.05) for 88 GO molecular function terms (Table S7). The most significant 

GO term is protein domain specific binding; in particular, 43 of the 227 differential 
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dependencies are transcription factors82 (fold enrichment = 2.19, p ≤ 0.001), a greater 

proportion than the 67 transcription factors found among all 511 differential dependencies 

(fold enrichment = 1.51, p ≤ 0.001). The enrichment of transcription factor dependencies is 

consistent with previous reports; e.g., Tsherniak et al.19 identified 49 transcription factors 

with strong lineage-specific dependencies from RNAi screens. Our results include 16 of 

these 49 as well as 27 additional transcription factor dependencies that were not reported 

in the RNAi screens. As many transcription factors have lineage-specific expression, we 

evaluated the contribution of lineage and of transcription factor expression to the identified 

associations. We found that both the expression of the dependent transcription factor and 

the lineage classification are important for gene dependency across cell lines (Figure S6). 

Further details are in Expression of lineage-specific transcription factors in STAR Methods.

The 43 transcription factor dependencies with cancer-type-specific associations cluster into 

a number of interesting groups (Figure 5). These include increased dependencies on ISL1, 

GATA3, and MYCN in neuroblastoma, all of which were recently reported as part of the 

core regulatory circuitry (CRC) in neuroblastoma and associated with superenhancers.83 We 

also find decreased dependencies on two transcription factors, THAP1 and TP53, which 

are consistent with their functional role in the associated cancer types84–87 (see Decreased 

dependency on transcription factors in STAR Methods). Other large classes of cancer-type 

dependencies are in skin cancer (6 dependencies), breast cancer (5), leukemia or lymphoma 

(9), and multiple myeloma (6).

Cancer-type-specific dependencies identified by SuperDendrix include associations between 

blood cancers (myeloma, lymphoma, and leukemia) and several transcription factors 

involved in B cell development88 (Figure 5). Prominent examples are dependencies on 

transcription factors TCF3 and IRF4 which serve critical roles in determining B cell terminal 

differentiation into plasma cells (the cell type of myeloma cancer) via transcriptional 

regulatory activity89–91 (Figure 6). Specifically, SuperDendrix finds associations between 

increased dependency on the transcription factor TCF3 and the mutually exclusive set 

{myeloma, BCL2(A)} and the transcription factor IRF4 and {myeloma, lymphoma}. 

SuperDendrix also finds associations for three downstream targets of TCF3 and IRF4 

transcription factors: BCL2 and {leukemia, myeloma, MEF2B(A)}, PIM2 and myeloma, 

and POU2AF1 and fMyeloma; MEF2B(A) g. The association between BCL2 dependency 

and MEF2B(A) mutations is consistent with reports that MEF2B targets BCL2 for 

transcriptional regulation.92 Thus, this association conforms to the model of oncogenic 

pathway addiction, with increased dependency on BCL2 in cell lines with activating 

mutations in the upstream transcriptional regulator MEF2B (analogous to the associations 

described above such as between increased dependency on MAP2K1 and activating 

mutations in BRAF).

TCF3 and IRF4 have previously been suggested as dependencies in myeloma and are part 

of the core regulatory circuitry, promoting tumorigenesis in cooperation with aberrant MYC 

activity.93 Consistent with these reports, MYC expression is higher in myeloma cell lines 

than other cancer types (p ≤ 0.001, Wilcoxon rank-sum test) and is significantly correlated 

with dependency on TCF3 and IRF4 (TCF3: R = −0.13, p ≤ 0.001, IRF4: R = −0.14, p ≤ 

0.001; Pearson correlation, Figure S7). Dependencies on POU2AF1 and PIM2, the target 
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genes of TCF3 and IRF4 transcription factors,91,94 suggest cancer-type-specific addiction 

to transcriptional regulatory pathway in myeloma. Supporting this notion, dependencies 

identified by SuperDendrix include other genes (e.g., IKZF1, MEF2C, CCND2) that are 

part of the regulatory network mediated by super-enhancer activity.95,96 Taken together, 

these results show increased dependency on the B cell lineage-specific transcription factors 

in blood cancers, with cancer-type-specific addiction to TCF3/IRF4 regulatory pathway in 

myeloma mediated by MYC expression.

The remaining 184 cancer-type-specific differential dependencies that are not annotated 

as transcription factors are enriched (FDR ≤ 0.05) for 46 GO molecular function terms 

(Table S8), with the top 3 enriched terms being catalytic activity, ribonucleotide binding, 

and transferase activity, all of them transferring phosphorus-containing groups. These 

184 differential dependencies include genes known to be overexpressed or predictive of 

prognosis for the associated cancer type such as increased dependencies on LDB1 and 

LMO2 in leukemia.97,98 Several additional associations correspond to dependencies on 

upstream regulators of cancer genes such as MDM2 in skin and kidney cancers and EGFR in 

head and neck cancer.

A prominent group of cancer-type-specific differential dependencies are six genes in the 

IGF1R and PI3K pathways (Figure 7A) across several cancer types. In the IGF1R pathway, 

we find increased dependency on IGF2BP1, IGF1R, IRS1, and IRS2 in neuroblastoma, 

Ewing’s sarcoma, pancreas, myeloma, or rhabdomyosarcoma. These dependencies are 

consistent with previous reports of dependencies on IGF1R in Ewing’s sarcoma and 

rhabdomyosarcoma.99 SuperDendrix also identifies increased dependencies on PIK3CA 
and BCL2 in some of the same cancer types, including PIK3CA in myeloma and 

rhabdomyosarcoma and BCL2 in leukemia and myeloma.100,101 These findings are 

consistent with role of IRS1 and IRS2 in activating the PI3K pathway.102 Since 

dysregulation of the PI3K pathway results in tumor proliferation,103 all of these increased 

dependencies are consistent with a phenotype of oncogenic pathway addiction in the IGF1R/

PI3K pathway.

Additionally, we observed cancer-type-specific correlations between dependency scores 

of pairs of genes in the IGF1R pathway in neuroblastoma and Ewing’s sarcoma. These 

include correlations between IGF2BP1 and IGF1R (R = 0.48) in Ewing’s sarcoma (Figure 

7B) and between IGF2BP1 and IRS2 dependencies (R = 0.32) in Ewing’s sarcoma and 

neuroblastoma (Figure 7C). Importantly, these correlations are weaker in other cancer 

types (R = 0.11 and R = 0.06, respectively) and consequently were not reported in two 

recent studies27,104 that examined correlations between dependency profiles across all cell 

lines in DepMap. In addition, many of the cell lines with these correlated dependencies 

have CERES scores larger than the −0.6 threshold used to define dependency in DepMap. 

Thus, the identification of these correlations relied on both SuperDendrix’s 2C scores and 

SuperDendrix’s ability to identify cancer-type-specific associations. At the same time, we 

find strong correlations between IGF1R with IRS1 and IGF1R with IRS2 across all cell 

lines, as previously reported.27,104
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We find that 107 of the 227 associations identified by SuperDendrix are validated in the 

Score dataset,20 using the same test as described in the previous section (Table S6). Also as 

above, many of the associations that did not validate are in cancer types that are not well 

represented in the Score dataset including myeloma, skin, and rhabdomyosarcoma (Table 

S5). Further details are in Validation on the Sanger CRISPR-Cas9 screen data in STAR 

Methods.

Finally, we compared the associations identified by SuperDendrix with those identified in 

the DepMap dataset using a simple univariate test and UNCOVER.28 Analogous to the 

previous analysis using mutation features only, we found that SuperDendrix performed 

favorably in these comparisons. Further details are in Univariate analysis of cancer-type-

specific differential dependencies and Comparison with UNCOVER in STAR Methods.

DISCUSSION

We introduced SuperDendrix, a method that incorporates a principled statistical model and 

a practically efficient combinatorial algorithm for analyzing differential gene dependencies 

from perturbation experiments. SuperDendrix scores differential dependencies using a two-

component mixture model and identifies mutually exclusive sets of features—including 

genomic alterations and/or cancer types—that are associated with each differential 

dependency. Application of SuperDendrix to CRISPR-Cas9 loss-of-function screens in 769 

cancer cell lines from Project DepMap revealed 511 differential dependencies and inferred 

associations between 127 (27.4%) of these dependencies and sets of somatic mutations in 

cancer genes. Many of these associations group into well-known cancer pathways such 

as NFE2L2, RB1, and MAPK. SuperDendrix reports that a higher fraction of differential 

dependencies are associated with mutations compared to previous analyses of RNAi and 

CRISPR screens.19,20,30 This illustrates some of the advantages of the SuperDendrix method 

including more stringent selection of differential dependencies and searching for sets of 

associated biomarkers. In contrast, existing approaches relied on very permissive definitions 

of differential dependencies or restrict to finding associations with single biomarkers.

