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MicroRNAs (miRNAs) are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to
human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression,
we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach
is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical
modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of
collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature
and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic
model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of
different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts.

1. Introduction

Although microRNAs (miRNAs) are physically small, they
have been shown to play an important role in gene regulation
[1]. Currently, an increasing number of studies are being
carried out to deepen our understanding of miRNA reg-
ulatory mechanisms and functions. However, experimental
approaches have limitations when dealing with complex
biological systems composed of multiple layers of regu-
lation such as the transcriptional and post-transcriptional
regulation by transcription factors (TFs) and miRNAs [2].
Most experimental approaches focus on the identification
of miRNA targets and the investigation of physiological
consequences when perturbing miRNA expressions but are
unsuited to provide a system-level interpretation for observed
phenomena. Therefore, the introduction of a systematic
approach, which can unravel the underlying mechanisms by

which miRNAs exert their functions, becomes increasingly
appealing.

The systems biology approach, combining data-driven
modeling andmodel-driven experiments, provides a system-
atic and comprehensive perspective on the regulatory roles
of miRNAs in gene regulatory networks [3–5]. To investigate
a gene regulatory network, an iterative process of four steps
is needed. (I) Biological network construction: a map is
constructed that shows interactions amongmolecular entities
(such as genes, proteins and RNAs), using information from
literature and databases. (II) Model construction: depending
on the biological problem investigated and experimental data
available, the interactionmap can be translated into a detailed
mechanistic model that can simulate the temporal evolution
of molecular entities. The values of parameters in this model
can be determind from literature, databases or they are
directly estimated from quantitative experimental data using
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optimizationmethods. (III)Computational experiments: once
a model is established, it can be simulated and/or analyzed
for its general behavior. (IV) Experimental validation: model
predictions together with biological explanations are inte-
grated to guide the design of new experiments, which in
turn validate or falsify the model. If model predictions are
in agreement with the experiments, the model justifies the
biological hypotheses behind it. In turn, these hypotheses,
which provide reasonable explanations for the biological
phenomenon, lead to an enhanced understanding of the
gene regulatory network. Otherwise, the structure of the
mathematical model is modified to generate new hypotheses
and suggest new experiments.

The application of the systems biology approach to the
analysis of a gene regulatory network is demonstrated with
a case study of the regulation of p21 by multiple miRNAs [4].
The network combining putative targets of TF and miRNA
regulation with experimentally proven molecular interac-
tions was constructed and visualized. Next, the network was
translated into a detailed mechanistic model, which was
characterized and validated with experimental data. Finally,
the integration of quantitative data and modeling helped us
to generate and validate hypotheses about mechanisms of
collective miRNA repression on p21.

2. Results

2.1. The Systems Biology Approach to Study miRNA-Mediated
Gene Regulatory Networks

2.1.1. Mathematical Modeling. The aim of our analysis is to
unravel the complex mechanisms by which gene regulatory
networks involving miRNAs are regulated. We iteratively
integrate data from literature, experiments and biological
databases into a detailed mechanistic model of a gene regula-
tory network. The model is then used to formulate and test
hypotheses about mechanisms of miRNA target regulation
and cellular process-related variability. The methodology
includes four steps which are briefly summarized in Table 1.
In the coming sections we present these steps in detail.

(1) Data Retrieval. To construct a gene regulatory network
composed by different levels of regulation, we collect infor-
mation from different resources which are briefly described
below, and more resources for data retrieval are introduced
in Table 1.

(a) Transcriptional level regulators. Experimentally veri-
fied TFs for a gene can be extracted from literature
or databases such as TRED, TRANSFAC, or HTRIdb
[6–8]; the putative TFs, which are associated with
conserved TF-binding sites residing in the promoter
region of a gene, can for example, be extracted from
the table of TFs with conserved binding sites in the
UCSC genome browser or the TRANSFAC database
[9]. miRGen 2.0 is a database that provides both
predicted and experimentally verified information
about miRNA regulation by TFs [10].

(b) Post-transcriptional regulators. Databases such as
miRecords, Tarbase and miRTarBase are repositories
of experimentally validatedmiRNA:gene interactions
[11–13]. Predictions of miRNA:gene interactions are
accumulated in databases like miRWalk [14].

(c) Protein-protein interactions. Both the Human Protein
Reference Database (HPRD) [15] and the STRING
database [16] document experimentally verified
protein-protein interactions; besides, STRING also
provides putative protein-protein interactions ranked
by confidence scores. Further details about the exact
mechanism of protein-protein interactions can be
found in Reactome [17].

(2) Network Construction and Visualization. Based on the
information collected, a gene regulatory network is con-
structed and visualized for providing an overview. For this
purpose, we recommend CellDesigner which uses standard-
ized symbols (Systems Biology Graphical Notation—SBGN)
[18] for visualization and stores gene regulatory networks
in the SBML format (Systems Biology Markup Language)
[19]. CellDesigner also provides the possibility to simulate
temporal dynamics of the gene regulatory network due to
the integration of the SBML ODE (ordinary differential
equation) solver. Besides, Cytoscape is another powerful tool
for integration of biological networks and gene expression
data [20].

For assessing the reliability of interactions considered in
gene regulatory networks, confidence scores can be computed
as being documented in our previous publication [4]. The
factors that are used to determine the confidence score for
molecular interactions can be: the number of publications
reporting an interaction, experimental methods used to
identify an interaction, interaction types and computational
predictions.The computed confidence scores range from 0 to
1, where values towards 1 indicate higher confidence, whereas
values towards 0 indicate lower confidence in a given inter-
action. For example, the confidence score for a miRNA:gene
interaction can be calculated using the following equation:

𝑆miRNA:gene =
𝑤
𝑝
⋅ 𝑆
𝑝
+ 𝑤
𝑚
⋅ 𝑆
𝑚
+ 𝑤bs ⋅ 𝑆bs

𝑤
𝑝
+ 𝑤
𝑚
+ 𝑤bs

, (1)

where 𝑤
⟨𝑝,𝑚,bs⟩ are weights that are assigned to the scores

which account for the number of publications (𝑆
𝑝
), detection

method (𝑆
𝑚
) and the number of predicted binding sites

(𝑆bs). The values of the weights can be assigned based on
expert knowledge, and the higher the value of the weight
is, the bigger impact it has on the confidence score for
the interaction. The values of 𝑆

𝑝
and 𝑆bs can be calculated

using the logarithmic equation: 𝑆
⟨𝑝,bs⟩(𝑛) = log

𝑚+1
(𝑛),

where 𝑛 denotes the number of publications describing the
miRNA:gene interaction or the number of binding sites that
the miRNA has in the 3 UTR (untranslated region) of
the gene. The value of 𝑚 is a cut-off that represents the
number of publications or binding sites required for 𝑆

⟨𝑝,bs⟩ to
obtaining their maximum values. Various methods such as
western blots, qRT-PCR and reporter assays can be applied
to support the miRNA:gene interaction, but these methods
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Table 1: Overview of themethodology. Key points in each step of themethodology and themain resources for constructingmiRNA-mediated
gene regulatory networks are given.

Step 1: data retrieval
Regulation types Resources

Transcriptional gene
regulation

TRED (http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home): a database that provides an integrated
repository for both cis- and transregulatory elements in mammals
TRANSFAC (http://www.gene-regulation.com/pub/databases.html): a database that collects eukaryotic
transcriptional regulation, comprising data on TFs, their target genes, and binding sites
The UCSC table browser (http://genome.ucsc.edu/): a popular web-based tool for querying the UCSC Genome
Browser annotation tables
HTRIdb (http://www.lbbc.ibb.unesp.br/htri/): an open-access database for experimentally verified human
transcriptional regulation interactions
MIR@NT@N (http://maia.uni.lu/mironton.php/): an integrative resource based on a metaregulation network
model including TFs, miRNAs, and genes
PuTmiR (http://www.isical.ac.in/∼bioinfo miu/TF-miRNA.php): a database of predicted TFs for human
miRNAs
TransmiR (http://202.38.126.151/hmdd/mirna/tf/): a database of validated TF-miRNA interactions
miRGen 2.0 (http://diana.cslab.ece.ntua.gr/mirgen/): a database of miRNA genomic information and regulation

Posttranscriptional
gene regulation

miRecords (http://mirecords.biolead.org/): a resource for animal miRNA-target interactions
Tarbase (http://www.microrna.gr/tarbase/): a database that stores detailed information for each miRNA-gene
interaction, the experimental validation methodologies, and their outcomes
miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/): a database that collects validated miRNA-target interactions
by manually surveying the pertinent literature
miRWalk (http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/): a comprehensive database that provides
information on miRNAs from human, mouse, and rat, on their predicted as well as validated binding sites in
target genes