Our results show striking consistency between the directionality of dependencies (increased 

versus decreased), the type of interactions (activating versus inhibitory), and the position 

of dependencies and somatic mutations in pathways. In particular, oncogenic mutations 

in upstream pathway genes—such as activating mutations in an oncogene or inactivating 

mutations in a tumor suppressor—are associated with increased dependencies on genes that 

are downstream in the same pathway and that promote cancer; e.g., NFE2L2 dependency in 

cell lines with inactivating mutations in KEAP1 and MAPK1 dependency in cell lines with 

activating mutations in BRAF. These results are consistent with the notion that cancer cells 

develop addiction to an oncogenic pathway during cancer progression.21,22 On the other 

hand, oncogenic mutations in downstream pathway genes are associated with decreased 

dependencies on upstream genes of the same pathway; e.g., cell lines with inactivating 

mutations in RB1 show decreased dependency on CDK6. These results show the importance 

of considering pathway topology in the design of cancer therapeutic strategies; for example, 

a current strategy for treating tumors with activating mutations in undruggable oncogenes 

is to inactivate downstream genes.105 At the same time, current annotations of interactions 
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in pathways should be interpreted with care and potentially revised with knowledge gained 

from perturbation experiments. For example, DUSP4 is noted as a tumor suppressor due to 

its role in inhibiting MAPK signaling; however, we find increased dependency on DUSP4 
in cell lines with activating mutations in BRAF suggesting that DUSP4 contributes to 

maintaining the balance of MAPK signaling in BRAF mutant tumors. These results suggest 

DUSP4 as a potential therapeutic target for cancer treatment. Our results also provide further 

predictions about the functional consequences of individual non-synonymous mutations 

and the function of individual genes. For example, we find that previously unannotated 

mutations in the dimerization domain of KEAP1 are associated with increased dependency 

on its downstream target NFE2L2.

SuperDendrix also identifies associations between differential dependencies and sets of 

cancer types or combinations of cancer types and somatic mutations. A large fraction 

(35%) of the cancer-type-specific associations found by SuperDendrix involve increased 

dependencies on lineage-specific transcription factors. Many of these lineage-specific 

transcription factors have been previously reported to be highly expressed or correlated 

with poor prognosis in cancers of corresponding types. We also identify associations that 

include both cancer types and somatic mutations. For example, we find that increased 

dependency on BCL2 is associated with leukemia, myeloma, and MEF2B mutations. 

Another prominent cancer-type-specific association found by SuperDendrix is increased 

dependency on IGF2BP1, a regulator of insulin growth factor receptor IGF1R, in Ewing’s 

sarcoma and neuroblastoma. We anticipate that with larger cohorts, there will be increased 

opportunities to identify these more subtle associations that include both cancer types and 

somatic mutations.

Limitations of study

There are several limitations and caveats in the current study. First, all of the reported 

associations are computational predictions. While we strove for high specificity in these 

predictions, further experimental validation is warranted. Second, while we identified 

mutation and cancer type features that are associated with a large fraction of the differential 

dependencies, many of the differential dependencies remain unexplained due to either weak 

statistical significance or lack of associated cell line features. Some possible reasons for 

these unexplained differential dependencies are (1) the small sample size of 769 cell 

lines which limits statistical power to find rare associations particularly because the cell 

lines originate from a heterogeneous collection of 31 cancer types; (2) examination of a 

limited class of genomic alterations, namely non-synonymous single-nucleotide mutations; 

and (3) our modeling assumption that the mutations that are associated with a differential 

dependency are mutually exclusive. Including copy number aberrations (CNA) and DNA 

methylation changes in the analysis will likely identify additional associations; however, 

since these alterations span larger genomic distances than single-nucleotide mutations, they 

require more careful decomposition into specific alteration features.38 Moreover, while 

the mutual exclusivity assumption is helpful for identifying combinations of mutations 

efficiently across hundreds of cell lines, there are reports of co-occurring driver mutations 

in cancer samples that cooperate to promote tumorigenesis. Thus, extending SuperDendrix 

to identify sets of co-occurring mutation features is an interesting future direction. Third, 
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our identification of associations did not account for other covariates, although recent studies 

have demonstrated that CERES scores can be affected by other covariates and confounding 

variables such as tumor mutation burden, cell doubling time, cell cycle stage, growth media, 

culture type, etc.58,106–108

Future directions

Beyond the limitations described above, there are several directions for future work, both 

the analysis and in further development of SuperDendrix. First, alternative dependency 

scores could be used as input to SuperDendrix.109–111 Second, we found that some 

differential dependencies are associated with multiple sets of features (e.g., increased 

dependency on TCF7L2 and the sets {APC(I), CTNNB1(A)} and {Colon,Gastric}). 

Extending SuperDendrix to simultaneously identify multiple sets of features might identify 

additional such dependencies, as previously shown for multiple sets of mutually exclusive 

mutations.37 Third, one could integrate prior information on biological pathways to identify 

oncogenic pathway addiction in a data-driven way. Finally, since SuperDendrix is a general 

algorithm that can be used to find associations between binary features (e.g., germline or 

somatic mutations, cell types) and quantitative phenotypes (e.g., drug response, cell size), 

it would be interesting to analyze these other phenotypes using SuperDendrix, particularly 

drug response data from The Genomics of Drug Sensitivity in Cancer (GDSC) database,43 

and compare against other methods41,112 that have been designed specifically to identify 

associations between drug response and genomic features.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and data should be directed 

to and will be fulfilled by the Lead Contact, Benjamin J. Raphael (braphael@princeton.edu)

Materials availability—This study did not generate new reagents.

Data and code availability—This paper analyzes existing, publicly available data. The 

datasets are listed in the Key resources table.

We implement SuperDendrix using Python 3 and R. We use oncokb-annotator to annotate 

mutations. We use the R package, EMMIXskew,1 to fit t-distribution mixture models to 

dependency scores. We use the Python scikit-learn library2 to fit Gaussian mixture models to 

dependency scores and to compute the 2C scores. We use the Gurobi software3 to solve the 

ILP in SuperDendrix and the Curveball software4 to conduct permutation test. SuperDendrix 

software is publicly available at https://github.com/raphael-group/superdendrix (Zenodo: 

https://doi.org/10.5281/zenodo.5885806).

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.
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METHOD DETAILS

SuperDendrix algorithm—We introduce a new algorithm, SuperDendrix, to identify sets 

of binary features (e.g., genomic alterations or cell types) that are approximately mutually 

exclusive and associated with a continuous-valued phenotype. The inputs to SuperDendrix 

are:

1. An l×n matrix P = [pgj] of l quantitative phenotypes measured in n samples. Each 

entry pgj is the score of phenotype g in sample j. Each row of the phenotype 

matrix corresponds to a phenotype profile.

2. A list of binary features (e.g., somatic mutations) for each sample.

3. (Optional) Categorical information (e.g., cell type) of each sample.

While SuperDendrix is a general-purpose algorithm, here we describe the specific 

application where the phenotype scores are dependency scores from gene perturbation 

experiments and the binary features are somatic mutations (and optionally cell types). 

SuperDendrix includes three modules: (1) A module to identify and score differential 

dependencies using a two-component mixture model and to select genomic and cell-type 

features using mutation annotations; (2) A module to find sets of features that are 

approximately mutually exclusive and associated with differential dependencies using a 

combinatorial optimization algorithm; (3) A module to perform model selection and to 

evaluate statistical significance of associations.

Identifying differential dependencies and selecting genomic features—The first 

module in SuperDendrix includes two steps: the identification and scoring of differential 

dependencies and the selection of genomic and cell-type features. In the first step, we 

assume that a gene perturbation leads to two population of samples: a minority of samples 

are responsive to the perturbation while the remaining samples are unresponsive and have 

scores derived from a background distribution. Thus, we assume that the dependency scores 

are distributed according to a two-component mixture model. We fit each dependency profile 

with a t-distribution and with a mixture of two t-distributions, using the t-distribution to 

model high variance in the dependency scores.115 We use the Bayesian information criterion 

(BIC)116 to select between the one-component or two-component models; we refer to 

genes whose dependency profiles are better fit by a two-component mixture as differential 
dependencies.

For each differential dependency g and sample j, we compute the 2C score, or differential 

dependency score, dgj =
Pr zgj = 2 ∣ pgj
Pr zgj = 1 ∣ pgj

, the log ratio of the posterior probabilities that the 

observed score is from component 2 or component 1. We compute posterior probabilities 

by fitting the dependency scores to a mixture of two Gaussian distributions. We choose 

component 1 to be the component with smaller mean so that negative 2C scores indicate 

decreased viability, or increased dependency in response to knockout. Conversely, positive 

2C scores indicate decreased dependency in response to knockout. We assume that a 

minority of cell lines are responsive to gene knockout and thus refer to the component that 

contains fewer cell lines as the responsive component and the component with more cells 
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lines as the background component. We define the 2C profile, or differential dependency 

profile, dg = dg1, …, dgn  to be the differential dependency scores across all samples. Profile 

dg is an increased dependency if its responsive component contains cell lines with negative 

2C scores (increased dependency) and a decreased dependency if its responsive component 

contains cell lines with positive 2C scores (decreased dependency).

In the second step, we construct a genomic alteration and cell-type feature matrix A that 

includes annotated mutations and (optionally) cell-type features. We construct A from non-

synonymous somatic mutations in cancer genes in the OncoKB database.49 We first annotate 

the input list of somatic mutations using the oncokb-annotator. This adds information on 

whether the gene has been curated in OncoKB (GENE_IN_ONCOKB), ability to induce 

cancer (ONCOGENIC), and biological effect (MUTATION_EFFECT) to each mutation.

For each GENE in OncoKB, we group mutations from the input list into Activating, 

Inactivating, or Other mutation features which we label as GENE(A), GENE(I), and 

GENE(O) using the OncoKB annotation according to the following rules:

1. Mutations that are not oncogenic (Likely Neutral, Inconclusive Unknown) are 

grouped into a feature, GENE(O).

2. Oncogenic mutations (Oncogenic, Likely Oncogenic) with Gain-of-function or 

Likely Gain-of-function effect are grouped into a feature, GENE(A).

3. Oncogenic mutations with Loss-of-function or Likely Loss-of-function effect are 

grouped into a feature, GENE(I).

4. Oncogenic mutations with other effects are grouped into a feature, GENE(O).

Using the OncoKB mutation features derived above, we construct the feature matrix 

A = aij  of m OncoKB mutation features across n samples where aij = 1 if mutation i 

occurs in sample j and aij = 0 otherwise.

Next, we generate binary features that represent the cell type of each sample using 

information from metadata such as the primary tissue. In the application in this paper, 

we use cancer types as the cell-type features. Each cancer-type feature has the value 1 for 

samples of the corresponding cancer type and the value 0 for samples of other cancer types. 

Note that the cancer-type features are mutually exclusive by definition.

We now combine the two sets of features and create an augmented binary feature matrix A 
of m OncoKB mutation features and q cancer-type features across n samples.

Finding feature sets associated with differential dependencies—The second 

module in SuperDendrix finds a subset M* of features (rows in A) that are: (i) 

most associated with differential dependency profile dg; and (ii) approximately mutually 

exclusive.

First, for each score dgj of differential dependency g in sample j from the profile dg, we 

define a normalized score d′j =
dgj
S  where S = ∑dgj < 0dgj if dg is an increased dependency 
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and S = ∑dgj > 0dgj if dg is a decreased dependency. Then, we define a weight function 

W (M) that quantifies how well a subset M = m1, …, mk  of features satisfies properties 

(i) and (ii). For the weight function W (M), we generalize the weight function defined 

previously35 to measure the mutual exclusivity between mutations. Specifically, for a set M, 

let Γ (M) be the subset of samples with mutations in M, cj(M) be the number of mutations 

in M that occur in sample j, and ρj be a penalty term for mutations in M that co-occur in 

sample j. When searching for association to increased dependency, ρj is equal to dj′ ; when 

searching for association to decreased dependency, ρj is equal to dj′ . We define

W(M) = ∑
j ∈ Γ(M)

dj′ − cj(M) − 1 ρj . (Equation 1)

If the mutations in M are mutually exclusive, then Cj(M) = 1 for all j and thus W(M) is 

the sum of differential dependency scores for all altered samples. If cj(M)>1, then sample 

j has mutations in more than one feature in M, and thus we penalize the weight W(M) for 

each additional mutation. Note that if the features that co-occur in a sample are GENE(I) 

and GENE(O) mutations, we do not penalize the weight. This is motivated by the two-hit 

hypothesis117 which states that both alleles need to be mutated for gene inactivation. To see 

that the weight W(M) is a straightforward generalization of the Dendrix weight introduced 

previously35 we consider the following reformulation, in which Γ (m) denotes the set of 

samples with feature m.

W (M) = ∑
j ∈ Γ(M)

dj′ − cj(M) − 1 ρj = ∑
j ∈ Γ(M)

dj′ + ρj − cj(M)ρj

= ∑
j ∈ Γ(M)

dj′ + ρj − ∑
m ∈ M

∑
j ∈ Γ(m)

ρj

In the case where all samples have equal score, i.e., d′j = 1, and ρj = d′j = 1 for all j, the 

supervised Dendrix weight W (M) simplifies to W (M) = 2 |Γ (M) | − ∑m ∈ M |Γ (m)|, which is 

the original Dendrix weight.35

Following the nomenclature in machine learning, the problem considered in Dendrix35 

of finding a mutually exclusive set of alterations is an “unsupervised” feature selection 

problem, while the problem solved by SuperDendrix is a “supervised” feature selection 

problem where we aim to identify a set of mutually exclusive features that “explain” a 

phenotype.

Next, we aim to find a set M* with optimal weight W(M*), which we define as follows.

Problem 1 (Optimal Weight Exclusive Target Coverage Problem (OWXTC)). Given a binary 

feature matrix A and a differential dependency profile d, find a subset M* of rows satisfying
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M∗ =
arg min
M ⊆ ℰ

W (M) for increased dependencies,

arg max
M ⊆ ℰ

W (M) for decreased dependencies, (Equation 2)

where ℰ is all subsets of rows in A.

OWXTC is NP-hard because it generalizes the Maximum Weight Submatrix Problem which 

was shown to be NP-hard35 for the special case where d′j = 1, and ρj = 1 for all j. We also 

define the cardinality-constrained version k-OWTXC of OWXTC in which E is all subsets 

of size at most k.

We formulate the OWXTC as an integer linear program (ILP) as follows. First, we define 

binary variables xi, for each row 1 ≤ i ≤ m, and yj, for each column 1 ≤ j ≤ n, with the 

interpretation

xi = 1 i ∈ M∗

0 otℎerwise
and yj = 1 aij = 1 for some i ∈ M∗

0 otℎerwise .

Then the OWXTC in the case of increased dependency is equivalent to the following ILP.

min ∑
dj′ < 0

dj′ + ρj yj − ∑
i

∑
j ∈ Γ(i)

ρjxi (Equation 3)

subject to yj ≤ ∑
i: aij = 1

xi for all 1 ≤ j ≤ n
(Equation 4)

yj ≥ xi for all i, j: aij = 1 and wj < 0 (Equation 5)

xi ∈ 0, 1 for all 1 ≤ i ≤ m (Equation 6)

yj ∈ 0, 1 for all 1 ≤ j ≤ n (Equation 7)

For finding associations with decreased dependencies, we replace min by max in Equation 

(3). For the cardinality-restricted version, we add the inequality

∑
i ∈ ℰ

Xi ≤ k (Equation 8)

Note that the SuperDendrix weight and the ILP are similar, but not identical, to those 

presented previously.28 The differences are discussed in “Comparison with UNCOVER.”
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Evaluating statistical significance of associations—The third module of 

SuperDendrix consists of two steps. First, since the optimal size k = M∗  of the feature 

set is unknown, we perform model selection using a conditional permutation test to evaluate 

the contribution of each mutation to the weight W(M*). For each feature m in M*, we 

compare the weight W(M*) to the distribution of the weight W M∗ , where W M∗  is 

the weight obtained when mutations of the feature m are permuted across samples. We 

compute the empirical P-value as pm = Pr W M∗ ≤ W M∗  (increased dependency) or 

pm = Pr W M∗ ≥ W M∗  (decreased dependency) over 10,000 permutations and remove 

m with the largest P-value only if pm>0:0001. We repeat the above process until we obtain a 

feature set M which only contains features with pm≤0:0001.

Next, we evaluate the statistical significance of the association between feature set M and 

differential dependency profile dg by running SuperDendrix on random feature matrices A
with fixed row and column sums4 (numbers of mutations per gene and sample, respectively). 

Note that we generate these random matrices using all mutations (i.e., including mutations 

not annotated in OncoKB), and then use the first module in SuperDendrix to select the 

OncoKB mutation features. We compare the weight W (M) to the distribution of the weight 

W (M), where W (M) is the optimal weight computed from a random feature matrix A. 

We compute the empirical P-value as p = Pr[W (M) ≤ W (M) (increased dependency) or 

p = Pr[W (M) ≥ W (M) (decreased dependency) over up to 500,000 random feature matrices. 

After computing P-values of the feature sets for each differential dependency, we compute 

false discovery rate (FDR) using Benjamini-Hochberg procedure118 for multiple hypothesis 

correction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bioinformatics and Data processing—We downloaded the Avana [20Q2/5.20.2020] 

dataset48 from the DepMap data portal. This dataset contains dependency scores – computed 

using the CERES algorithm – for 18,119 CRISPR-Cas9 gene knockouts across 769 cancer 

cell lines. We normalize each of 18,119 dependency profiles by converting CERES scores to 

z-scores as described in Meyers et al.48 before applying the first module of SuperDendrix. 

After running the first module of SuperDendrix, we obtain 511 differential dependencies 

that are better fit by a mixture of two t-distributions; 446 increased dependencies and 65 

decreased dependencies.