Protein-protein
interaction

HPRD (http://www.hprd.org/): a centralized platform to visually depict and integrate information pertaining to
domain architecture, posttranslational modifications, interaction networks, and disease association for each
protein in the human proteome
STRING (http://string-db.org/): a database of known and predicted protein interactions. The interactions
include direct (physical) and indirect (functional) associations
MPPI (http://mips.helmholtz-muenchen.de/proj/ppi/): a collection of manually curated high-quality PPI data
collected from the scientific literature by expert curators
DIP (http://dip.doe-mbi.ucla.edu/dip/Main.cgi): a catalog of experimentally determined interactions between
proteins
IntAct (http://www.ebi.ac.uk/intact/main.xhtml): a platform that provides a database system and analysis tools
for molecular interaction data
Reactome (http://www.reactome.org/): an open-source, open access, manually curated, and peer-reviewed
pathway database

GO annotation

Amigo GO (http://amigo.geneontology.org/cgi-bin/amigo/go.cgi): the official GO browser and search engine
miR2Disease (http://www.mir2disease.org/): a manually curated database that aims at providing a
comprehensive resource of miRNA deregulation in various human diseases
miRCancer (http://mircancer.ecu.edu): a miRNA-cancer association database constructed by text mining on the
literature
PhenomiR (http://mips.helmholtz-muenchen.de/phenomir/): a database that provides information about
differentially expressed miRNAs in diseases and other biological processes
miRGator (http://mirgator.kobic.re.kr/): a novel database and navigator tool for functional interpretation of
miRNAs
miRó (http://ferrolab.dmi.unict.it/miro): a web-based knowledge base that provides users with
miRNA-phenotype associations in humans

Step 2: network construction and visualization
(i) Visualize regulatory interactions in platforms such as CellDesigner and Cytoscape that support standardized data formats
(ii) Calculate confidence scores for assessing reliability of interactions in gene regulatory networks
Step 3: model construction and calibration
(i) Formulate equations using rate equations
(ii) Fix parameter values using available biological information
(iii) Estimate the other unknown and immeasurable parameter values using optimization methods which can minimize the distance
between model simulations and experimental data such as time course qRT-PCR and western blot data
Step 4: model validation and analysis
(i) Design new experiments and generate new data to verify the calibrated model
(ii) Study complex properties and behavior of the system

http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=home)
http://www.gene-regulation.com/pub/databases.html
http://genome.ucsc.edu/
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http://202.38.126.151/hmdd/mirna/tf/
http://diana.cslab.ece.ntua.gr/mirgen/
http://mirecords.biolead.org/
http://www.microrna.gr/tarbase/
http://mirtarbase.mbc.nctu.edu.tw/
http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/
http://www.hprd.org/
http://string-db.org/
http://mips.helmholtz-muenchen.de/proj/ppi/
http://dip.doe-mbi.ucla.edu/dip/Main.cgi
http://www.ebi.ac.uk/intact/main.xhtml
http://www.reactome.org/
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi
http://www.mir2disease.org/
http://mircancer.ecu.edu
http://mips.helmholtz-muenchen.de/phenomir/
http://mirgator.kobic.re.kr/
http://ferrolab.dmi.unict.it/miro
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provide experimentalists with different levels of confidence,
thus differing confidences can be reflected using different
values for 𝑆

𝑚
based on the experience of experimentalists.

Of note, although the confidence scores cannot be directly
converted into a mathematical model, with the help of these
scores we can discard non-reliable putative interactions to
generate the ultimate version of a gene regulatory network.
The final version of the network can be further analyzed
to identify regulatory motifs like feedforward loops (FFLs),
for example, with the help of the Cytoscape plugin NetDS
[21]. Thereafter, the complete network or parts of it can
be converted into a detailed mechanistic model which is
described in detail in the following section.

(3) Model Construction and Calibration. After the construc-
tion, visualization and refinement of a gene regulatory net-
work, it is converted into a detailedmechanistic model which
enables the investigation of unanswered biological questions
and validation of hypotheses. Ordinary differential equations
(ODEs) describe how processes of synthesis, biochemical
modification and/or degradation affect the temporal con-
centration profile of biochemical species like proteins, RNAs
and metabolites. An ODE model can be constructed using
appropriate kinetic laws such as the law ofmass-action, which
states that the rate of a chemical reaction is proportional to
the probability that the reacting species collide.This collision
probability is in turn proportional to the concentration of
the reactants [22]. A general representation of ODE-based
models using mass-action kinetics is given by the following
equation