We downloaded non-synonymous somatic mutation data [20Q2/5.20.2020] for the same 

cell lines from the Cancer Cell Line Encyclopedia (CCLE)44 using the same DepMap data 

portal. This dataset includes 547,597 mutation data for 767 of the 769 cell lines in the 

CRISPR-Cas9 dataset. We excluded “silent” and “other conserving” mutations and applied 

SuperDendrix to 399,559 non-synonymous mutations. After running the first module of 

SuperDendrix we obtain a genomic alteration matrix containing 897 mutation features (76 

GENE(A), 258 GENE(I), and 563 GENE(O) mutation features) in 355 genes in 767 cell 

lines. Note that these mutation features do not overlap with the list of recently identified 

“passenger hotspot” mutations caused by preferential APOBEC activity in DNA stem 

loops.119 To derive cancer-type features, we used the “primary_disease” and “Subtype” 
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columns in the DepMap cell line metadata and fixed annotation errors and merged rare 

cancer sub-types. Our annotation of cancer types is in “Cancer_type” column in our curated 

cell line data (Table S9). We use this annotation to construct 31 binary cancer-type features 

representing the cancer types of DepMap cell lines where each feature has a value 1 for cell 

lines of that cancer type and 0 for other cell lines.

We run SuperDendrix using sets of at most 3 mutations and sets of at most 5 mutations 

and/or cancer types.

Comparison with NormLRT—We compare two sets of differential dependencies 

identified from the DepMap data using the two-component mixture model from 

SuperDendrix and Normality Likelihood Ratio Test (NormLRT).18,30 NormLRT measures 

the divergence of a dependency profile from a Gaussian distribution by fitting the 

dependency scores to a Gaussian and a skewed-t distribution. LRT score is the following:

LRT = 2 × [ln(likeliℎood for Skewed − t) − ln(likeliℎood for Gaussian )]

SuperDendrix identified 511 2C differential dependencies while NormLRT identified 949 

differential dependencies using the same LRT score threshold of 125 from the original 

study.18,30 We compare the two lists of differential dependencies to reference gene sets of 

Sanger priority target genes20 and nonessential genes111 that were identified based on gene 

dependency from independent CRISPR screens.

SuperDendrix outperforms NormLRT in identifying known dependencies, achieving both 

higher precision and recall for Sanger priority targets (SuperDendrix: 0.1, NormLRT: 0.03; 

area under the precision-recall curve (AUPRC)). In addition, differential dependencies from 

SuperDendrix contain fewer nonessential genes than NormLRT differential dependencies 

(NormLRT: 3.2% (30/949), 2C: 0.8% (4/511)). We consider nonessential genes which are 

rarely expressed as the negative control gene set since the differential dependencies are 

unlikely to be non-essential (unexpressed) for cellular activity.

Analysis of CERES dependency probabilities—We also ran SuperDendrix on the 

dependency probabilities obtained from the Avana dataset. These probabilities are computed 

from reference gene sets of unexpressed genes and essential genes and attempt to quantify 

the probability that a CERES score represents a true dependency.

In the first module of SuperDendrix, we identified differential dependencies from the 

dependency probabilities using the following 3σ criterion that is similar to the 6σ criterion 

used in the previous analysis of RNAi screens.19 First, we defined the direction of each 

gene dependency as increased if the majority of the cell lines have dependency probability 

less than 0.5 and decreased otherwise. Then we defined each gene dependency as a 3σ 
differential dependency if at least 20% of the cell lines – close to the average percentage 

(23%) of cell lines in the outlier components in two-component mixtures from CERES 

scores – have dependency probabilities more than three standard deviations away from the 

mean. Using the 3σ criterion, we selected 810 3σ differential dependencies (804 increased 

and 6 decreased). 126 of the 810 3σ differential dependencies are also 2C differential 
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dependencies identified by SuperDendrix. The 3σ differential dependencies contain a 

significantly lower proportion of cancer genes from Cancer Gene Census (CGC) than 2C 

differential dependencies (3σ: 7.4%, 2C: 17.2%; p≤1e – 5, two-sample proportion z-test).

SuperDendrix identified significant associations (FDR≤0:2) for 78 of the 810 3σ differential 

dependencies. These include 15 differential dependencies with significant associations 

identified in the original analysis using 2C scores. The majority of the mutation sets 

for the 15 shared differential dependencies are similar: mutation sets for 10 differential 

dependencies are identical, and the mutation sets for 3 other differential dependencies 

contain at least one mutation in common. The 63 associations that were uniquely identified 

using dependency probabilities contain a significantly lower proportion of CGC cancer 

genes than the 112 associations that were identified uniquely using 2C scores (dependency 

probability: 4.8%, 2C score: 29.5%, p = 0:00005; two-sample proportion z-test).

SuperDendrix analysis of all non-synonymous mutations—In the first module 

for classification and selection of OncoKB mutations, SuperDendrix identified 20,089 

mutations that occur in OncoKB-annotated cancer genes from 328,667 non-synonymous 

mutations in the CCLE data and searched for associations using this subset.

For comparison, we also ran SuperDendrix without restricting to mutations annotated in 

OncoKB. Using all 328,667 non-synonymous mutations in 13,334 genes. SuperDendrix 

identified 121 differential dependencies with significant associations (FDR≤ 0:2), 80 of 

which are associated with sets containing multiple mutations. These include 77 differential 

dependencies that were identified from the analysis using OncoKB mutations only. The 

associations for the overlapping 77 differential dependencies from the two analyses are 

similar overall: 32 associated sets of mutations for 32 of these 77 differential dependencies 

are identical and another 33 mutation sets share at least one OncoKB mutation in common. 

Not surprisingly, while mutations identified in both analyses and mutations identified only 

in the OncoKB analysis are both significantly enriched (p≤0:05; hypergeometric test) for 

cancer genes from Cancer Gene Census (CGC), mutations in associations identified only 

when using all non-synonymous mutations are not enriched for CGC genes (p = 0:2, 

hypergeometric test). These associations require additional validation.

Thus, while OncoKB mutations account for only 6.1% of the non-synonymous mutations, 

they account for 62% of the differential dependencies with associations and 37.4% of 

the mutations found by SuperDendrix. This indicates that associations for differential 

dependencies are saturated by a small subset of mutations in known cancer genes selected by 

SuperDendrix

Network analysis of pathway addiction—We performed an analysis that integrates the 

associations identified by SuperDendrix with prior knowledge of physical interactions in 

protein-protein interaction (PPI) networks. First, we add edges to the PPI network for each 

association between a mutation and a differential dependency identified by SuperDendrix. 

We then find subnetworks that are connected in physical interactions and dense in genetic 

dependencies. This approach automates some of the manual annotation that we performed to 

identify oncogenic pathway addiction.

Park et al. Page 22

Cell Genom. Author manuscript; available in PMC 2022 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We searched for the densest connected subnetworks of 6 different sizes (10, 15, 20, 25, 

30, and 35 vertices) from a dual network of 176,839 physical interaction edges from 

HINT+HI network114 - a combination of HINT and HI interaction networks - and 561 

genetic dependency edges derived from SuperDendrix associations for 511 differential 

dependencies. We computed a P-value for each subnetwork using a permutation test 

by permuting genetic dependency edges as described in a previous study.120 All of the 

densest connected subnetworks we identified are statistically significant (p≤0:05). Note that 

the densest connected subnetwork of size 35 contains genes that span multiple addicted 

pathways including the NFE2L2 pathway, the MAPK pathway, and the Wnt pathway. 

Interestingly, this subnetwork also contains an association between TAZ dependency and 

the set, {TP53(I); TP53(O)} that is not statistically significant according to SuperDendrix 

(Figure S5). TAZ is a transcriptional regulator that has been identified as a key driver of 

various cancers.121 The association of TAZ dependency with TP53 mutations is consistent 

with a recent report122 that mutant p53 leads to aberrant activation of the YAP/TAZ 

transcriptional regulator complex.

Validation on the Sanger CRISPR-Cas9 screen data—We used the dataset from 

genome-wide CRISPR-Cas9 screens conducted as part of the Cancer Dependency Map at 

Wellcome Sanger Institute20 to validate the associations identified by SuperDendrix from the 

Avana dataset of the Cancer Dependency Map at the Broad Institute.

First, we downloaded the dataset20 [Release 1/4.5.2019] containing dependency scores 

computed from results of CRISPR screens across 324 cancer cell lines from the Project 

Score data portal and a list of mutations for the same cell lines from Cell Model Passports113 

data portal. We used quantile normalized log fold-changes as dependency scores and 

processed the mutation data using SuperDendrix OncoKB feature selection. We restricted 

our validation to 312 cell lines that contain at least one OncoKB mutation feature.

For each association identified by SuperDendrix in the Avana dataset, we compared the 

dependency scores of cell lines containing at least one of the features with dependency 

scores of the cell lines without any feature. We excluded the associations for which 

dependency or feature data is not available in the Score dataset. We found that associations 

between 45/110 differential dependencies and mutations and associations between 146/210 

differential dependencies and cancer types and/or mutations identified by SuperDendrix are 

statistically significant in the Score dataset (p≤0:05; Wilcoxon rank sum test).

We find that many of the associations identified by SuperDendrix that did not validate in the 

Score dataset are in cancer types that were poorly represented in the Score dataset (Table 

S5).

Comparison with other perturbation screen results—We compare the differential 

dependencies and mutation sets associated with these dependencies identified with our 

methods to the results of RNAi screening from Tsherniak et al.19 and CRISPR-Cas9 

screening from Behan et al.20
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Tsherniak et al.19 identified 6σ genes and associated genomic markers of these differential 

dependencies using RNAi screens of 501 cancer cell lines as part of the DepMap project. 

This analysis is distinct from ours in terms of the perturbation assay (RNAi instead of 

CRISPR) and score (DEMETER19 instead of CERES), and in that Tsherniak et al. consider 

copy number aberrations and gene expression data – in addition to mutations – as potential 

genomic markers. There are 353 cell lines shared between the RNAi and CRISPR datasets.

We first compare in terms of differential dependencies. Tsherniak et al.19 analyzed 6,305 

profiles that pass quality control and identified 769 6σ genes. 92 of these 6σ profiles are 

also among the 511 2C differential dependencies. Despite the small number of overlaps, 

the two sets of differential dependency profiles represent similar classes of proteins. In 

particular, both sets are significantly enriched for GO molecular functions such as DNA 
binding and protein kinase activity. They also contain similar proportion of CGC genes 

(Tsherniak et al. 6σ: 12.1% p<0:01, 2C: 17.2% p<0:01). Genes that are unique to each set 

also capture similar GO molecular functions including nucleotide binding, protein binding, 

and G protein-coupled receptor activity and are both significantly enriched for CGC genes 

(p<0:01).

We next compare our results with Tsherniak et al.19 in terms of biomarkers for 

differential dependency. Tsherniak et al. used a random forest-based approach to identify 

genomic features that are predictive of differential dependency, which they referred to as 

“marker dependency pairs” (MDPs). Using mutations, copy number aberrations, and gene 

expression, Tsherniak et al.19 found MDPs for 426 of the 769 6σ profiles in the RNAi 

data. However, only 10 of these correspond to mutation driven biomarkers. In contrast, 

SuperDendrix found significantly associated mutation sets in 127 of 511 2C differential 

dependencies in the CRISPR data. 7 biomarker associations (mutation driven) are identified 

by both methods. These include well-known associations such as oncogene addictions of 

BRAF, NRAS, and KRAS. Interestingly, associations identified only by SuperDendrix 

include those with strong evidence, such as RAF1 dependency on KRAS or NRAS 
mutations, STAG1 dependency on STAG2 mutations, and NFE2L2 dependency on KEAP1 
mutations.

As part of the DepMap project, Behan et al.20 independently conducted genome-wide 

CRISPR-Cas9 loss-of-function screens in 324 cancer cell lines that include 178 cell lines 

from the Avana dataset. From a total of 18,009 knockout genes, they identified 628 priority 

targets based on combination of gene knockout effect across cell lines and their associations 

to biomarkers (single nucleotide variants, copy number variations, and microsatellite 

instability status). 148 of the priority targets are also among the 511 2C profiles from 

SuperDendrix. The two sets of genes are significantly enriched for GO molecular functions 

such as DNA binding, protein binding, and transcription regulator activity. They also contain 

similar proportion of CGC genes (priority targets:15.8% p≤0:01, 2C: 17.2% p≤0:01).

Behan et al. analyzed associations of gene knockout effects with genomic biomarkers 

within each cancer type using ANOVA. Associations that occur across multiple cancer 

types were aggregated and re-tested using a t-test across all cell lines. We compare our 

results to their associations to SNVs considering all cell lines since we do not test for 
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cancer-type-specific biomarker associations. Behan et al. identified a total of 77 significant 

biomarker associations (p≤0:05) in 51 of the 628 priority target genes. However, only 16 

associations for 14 genes are with SNV biomarkers. 3 of these (KRAS-KRASmut, PIK3CA-

PIK3CAmut, GRB2-KRASmut) are also identified by SuperDendrix.

Overall, we are able to explain 127 of the 511 2C differential dependencies (24.9%) with 

mutations using SuperDendrix, 36 of which are associated with more than one mutation. In 

contrast, Tsherniak et al.19 and Behan et al.20 can each explain only 1.3% 10
769  and 2.5% 

16
628  of their differential dependencies with mutation features. These findings indicate that 

our model, by searching for a set of approximately mutually exclusive mutations, has higher 

sensitivity for identifying associations between gene dependency biomarkers.

Univariate analysis of the DepMap data—We find that the univariate analysis 

and SuperDendrix have some overlap in their reported associations, but also substantial 

differences (Figure S8). Only 65 differential dependencies are reported as associated with 

mutations by both methods (Figure S8A), while SuperDendrix and the univariate test 

report an additional 62 and 72 differential dependencies, respectively, to be associated 

with mutations (Figure S8B–C). The 62 differential dependencies reported uniquely by 

SuperDendrix contain a higher proportion of CGC cancer genes than those reported 

uniquely by the univariate analysis (12/62 for SuperDendrix versus 8/72 for univariate, 

p = 0:09; two-sample proportion test, Figure S8D). Moreover, the associations found 

uniquely by the univariate test are skewed toward associations involving the most frequently 

mutated genes and the cell lines with the most mutations in the dataset. In particular, 

the mutations in the associations reported uniquely by the univariate test have a higher 

average frequency than the mutations in associations reported uniquely by SuperDendrix 

(78.2 for univariate versus 41.6 for SuperDendrix, p = 0:011; t test, Figure S8E). Over a 

third (33/94) of the associations reported uniquely by the univariate test involve 3 frequent 

mutations, KRAS(A), BRAF(A), and TP53(I) that are mutated in 130, 65, and 495 cell lines, 

respectively. In contrast, because SuperDendrix examines combinations of mutations, it has 

higher sensitivity for finding associations with rare mutations. For example, SuperDendrix 

finds an association between CCND3 dependency and CCND3 activating mutation (5 cell 

lines), a previously reported oncogene addiction, as part of the mutation set {CCND3(A); 

LTB(C)}. Second, the difference in the number of associations reported uniquely by the 

univariate test and SuperDendrix is positively correlated (R = 0:39, p≤2:2e – 16; Pearson 

correlation, Figure S8F) with the total number of mutations in the cell line. This suggests 

that the univariate method lacks specificity in cell lines with many mutations due to lack of a 

procedure to control for variable mutation rate of cell lines.

We conducted a systematic univariate analysis to search for associations between mutation 

features and differential dependencies. Specifically, for each mutation and each differential 

dependency we compare the CERES dependency scores in cell lines with and without the 

mutation using the Wilcoxon rank-sum test. We perform this test for all 897 mutations and 

511 differential dependencies identified in the first module of SuperDendrix, for a total 

of 458,367 tests. This univariate analysis identified 201 significant associations (FDR≤0:2) 

between 137 differential dependencies and 76 mutations (Figure S8), compared to 172 
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significant associations (FDR≤0:2) between 127 differential dependencies and 84 mutations 

identified by SuperDendrix (Figure S8).

Next, we compared the associated mutations reported by SuperDendrix and the univariate 

test for the 65 differential dependencies that both methods reported to have associated 

mutations (Figure S8A). We found that for 35 of these 65 differential dependencies, both 

methods reported the same set of mutations. For the other 30 differential dependencies, the 

differences between methods were analogous to these described above for the differential 

dependencies unique to each method. In particular, the univariate method tended to 

report more associations with the most frequent mutations; e.g., BRAF(A) and KRAS(A). 

Examining the differential dependencies with the largest differences in the number of 

associated mutations also demonstrates a key difference between the univariate test and 

SuperDendrix. The differential dependency with the largest difference in the number of 

associated mutations is WRN (Figure S9); the univariate analysis reports 13 associated 

mutations while SuperDendrix reports only one of these: KMT2B inactivating mutation 

(Figure S9A–B). Importantly, KMT2B(I) is most strongly associated with WRN dependency 

among the 13 mutations found by the univariate test. Furthermore, the 12 additional 

mutations occur in 23 of the 24 cell lines that contain KMT2B mutation, indicating 

strong co-occurrence between these mutations (Figure S9C). Not surprisingly, the set 

of 13 mutations found by the univariate test have weaker SuperDendrix weight which 

scores mutual exclusivity of mutations and their association to differential dependency 

than the mutation reported by SuperDendrix (Figure S9D). This example illustrates one 

of the key differences between SuperDendrix and the univariate analysis: the univariate 

analysis evaluates each mutation association independently while SuperDendrix examines 

mutual exclusivity between mutations and thus avoids reporting overlapping, redundant 

associations.

Microsatellite instability (MSI) was previously reported to be associated with both WRN 
dependency and downregulation of KMT2B.123 Therefore, we conducted an additional 

analysis of WRN dependency using the MSI status (available for 639 of 769 cell lines 

from the DepMap 20Q2 release) as an additional binary feature in the feature matrix of 

SuperDendrix. We used the MSI status for each cell line reported in Chan et al., 2019.124 

We find that WRN dependency is more significantly associated with KMT2B(I) mutation 

found by SuperDendrix than MSI status (KMT2B(I): 0.0000, MSI: 0.0611; P-value from 

SuperDendrix). We also confirmed that the strongest association with WRN dependency 

identified by SuperDendrix is KMT2B(I) when MSI is included in the feature matrix. 