𝑑𝑥
𝑖

𝑑𝑡
=

𝑚

∑

𝜇=1

𝑐
𝑖𝜇
⋅ 𝑘
𝜇
⋅

𝑛

∏

𝑗=1

𝑥
𝑗

𝑔𝜇𝑗 , 𝑖 ∈ {1, 2, . . . , 𝑛} , (2)

where 𝑥
𝑖
represents state variables which denote the molar

concentration of the 𝑖th biochemical specie. Every biochem-
ical reaction 𝜇 is described as a product of a rate constant
(𝑘
𝜇
) and biochemical species (𝑥

𝑗
, 𝑗 ∈ {1, 2, . . . , 𝑛}) that are

involved in this reaction. 𝑐
𝑖𝜇
, the so-called stoichiometric

coefficients, relate the number of reactant molecules con-
sumed to the number of product molecules generated in
the reaction 𝜇. 𝑔

𝜇𝑗
denotes kinetic orders which are equal

to the number of species of 𝑥
𝑖
involved in the biochemical

reaction 𝜇. The rate constants, kinetic orders and the initial
conditions of state variables are defined as model parameters.
Besides mass-action kinetics, other kinetic rate laws such as
Michaelis-Menten kinetics, Hill equation and power-laws are
also frequently used in ODE models.

After ODEs are formulated, the model requires to be
calibrated, a process by which parameter values are adjusted
in order to make model simulations match experimental
observations as good as possible. To do so, there are two
possible means: characterization of parameter values using
available biological information or estimation of parameter
values using optimization methods. Some parameter values
can be directly measured or obtained from literature or
databases. For example, the half-life (𝑡

1/2
) of some molecules

(e.g., protein) can be measured in vitro via western blot-
ting. This information can be used to characterize their

degradation rate constants through the equation 𝑘deg =

(ln 2/𝑡
1/2
). The database SABIO-RK provides a platform for

modelers of biochemical networks to assemble information
about reactions and kinetic constants [27]. However, for
most model parameters, whose values cannot be measured
in laboratories or be accessed from literature or databases,
parameter estimation is a necessary process to characterize
their values. Before running parameter estimation, initial
parameter values and boundaries should be set within phys-
ically plausible ranges. To do so, the database BioNumbers
provides modelers with key numbers in molecular and cell
biology, ranging from cell sizes to metabolite concentrations,
from reaction rates to generation times, from genome sizes
to the number of mitochondria in a cell [28]. After parameter
estimation, unknown parameter values are determined using
optimization methods which can minimize a cost function
that measures the goodness of fit of the model with respect to
given quantitative experimental data sets. Parameter estima-
tion using optimization algorithms is an open research field,
in which several methods have been developed according
to the nature and numerical properties of biological data
analyzed. The discussion for choosing proper optimization
methods for parameter estimation is beyond the scope of
this paper, but the interested reader is referred to the paper
published by Chou and Voit [29].

(4) Model Validation and Analysis. Usually, the model sim-
ulations are compared with the experimental data used for
the parameter estimation, but a good agreement between
both is not enough to guarantee the predictive ability of the
model. Therefore, it is necessary to validate the model with
data sets that are not used during the parameter estimation.
This process is called model validation and can ensure more
reliable and accurate model predictions. To do so, the data
generated in new experiments or extracted from literature are
compared with model simulations, which are obtained after
configuring the model according to the new experimental
settings. Once a model is validated, it can be used to per-
form predictive simulations, which are helpful to study
the dynamic properties of biochemical systems, guide the
design of new experiments in the laboratory and formulate
additional hypotheses. In addition, tools such as sensitivity
and bifurcation analysis can be used to study complex proper-
ties and behavior of the modeled system. Sensitivity analysis
is used to evaluate the influence of model parameters (e.g.,
initial concentrations of the state variables and rate constants)
on model outputs, such as the temporal behavior of network
components [30]. Bifurcation analysis is employed to detect
control parameters (also known as bifurcation parameters)
whose variations are able to change drastically the dynamical
properties of the biochemical system, as well as the stability
of its fixed points [31]. The application of these tools to
mathematical modeling is beyond the scope of this paper, but
the interested reader is referred to the publication of Zhou
et al. [32] and Marino et al. [33].

2.1.2. Experiment Methods. As mentioned in the previous
sections, after a model is established, it can be calibrated
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and validated using temporal experimental data. To do so,
the data can either be derived from literature or generated
to calibrate the model by own experiments. In case of ODE
models, the most suitable data for model calibration is
quantitative time-series data obtained from perturbation or
quantitative dose-response experiments.The experiments, in
which time-series data are measured for different regulators
(such as miRNAs and TFs) of a gene regulatory network, can
be obtained using the techniques described in the subsections
below.