Interestingly, while most (20/24) of the cell lines with KMT2B(I)mutation contain MSI, 

we find that KMT2B(I) is more specific to increased dependency on WRN; a higher 

fraction of the KMT2B(I) mutated cell lines are dependent on WRN than the MSI cell lines 

(KMT2B(I): 18/24, MSI: 22/41, Figure S10). It is possible that the higher significance and 

specificity of the association between WRN dependency and KMT2B(I) than MSI indicates 

that the methylation status of H3 histone mediated by the KMT2B(I) mutation may represent 

a specific molecular mechanism in MSI status that confers the synthetic lethal interaction 

with WRN. Another alternative is that the MSI status of some cell lines is incorrect. Further 

validation studies will be necessary to distinguish the functional linkages between WRN, 

KMT2B, and MSI.
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On the other hand, the univariate test misses interesting associations with rare mutations 

that are reported by SuperDendrix (Figure S11). For example, SuperDendrix reports a set 

of three mutations, {KEAP1(I); KEAP1(O); NFE2L2(A) } to be associated with increased 

dependency on NFE2L2 (Figure S11A). In contrast, the univariate test reports only two of 

these mutations, KEAP1(I) and KEAP1(O). The association between NFE2L2(A) mutation 

and NFE2L2 dependency is consistent with oncogene addition and has been reported 

previously, but was missed by the univariate test because NFE2L2(A) is a rare mutation 

present in only 7/767 cell lines in the dataset (Figure S11B) Another interesting example 

is increased dependency on FANCG. SuperDendrix reports BRCA1(I), a relatively rare 

mutation occurring in 15/767 cell lines, to be associated with FANCG dependency (Figure 

S11C). Both FANCG and BRCA1 (also known as FANCS) are members of the FA-BRCA 

pathway that regulates DNA damage response and are novel candidates for synthetic lethal 

interaction. On the other hand, the univariate test reports an association between FANCG 
and the frequent but functionally unrelated mutation, BRAF(A) (65/767 cell lines) (Figure 

S11D). These examples again demonstrate the key difference between SuperDendrix and the 

univariate analysis: the univariate analysis evaluates each mutation association individually 

while SuperDendrix scores association between a set of mutually exclusive mutations 

enabling the identification of associations with rare mutations.

Taken together, these results show that the univariate test and SuperDendrix have different 

trade-offs in the identification of associations: the univariate test is confounded by mutation 

rate, reporting many associations with frequently mutated genes and in cell lines with high 

mutation rates. In contrast, SuperDendrix identifies associations with rarely mutated genes 

that are mutually exclusive of associations with more frequently mutated genes, but might 

miss some associations in samples with extremely high mutation rates (e.g., due to MSI) 

which lead to co-occurrence between driver and passenger mutations.

Univariate analysis of cancer-type-specific differential dependencies—We 

conducted a systematic univariate analysis to search for associations between differential 

dependencies and combinations of cancer type and/or mutation features. We analyzed a total 

of 474,208 pairs consisting of one of 511 differential dependencies and one of 928 features 

(31 cancer types and 897 mutations). This univariate analysis identified 861 significant 

associations (FDR≤0:2) between 334 differential dependencies, 25 cancer types and 142 

mutations (Figure S12), compared to 501 significant associations (FDR≤0:2) between 227 

differential dependencies, 27 cancer types and 55 mutations identified by SuperDendrix 

(Figure S12).

We find a sizable difference between the associations identified by the univariate test 

and SuperDendrix. While 203 differential dependencies are reported by both methods 

to have associations (Figure S12A), the univariate test reports an additional 131 unique 

differential dependencies with associations, while SuperDendrix reports an additional 24 

unique differential dependencies with associations (Figure S12B–C). We found that the 

associations reported uniquely by the univariate test are biased toward frequent features and 

cell lines with higher mutation rate, analogous to the results reported above with mutation 

features alone. Specifically, the features in associations reported uniquely by the univariate 

analysis have a higher average frequency than those in associations reported uniquely by 
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SuperDendrix (univariate: 39.2, SuperDendrix: 26.7, p = 0:002; t test, Figure S12D). On the 

other hand, the features in associations reported uniquely by SuperDendrix that were not in 

associations reported by the univariate test are all rare features that occur in less than 20 

cell lines (average frequency: 13.1, starred in Figure S12B)). In addition, the difference in 

the number of associations reported by the univariate test and SuperDendrix is positively 

correlated (R = 0:5, p≤2:2e – 16; Pearson correlation, Figure S12E) with the total number of 

mutations in the cell line, indicating that some of the associations reported by the univariate 

test are likely false positives in cell lines with high numbers of mutations. These suggest 

two issues of the univariate test: The univariate test lacks sensitivity in features with low 

frequency and specificity in cell lines with many mutations because the univariate test 

evaluates each feature independently and lacks a procedure to control for variable mutation 

rate of cell lines. In contrast, SuperDendrix evaluates combinations of mutually exclusive 

features and controls for mutation rate of cell lines in the statistical test of its third module.

Next, we compared the features that were reported to be associated with the 203 differential 

dependencies identified by both methods (Figure S12A). We found that both methods 

reported the same sets of features for 52 of these 203 differential dependencies. Associations 

reported uniquely by the univariate test tended to include frequent features and cell 

lines with high mutation rates. Furthermore, the univariate test reported many differential 

dependencies to be associated with both a mutation and a cancer type where this mutation 

frequently occurred. For example, BRAF(A) is the mutation with most associations reported 

by the univariate test, and this occurs frequently in skin cancer (39/65 cell lines with 

BRAF(A) are skin cancer, fold-enrichment = 8.52, p = 1:2e – 39; hypergeometric test, 

Figure S13A). Interestingly, 24 of the 34 differential dependencies reported by the univariate 

test to be associated with either BRAF(A)or skin cancer are reported as associated with both 

BRAF(A) and skin cancer (Figure S13B). On the other hand, none of the 26 differential 

dependencies reported by SuperDendrix to be associated with BRAF(A) or skin cancer 

are associated with both features. This again demonstrates the key difference between the 

univariate test and SuperDendrix that was described above: the univariate test evaluates 

each association independently and does not account for correlation between features 

while SuperDendrix examines mutual exclusivity of features and thus avoids redundant 

associations of correlated features. This difference is also apparent in the mutation with 

second most associations, KRAS(A). Cell lines with KRAS(A) mutation are significantly 

enriched for pancreatic cancer, colon cancer, lung cancer, and bile duct cancer (Figure 

S13C). 14 of the 34 differential dependencies reported by the univariate test to be 

associated with KRAS(A) or these four enriched cancer types are associated with both 

KRAS(A) mutation and at least one of the enriched cancer types (Figure S13D). In contrast, 

SuperDendrix does not report any redundant associations in 40 differential dependencies 

associated with KRAS(A) or the enriched cancer types.

Taken together, these results indicate a similar tradeoff in the identification of associations 

described previously in the comparison of associations to mutations: While the univariate 

test reports a higher number of associations than SuperDendrix, its associations tend to 

include redundant associations between correlated features and are also biased toward cell 

lines with higher mutation rate. On the other hand, SuperDendrix prioritizes mutually 
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exclusive features and selects the strongest associations, thus reporting fewer and less 

redundant associations.

Comparison with UNCOVER—As noted in the introduction, there are two other 

methods to find associations between mutually exclusive mutations and gene perturbation 

scores: REVEALER25 and UNCOVER.28 REVEALER uses a greedy method to find 

mutually exclusive mutations associated with continuous phenotype. As noted previously,28 

the greedy method is slow and not scalable to the large-scale Avana dataset containing 

thousands of dependency profiles, and therefore was not compared with SuperDendrix. 

UNCOVER was developed concurrently with our development of SuperDendrix, and also 

solves a combinatorial optimization problem. However, there are several key differences 

between SuperDendrix and UNCOVER.

1. UNCOVER is applied directly to dependency scores, while SuperDendrix first 

identifies and scores differential dependencies using a mixture model.

2. UNCOVER combines all mutations in a gene into a single gene-level mutation, 

while SuperDendrix creates different mutation features (GENE(A), GENE(I), or 

GENE(O)) according to OncoKB annotations.

3. UNCOVER uses a different objective function in the optimization with positive 

and negative scores having asymmetric contribution to the objective.

4. UNCOVER lacks a model selection step and does not control for variability in 

the number of mutations across cell lines during its statistical test.