(1) qRT-PCR. Quantitative real time polymerase chain reac-
tion (qRT-PCR) has been used to identify mRNAs regulated
by overexpression or silencing of a specific miRNA [34,
35]. miRNAs typically exhibit their regulatory effects by
associating with specific 3 UTR regions of the mRNAs
called miRNA seed regions [34]. This association can lead
either to a temporary inhibition of translation or complete
degradation of the mRNA in which case qRT-PCR mediated
detection is beneficial. For this, the cells are transfected
with the miRNA and non-targeting control oligonucleotides
at an appropriate concentration using either a lipid based
transfection reagent or nucleofection. The transfected cells
are then incubated for the necessary time periods (e.g., 24 h,
48 h, 72 h, etc.) after which lysates are prepared and total RNA
is extracted. 1000–2000 ng of the RNA is then converted into
cDNA using a reverse transcription kit. Taqman qRT-PCR is
performed using 10–20 ng of cDNA and primers labeled with
fluorescence probes to detect the transcriptional levels of the
target mRNA. Housekeeping genes like GAPDH and HPRT
are used as endogenous controls for data normalization.
Relative expression at different time points is determined
by comparing the Ct values of the miRNA transfected cells
with Ct values of non-targeting control transfected cells and
expressed as relative expression [36]. However, qRT-PCR in
spite of being highly sensitive is applicable specifically under
conditions of complete or partial degradation of the target
mRNA. miRNA-mediated inhibition in translation can be
better demonstrated by techniques like immunoblotting.

(2) Western Blot/Immunblotting. Western blotting or protein
immunoblotting is a technique to detect the expression of a
gene at protein level. This technique is particularly useful in
determining the regulatory effects of a miRNA on expression
of a target gene which is temporarily inhibited. For this
the cells are transfected with a miRNA or an antagomiR
as mentioned above and cell lysates are prepared at appro-
priate time points using protein lysis buffers (e.g., Radio-
Immunoprecipitation Assay buffer or RIPA) containing lysis
agents like Dithiothreitol (DTT) and protease inhibitors. The
proteins from each sample are quantitated using Bradford
or BCA reagents and compared with bovine serum albumin
(BSA) standards for accurate protein estimation. 20–40 𝜇g of
protein is then loaded and resolved on a sodium dodecyl sul-
fate polyacrylamide gel (SDS-PAGE) along with a pre-stained
protein marker. The protein bands are then transferred onto
a nitrocellulose membrane followed by incubation with the
appropriate primary and secondary antibodies linked to
fluorescent dyes or horse radish peroxidase enzyme (HRP).

The protein expression is then analyzed using either fluores-
cence or chemiluminiscenceHRP substrates in gel documen-
tation systems (e.g., LI-COR Odyssey). Housekeeping genes
like 𝛽-actin or 𝛽-tubulin are used for protein normalization.
The time point for maximum target gene suppression gen-
erally varies depending on the number of miRNA binding
sites at the 3 UTR of the target gene and the extent of
complementarity of the seed region [37]. Immunoblotting is
a widely used technique to provide confirmatory evidence for
the inhibitory effects ofmiRNA at the protein level, but it fails
to explain the underlying interaction mechanisms.

(3) Reporter Gene Assay. As each miRNA can inhibit the
expression of a large number of genes, regulation of a par-
ticular target gene may either be by direct interaction or be
an indirect consequence of it. In direct regulation, a miRNA
binds to the complementary sequences at the 3 UTR of a
target gene and thereby suppresses its expression. As a con-
sequence of this, the expression levels of a number of down-
stream genes (indirect targets) are also dysregulated making
it crucial to differentiate between primary and secondary
miRNA targets. To determine the interaction specificity,
a reporter construct (luciferase) with intact or mutated 3
UTR of the target gene cloned at the 5 end is co-transfected
into the cells along with the miRNA. The regulatory effect of
the miRNA on the target gene expression is then measured
using the expression of a reporter gene. In the absence of
the appropriate binding sequences (mutated 3 UTR), the
miRNA cannot suppress the reporter mRNA suggesting that
the suppressive effect of the miRNA is mediated by a direct
interaction. The reporter activity can be analyzed at different
time points such as 24 hr, 48 hr and 72 hr to determine the
time dependent suppression of a target gene expression by
a miRNA.