First, we highlight the difference between the SuperDendrix weight and the UNCOVER 

objective function which we reproduce below using the same notation from the 

SuperDendrix weight:

w(M) = ∑
j ∈ Γ(M)

dj − cj(M) − 1 pj

This function consists of two terms, dj and pj, that represent association to phenotype 

and penalty for co-occurring mutations. While UNCOVER uses the same linear term as 

SuperDendrix for biomarker-phenotype association, it uses a penalty term that has different 

values depending on the sign of the phenotype score. Specifically, if the phenotype score dj 

in cell line j is positive, then UNCOVER sets the penalty pj to the average of the positive 

phenotype scores; alternatively, if the phenotype score dj in cell line j is negative then 

UNCOVER sets the penalty pj to be the absolute value of the score.

Next, we compared SuperDendrix and UNCOVER on the same Avana dataset and found 

that the methodological differences between SuperDendrix and UNCOVER led to large 

qualitative and quantitative differences in results. For consistency with the original study,28 

we first standardized the CERES scores into z-scores and constructed gene-level mutation 

features by combining missense, nonsense, and frameshift mutations of each gene into a 

single feature. Then we ran UNCOVER using the standardized CERES scores of 2,074 

6σ profiles and 13,311 mutation features and 31 cancer-type features search for a set 
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of 3 associated mutation features and 5 mutation and/or cancer-type features for both 

directions of dependency. UNCOVER reported 248 sets of mutations containing a total 

of 744 mutations with significant association (p≤0:001, Table S10), compared to 127 sets 

containing a total of 172 mutations for SuperDendrix. When the 31 cancer-type features 

were included, UNCOVER reported 860 sets of cancer-type features and/or mutations 

compared to 227 for SuperDendrix (Table S11).

There are multiple reasons for the larger number of associations predicted by UNCOVER. 

First, 138 of the 248 significant associations identified by UNCOVER are associations 

between dependencies that are not identified as differential dependencies by SuperDendrix. 

These include dependencies on USP1 and MAP3K2 whose dependency score distributions 

are unimodal (Figure S14A). Second, UNCOVER does not include a model selection 

procedure, and thus always returns mutation sets of the requested size (3 and 5 in these 

experiments). Of the 52 differential dependencies where both UNCOVER and SuperDendrix 

reported associated mutations in the same direction, UNCOVER’s associated sets included 

156 gene-level mutations (52 3 3), while SuperDendrix sets contain a total of 83 mutations 

(including GENE(A), GENE(I), and GENE(O) mutation features). 43 of the gene-level 

mutations identified by UNCOVER overlap the 83 mutations identified by SuperDendrix in 

the corresponding profile. The remaining 113 gene-level mutations found by UNCOVER 

are not included in SuperDendrix results. Notably, 63 of these 113 mutations contribute less 

than 20% to the corresponding weight of the mutation set. Across UNCOVER’s 248 total 

significant associations, 18% of the significant mutations 295
744  contribute less than 20% 

to the set’s weight. These mutations with small objective values are likely false positives. 

Finally, the permutation test used to evaluate statistical significance of UNCOVER’s results 

does not control for variability in the number of mutations across cell lines. We found that 

the number of significant associations reported by UNCOVER in a cell line is significantly 

correlated with the number of mutations in the cell line (Pearson correlation: R = 0:66 for 

mutations only; and R = 0:63 with cancer types included, Figure S14B–C), indicating that 

some of the associations reported by UNCOVER are likely false positives. In comparison, 

the correlation is much weaker in SuperDendrix results (R = 0:36 for mutations only; and R 
= − 0:01 with cancer types included, Figure S14B–C)).

Comparison with SELECT—The SELECT method40 has three major differences from 

SuperDendrix. First, SELECT examines only correlations between mutations and does 

not compute associations between mutations and quantitative phenotypes. In contrast, 

SuperDendrix scores sets of mutations according to their association with a phenotype of 

interest. Second, SELECT scores pairs of mutations while SuperDendrix evaluates larger 

sets of mutations. Finally, SELECT combines all non-synonymous mutations in a gene 

into a single feature while SuperDendrix separates mutations in a gene into three features: 

“Activating,” “Inactivating,” and “Other” according to OncoKB annotations.

Despite these differences, we used SELECT in a two-step procedure to identify associations 

between mutations and differential dependencies by first running SELECT on the mutation 

features derived by SuperDendrix and then applying the univariate test to identify 

associations between differential dependencies and the mutually exclusive mutations 
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reported by SELECT. SELECT identified only 24 pairs of mutations (in a total of 33 

genes) that are associated (via Wilcoxon rank-sum test) with 280 differential dependencies, 

compared to the 87 sets of mutations in 84 genes that are associated with 127 differential 

dependencies identified by SuperDendrix. Most of the SELECT associations are dominated 

by mutations in a small number of well-known cancer genes (Figure S15). For example, 

46% of the differential dependencies reported by SELECT to have associated mutations are 

associated with frequent mutations: KRAS(A) (130 cell lines), BRAF(A) (65 cell lines), 

TP53(I) (495 mutations), or NRAS(A) (48 cell lines). In comparison, these four mutations 

are associated with only 27% of the differential dependencies reported by SuperDendrix. 

Overall, we found that the associations reported by SELECT are biased toward frequent 

mutations and cell lines with higher mutation rate. Specifically, the mutations in associations 

reported by SELECT have a higher average frequency than those in associations reported 

by SuperDendrix (SELECT: 64.8, SuperDendrix: 38.6, p = 1:2e – 14; t test, Figure 

S16A). In addition, the difference in the number of associations reported by SELECT 

and SuperDendrix is positively correlated (R = 0:27, p = 2:02e – 14; Pearson correlation, 

Figure S16B) with the total number of mutations in the cell line, indicating that some 

of the associations reported by SELECT are likely false positives in cell lines with high 

numbers of mutations. Lastly, SELECT does not find associations to single mutations or 

sets of three mutations as it only analyzes pairs of mutations. As a result, the majority 

(54/74) of the associations reported by SuperDendrix that include only a single mutation 

are not reported by SELECT. These include associations between HRAS dependency and 

HRAS mutation and between PIK3CA dependency and PIK3CA mutation which have been 

reported previously as oncogene addictions.

Expression of lineage-specific transcription factors—SuperDendrix identified 

differential dependencies on 43 transcription factors that are significantly associated with 

specific cancer types. Cancer-type-specific dependencies on transcription factors have been 

reported previously to be associated also with expression of these genes.19 Therefore, we 

compared the expression of the 43 transcription factors with their gene dependency to 

evaluate the importance of gene expression on lineage-specific gene dependency.

Our analysis revealed that expression of the dependent gene is strongly correlated with 

dependency on the majority of the transcription factors (Figure S6A). This indicates that 

expression of the dependent gene is important in addition to the lineage classification for 

predicting gene dependency. Interestingly, we find that elevated expression of the dependent 

gene is specific to the associated cancer types with strong dependency for many transcription 

factors. For example, most of the cell lines with increased dependency on SOX10 and high 

SOX10 expression correspond to Skin cancer (Figure S6B). The cancer-type-specificity of 

expression and dependency indicates that either expression of the dependent gene or the 

lineage classification is sufficient to predict SOX10 dependency across cell lines. On the 

other hand, there are transcription factors where high gene expression is not specific to the 

associated cancer types. For example, increased dependency on SOX9 is associated with 5 

cancer types. Interestingly, many of the cell lines with high SOX9 expression and increased 

dependency on SOX9 are not part of the 5 associated cancer types (Figure S6C), indicating 

that lineage classification alone does not predict SOX9 dependency in these cell lines. 
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Furthermore, we find that many of the cell lines from Gastric cancer, one of the 5 cancer 

types associated with SOX9 dependency, have low SOX9 expression despite their increased 

dependency on the gene. Taken together, these findings demonstrate that both expression of 

the dependent gene and lineage classification are important for dependency on SOX9 across 

cell lines.

Decreased dependency on transcription factors—Two of the 43 transcription 

factors with cancer-type specific differential dependencies, THAP1, TP53, show decreased 
dependency in specific cancer types. For example, we find decreased dependency on 

THAP1 in leukemia. THAP1 is known as a pro-apoptotic factor involved in regulating 

endothelial cell proliferation and linking PAWR to promyelocytic leukemia (PML) nuclear 

bodies (NB).84,85 Interaction of PAWR and PML has been reported to trigger apoptosis.86 

Furthermore, PML is a tumor suppressor primarily expressed in blood vessels and a negative 

regulator of cell survival pathways.84,86 These reports on lineage-specificity and function 

of THAP1 and PML suggest that knocking out THAP1 which leads to loss of PML 

function resulted in decreased dependency or even prolonged cell survival in leukemia and 

lymphoma. We also find decreased dependency on TP53 in BRAF(A), kidney, rhabdoid, and 

liposarcoma cancer cell lines. A possible explanation for decreased dependency on TP53 
is its wild-type function as a tumor suppressor. A previous study reports that knocking 

out TP53 in cells with functional wild-type TP53 where p53 acts as a tumor suppressor 

will induce growth advantage in those cells [@giacomelli2018mutational]. In our results, 

we noticed that many of the rhabdoid and kidney cancer cell lines as well as skin cancer 

cell lines with BRAF(A) mutations contain wild-type TP53. We thus tested for association 

between decreased dependency on TP53 and TP53(WT) as an additional feature using 

SuperDendrix. In fact, SuperDendrix identified a significant association between them 