2.2. Case Study: The Regulation of p21 by Multiple and
Cooperative miRNAs

2.2.1. Construction and Visualization of p21 Regulatory Net-
work. By using the approach described above, we investi-
gated the regulation of p21 by its multiple targeting miRNAs.
p21, also known as cyclin-dependent kinase inhibitor 1
(CDKN1A), is a transcriptional target of p53. It is required
for proper cell cycle progression and plays a role in cell death,
DNA repair, senescence and aging (reviewed in [38]). Inter-
estingly, p21 was the first experimentally validated miRNA
target hub, which is a gene that is simultaneously regulated
by many miRNAs. This made it an ideal candidate for a case
study of our approach [23]. To do so, we first constructed
a p21 regulatory network using the following steps:

(a) We extracted miRNA-target interactions from the
publication of Wu et al. [23] where a list of predicted
p21-regulating miRNAs was subjected to experimen-
tal validation.

(b) Experimentally verified TFs of p21 were extracted
from literature and putative TFs having conserved
binding sites in the 5 kb upstream region of the p21
open reading frame were extracted from UCSC table
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browser. A list of TFs controlling the expression of the
miRNAswas constructed using information of exper-
imentally proven TF-miRNA interactions extracted
from TransmiR (release 1.0) [39]. In addition, we
generated a list of putative TFs of miRNAs with
binding sites in the 10 kb upstream region of the
miRNA genes using information from the databases
PuTmiR (release 1.0) [40] and MIR@NT@N (version
1.2.1) [41], and from the table of TFs with conserved
binding sites in theUCSC genome browser (hg18) [9].

(c) Information about protein interactions was extracted
from theHuman Protein ReferenceDatabase (HPRD,
release 9.0) [15] and the STRING database (release
9.0) [16]. Only the experimentally verified p21-protein
interactions were used to construct the network.

(d) Additionally, we associated the TFs in the network to
nine biological processes based on the Gene Ontol-
ogy (GO) [42]. The corresponding GO terms were
cell proliferation, cell apoptosis, immune response,
inflammatory response, cell cycle, DNA damage, cell
senescence, DNA repair and cell migration.

Next, we visualized the network in CellDesigner and
computed a confidence score for each interaction in the
network (Figure 1). The confidence scores provide us with
the reliability of the interactions considered in p21 regulatory
network. With the help of these scores, we discarded non-
reliable interactions and constructed the mechanistic model
accounting for p21 regulation by its targeting miRNAs.
Besides, the interested experimentalists can further use this
information to choose reliable interacting candidates of p21
for designing relevant experiments. The scores for each
interaction of p21 regulatory network are shown in Table 2.

2.2.2. Mechanistic Modeling of p21 Regulation by
Its Targeting miRNAs

(1) Model Construction. After constructing the regulatory
network, a detailed mechanistic model of ODEs, which
describes the biochemical reactions underlying the regula-
tion of p21 was established. We chose the ODE modeling
approach, as it is a simple formalism for describing temporal
dynamics of biochemical systems and a wide range of tools
are available to explore their properties. Precisely, the model
considered themRNA(mp21; (3)) andprotein (p21; (6)) of the
miRNA target hub p21, the p21-targeting miRNAs (miR

𝑖
; 𝑖 ∈

(1, . . . , 15); (5)), and the complexes formed by p21 mRNA
and miRNA, [mp21 | miR

𝑖
] (4). Altogether, the model is

constituted by 32 state variables and 64 parameters:

𝑑mp21
𝑑𝑡

= 𝑘
mp21
syn ⋅ 𝑓act (TFmp21)

−mp21 ⋅ (𝑘mp21
deg +∑

𝑖

𝑘
complex

𝑖
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𝑖
) ,

(3)

𝑑 [mp21 | miR
𝑖
]

𝑑𝑡

= 𝑘
complex

𝑖

ass ⋅mp21 ⋅miR
𝑖
− 𝑘

complex
𝑖
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𝑖
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𝑑miR
𝑖

𝑑𝑡
= 𝑘

miR𝑖
syn ⋅ 𝑓act (TFmiR𝑖)

−miR
𝑖
⋅ (𝑘

miR𝑖
deg + 𝑘
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𝑖

ass ⋅mp21) ,
(5)

dp21
𝑑𝑡

= 𝑘
p21
syn ⋅mp21 + 𝑘p21deg ⋅ p21, (6)

mp21Total = mp21 +∑
𝑖

[mp21 | miR
𝑖
] . (7)