(p≤0:001), confirming that this is a decreased dependency conferred by inhibiting tumor 

suppressor activity of p53 in TP53 wild-type cell lines as suggested previously.87

ADDITIONAL RESOURCES

Web browser for genetic dependency and mutation data—We release a public, 

open-source web browser to view and explore SuperDendrix results. Users can choose 

which genetic dependency profile and which mutations they want to view or preload an 

association identified as significant by the SuperDendrix software. The browser displays a 

waterfall plot, indicating the dependency score and mutation status in each cell line. It also 

includes two bar plots on top of the waterfall plot that indicate tissue type and number 

of mutations per cell line. Users can interact with the plots by scrolling over bars in the 

waterfall plot. On mouse over, the browser displays tooltips listing information about the 

given cell line such as tissue type. Users can also select a range of cell lines in the bar plot at 

the top to zoom in. The plots provide an easy way to quickly assess whether the dependency 

scores in cell lines with user-specified mutations or cancer types are extreme relative 

to the other cell lines. The code for the SuperDendrix browser is open-source at https://

github.com/lrgr/superdendrix-explorer (Zenodo: https://doi.org/10.5281/zenodo.5878914), 

and the browser itself is publicly available at https://superdendrix-explorer.lrgr.io/.
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Highlights

• SuperDendrix finds associations between sample features and CRISPR 

genetic dependencies

• Somatic mutations are associated with 127 genetic dependencies from Project 

DepMap

• Lineage-specific dependencies on transcription factors correlate with gene 

expression

• Identified associations agree with direction of interactions within oncogenic 

pathways
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Figure 1. Overview of SuperDendrix
(A) SuperDendrix inputs are dependency scores of gene knockouts from CRISPR-

Cas9 screens, genomic alterations, and optionally, cell-type features. In the first step, 

SuperDendrix derives differential dependencies—genes whose dependency scores are better 

fit by a mixture distribution of two components—and also constructs a genome alteration 

and cell-type feature matrix. In the second step, SuperDendrix finds a subset M* of 

features that maximize the SuperDendrix weight W(M). In the third step, SuperDendrix 

performs model selection to define a subset M of features that substantially contribute 

to weight and computes statistical significance of weight W (M) using a permutation test. 

Associations with false discovery rate (FDR) ≤ 0.2 are output and include associations 

between features and increased dependency on profile (top right) and between features and 

decreased dependency on features (bottom right).

(B) Examples of differential dependencies from DepMap data that result from fitting the 

dependency scores with a mixture model. Blue curve is the background component, and red 

curve is the responsive component. Green dashed lines indicate 6σ criterion of Tsherniak et 

al.,19 which identifies only a subset of cell lines that are responsive to knockout. BRAF and 

CTNNB1 show increased dependency in response to knockout while PTPN11 and GRB2 
show decreased dependency.

See also Figure S1.
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Figure 2. SuperDendrix identifies associations between mutations and 2C differential 
dependencies in multiple biological pathways
(A) SuperDendrix weights and p values for 127 2C differential dependencies with significant 

(FDR ≤ 0.2) associations with mutations. 36 of these associations are sets of multiple 

mutations; e.g., the set {KEAP1(O), KEAP1(I), NFE2L2(A)} are mutations that are 

approximately mutually exclusive and associated with increased dependency on NFE2L2.

(B) (Top) Waterfall plot of 2C differential dependency scores for NFE2L2 across cell 

lines. Cell lines are colored by status in associated mutation set {KEAP1(O), KEAP1(I), 

NFE2L2(A)}. Green dashed line indicates 6σ threshold. (Bottom) KEAP1-NFE2L2 
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pathway. Solid circles are genes on the pathway, with colors indicating their mutations. 

Green boxes are genes that are knocked out. Association between KEAP1 inactivating 

mutations and increased dependency on NFE2L2 is consistent with the role of KEAP1 as an 

upstream activator of NFE2L2.

(C) Locations of missense mutations in KEAP1 protein that are annotated as other. 

KEAP1(O) mutations associated with increased dependency on NFE2L2 include: two 

mutations in the BTB/POZ domain (boxed), a domain that is important for dimerization 

of KEAP1;56 one annotated mutation in one of Kelch domains (boxed) which mediate 

interaction with NFE2L2;57 and one mutation (circled) that lies at a residue that interfaces 

with NFE2L2.58 Orange (resp. purple) amino acid changes are in cell lines with exclusive 

(resp. multiple) mutations in KEAP1. Triangles indicate locations of mutations that are 

reported in Uniprot59 to affect KEAP1-NFE2L2 interaction.

See also Figures S2 and S3 and Tables S2, S3, and S4.
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Figure 3. SuperDendrix identifies associations between mutations and 2C differential 
dependencies in the RB1 pathway
RB1 inactivating mutations are associated with increased dependency on E2F3, consistent 

with RB1’s role in inactivating the E2F3 transcription factor (same format as Figure 2B). 

On the other hand, RB1 inactivating mutations are associated with decreased dependency 

on CDK6 and CCND1. This is consistent with the role of the CDK4/6-CCND1 complex in 

inactivating RB1. See also Table S4.
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Figure 4. Associations between mutations and 2C differential dependencies in the MAPK 
pathway
(A) SuperDendrix identifies associations between approximately mutually exclusive 

activating mutations in BRAF, KRAS, NRAS, and HRAS and 12 differential dependencies 

in the MAPK pathway (same format as Figure 2B). Mutations that activate RAS/RAF are 

associated with increased dependencies of ten downstream genes in pathway. In contrast, 

these same mutations are associated with decreased dependency on two genes, PTPN11 and 

GRB2, that are upstream activators of RAS.

(B) Expression of MAPK1 versus CERES dependency scores of DUSP4. Cell lines 

with activating mutations in BRAF (red dots) show negative correlation between DUSP4 
dependency score and MAPK1 expression (R = −0.32, p < 0.01), while no correlation is 

observed in cell lines without BRAF activating mutations (R = 0.01, p = 0.72).
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See also Table S4.
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Figure 5. Heatmap of 2C scores for 43 transcription factors identified by SuperDendrix as 
cancer-type-specific differential dependencies
Dependency profiles are clustered within and across cancer types, with black boxes 

highlighting groups of prominent dependencies across cancer types. Bold text indicates 

transcription factors that were not reported in RNAi analysis.19 Labels are shown for cancer 

types with at least 5 cell lines. See also Figure S6 and Tables S6, S7, and S8.
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Figure 6. Dependencies on TCF3 pathway genes in blood cancers
SuperDendrix identifies cancer-type-specific dependencies on five genes of the TCF3 

pathway in myeloma, leukemia, and lymphoma cell lines as well as cell lines with BCL2(A) 

and MEF2B(A) mutations. The five genes include two core regulatory transcription factors, 

TCF3 and IRF4, and two genes regulated by these transcription factors. See also Figure S7 

and Tables S6.
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Figure 7. Cancer-type-specific differential dependencies in the IGF1R/PI3K pathway
(A) SuperDendrix identifies cancer-type-specific dependencies between six genes in IGF1R/

PI3K pathway across multiple cancer types (same format as Figure 2B).

(B) CERES scores of IGF2BP1 and IGF1R are positively correlated (R = 0.48) in Ewing’s 

sarcoma cell lines (blue points) but only weakly correlated (R = 0.11) across other cancer 

types (gray points).

(C) CERES scores of IGF2BP1 and IRS2 are positively correlated (R = 0.32) in Ewing’s 

sarcoma (blue points) and neuroblastoma (red points) cell lines, but only weakly correlated 

(R = 0.06) across other cancer types (gray points).
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See also Tables S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

DepMap data (120Q2 release) Meyers et al.48 https://depmap.org/portal/download/

Project Score data (Release 1) Behan et al.20 https://score.depmap.sanger.ac.uk/downloads

Cell Model Passports van der Meer et al.113 https://cellmodelpassports.sanger.ac.uk/downloads

HINT+HI interaction network Reyna et al.114 https://github.com/raphael-group/netmix

Software and Algorithms

SuperDendrix This paper
https://github.com/raphael-group/superdendrix,
https://doi.org/10.5281/zenodo.5885806

SuperDendrix web browser This paper https://github.com/lrgr/superdendrix-explorer,
https://doi.org/10.5281/zenodo.5878914

Oncokb-annotator Chakravarty et al.49 https://github.com/oncokb/oncokb-annotator

Gurobi Gurobi Optimization, LLC3 https://www.gurobi.com

EMMIXskew Wang et al.1 https://cran.r-project.org/src/contrib/Archive/EMMIXskew/

Scikit-learn Pedgregosa et al.2 https://scikit-learn.org/stable/

Curveball Strona et al.4 mailto:https://doi.org/10.1038/ncomms5114

UNCOVER Basso et al.28 https://github.com/VandinLab/UNCOVER

SELECT Mina et al.40 http://ciriellolab.org/select/select.html
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