For mp21, processes considered in the model were: (i) its
synthesis (𝑘mp21

syn ) mediated by TFs (𝑓act(TFmp21)), (ii) its
degradation (𝑘mp21

deg ), and (iii) its association with a miRNA
(𝑘complex

𝑖

ass ). For each miR
𝑖
, processes considered were: (i)

the synthesis (𝑘miR𝑖
syn ) mediated by TFs (𝑓act(TFmiR𝑖)), (ii) the

degradation (𝑘miR𝑖
deg ), and (iii) the association with the p21

mRNA target (𝑘complex
𝑖

ass ). For each [mp21 | miR
𝑖
] complex,

processes considered were: (i) the formation of the complex
by a miR

𝑖
and the p21 mRNA (𝑘complex

𝑖

ass ), and (ii) the complex
degradation (𝑘complex

𝑖

deg ). For p21, processes considered were:
(i) its synthesis (𝑘p21syn ), and (ii) its degradation (𝑘p21deg). An
additional algebraic equation accounting for the total mea-
surable amount of p21 mRNA (mp21Total) was also included.
The SBML file of the model is available for download at
http://www.sbi.uni-rostock.de/uploads/tx templavoila/p21
TargetHub 03092013.xml.

(2) Model Calibration and Validation. For model calibration,
we fixed some parameter values using published data and
estimated the other unknown parameters using the time-
series data published by Wu et al. [23], in which the p21
mRNA (northern plot) and protein levels (western plot)
were measured 48 hr after transfection of individual p21-
targeting miRNAs into human embryonic kidney 293 cells.
The unknown parameter values were estimated using an
iterative method combining global (particle swarm pattern
search) [43] and local (downhill simplex method in multi-
dimensions) [44] optimization algorithms. For each miR

𝑖

considered in the model, the method minimizes the distance
between model simulations and experimental data using the
following cost function

𝐹
miR𝑖
cost =

[mp21miR𝑖
sim (𝑡) −mp21miR𝑖

exp (𝑡)]
2

(𝛿
mp21
𝑖

)
2

+

[p21miR𝑖
sim (𝑡) − p21miR𝑖

exp (𝑡)]
2

(𝛿
𝑝21

𝑖
)
2

𝑖 ∈ [1, . . . , 15] ,

(8)

http://www.sbi.uni-rostock.de/uploads/tx_templavoila/p21_TargetHub_03092013.xml
http://www.sbi.uni-rostock.de/uploads/tx_templavoila/p21_TargetHub_03092013.xml
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Figure 1: p21 regulatory network. The network contains several layers of regulators of p21: TFs (light blue and red boxes), miRNAs (dark
blue and green boxes), and proteins (grey boxes). In each big box, there are small boxes which represent individual components of this layer
of regulation. miRNAs are classified into two groups according to the mechanisms by which the expression of p21 is repressed. One group
causes p21 translation repression (green box). These miRNAs bind to p21 mRNA resulting in the repressed translation of p21 but unchanged
mRNA expression level. The other group of miRNAs (dark blue box) decreases the stability of p21 mRNA by modifying its structure, leading
to mRNA decay and finally the downregulation of p21. TFs are classified into three groups: p21 TFs (red), miRNA TFs (yellow) and their
common TFs (light blue). The p21 interacting-proteins are framed in the grey boxes. The purple boxes represent nine processes, and the TFs
associated with these processes are indicated in the ellipses above them using corresponding figures. This data is adapted from our previous
publication [4].

where mp21miR𝑖
sim (𝑡) and mp21miR𝑖

exp (𝑡) represent the simulated
p21 mRNA and protein expression levels for each miR

𝑖
at

time point 𝑡. p21miR𝑖
sim (𝑡) and p21miR𝑖

exp (𝑡) represent the mea-
sured value for each miR

𝑖
at time point 𝑡, and their standard

deviations are 𝛿mp21
𝑖

and 𝛿p21
𝑖

. Here, 𝑡 is the time point (48 hr)
after overexpression of the individual miRNAs in embryonic
kidney 293 cells at which the expression levels of the p21 and
its mRNA were measured [23]. The model calibration results
are shown in Figure 2(a) and the obtained parameter values
are listed in Table 3.

Experimental results showed that a stronger repression
of the target gene can occur when two miRNA binding sites
on the target mRNA are in close proximity [24, 45]. To test
the consequences of this hypothesis, we predicted cooperative
miRNA pairs for p21, with seed site distances between 13–
35 nt in the p21 3 UTR. To substantiate the cooperative
effect associated with pairs of miRNAs, we introduced a
group of new state variables ([mp21 | miR

𝑖
| miR

𝑖
]) into

the original model. These state variables account for the

ternary complexes composed of p21 mRNA and two puta-
tively cooperating miRNAs (miR

𝑖
and miR

𝑗
). For these new

variables, processes considered are: (i) the association of p21
mRNA with miR

𝑖
and miR

𝑗
into a complex (𝑘co-complex

𝑖,𝑗

ass ),
and (ii) the degradation of the complex (𝑘co-complex

𝑖,𝑗

deg ). After
expansion, the corresponding modified and new ODEs are
listed below:

dmp21
𝑑𝑡

= 𝑘
mp21
syn ⋅ 𝑓act (TFmp21)

−mp21 ⋅ (𝑘mp21
deg +∑

𝑖

𝑘
complex

𝑖

ass ⋅miR
𝑖

+∑

𝑖,𝑗

𝑘
co-complex

𝑖,𝑗

ass ⋅miR
𝑖
⋅miR
𝑗
) ,

(9)
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Figure 2: Model calibration and validation. (a) Model calibration. The figures show the relative change of the p21 mRNA and protein
expression levels after overexpression of the indicated miRNAs (Model: model simulation; Data: experimental data). These data were
normalized to the control group in which the p21 mRNA and protein expression levels were measured when the miRNAs were normally
expressed (a.u.: arbitrary unit). (b) Experimental workflow. In the experiments, Sk-Mel-147 cells were seeded in six well plates. Then, mature
miRNA mimics were transfected individually at a concentration of 100 nM (miR-572 and miR-93) or in combination at 50 nM each (miR-
572 + miR-93). After 48 hr transfection with miRNA mimics, the cells were pulse treated with 250 nM doxorubicin for 1 hour after which
normal growth medium was replenished. The immunblotting were performed to measure p21 expression at 0, 2, 4, 6, 8 and 24 hr post-
doxorubicin treatment. (c) Temporal dynamics of p21 transcriptional function. Afterdoxorubicin treatment, the expression of p53, a TF of
p21, was measured using immunblotting and these data were used to characterize the transcriptional function of p21 using MATLAB linear
interpolation function. (d) Model validation. We measured the expression of p21 protein in response to genotoxic stress in the four scenarios
as described in the main text. The measured data (Data) were compared with the model simulations (Model). The figures (a), (c) and (d) are
adapted from our previous publication [4].

𝑑 [mp21 | miR
𝑖
| miR

𝑗
]

𝑑𝑡

= 𝑘
co-complex

𝑖,𝑗

ass ⋅mp21 ⋅miR
𝑖
⋅miR
𝑗

− 𝑘
co-complex

𝑖,𝑗

deg ⋅ [mp21 | miR
𝑖
| miR

𝑗
] .

(10)

To model stronger repression of the target gene by
cooperating miRNAs, we assumed a stronger association rate
constant for the complex [mp21 | miR

𝑖
| miR

𝑗
] which is

equal to the sum of their individual association rate constants

(𝑘co-complex
𝑖,𝑗

ass = 𝑘
complex

𝑖

ass + 𝑘
complex

𝑗

ass ). Similarly, the degradation
rates of the complexes [mp21 | miR

𝑖
| miR

𝑗
] were assumed

to be equal to the sum of degradation rate constants of
single miRNA binding complexes (𝑘co-complex

𝑖,𝑗

deg = 𝑘
complex

𝑖

deg +

𝑘
complex

𝑗

deg ). However, it has to be noted that these added
equations are an abstract description ofmiRNAcooperativity,
because the details of this mechanism are not yet known.

To experimentally validate the capability of our model to
predict the relative p21 concentrations regulated by coopera-
tivemiRNAs, we selectedmiR-572 andmiR-93 as a case study.
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Table 3: Initial concentrations of model variables and model parameter values. Based on the experimental data, the p21-targeting miRNAs
verified byWu et al. [23] were divided into two groups: the translation repression group (marked with asterisk) and the mRNA deadenylation
group. AmiRNAwas classified into themRNA deadenylation group if its overexpression can result in 20% ormore downregulation of the p21
mRNA level (i.e., p21mRNA level≤ 0.8; the basal level is 1); otherwise, it was classified into the translation repression group. For the translation
repression group, only 𝑘complex𝑖

ass was estimated and 𝑘complex𝑖
deg was fixed. For the other group, both 𝑘complex𝑖

deg and 𝑘complex𝑖
ass were estimated.The initial

concentrations of p21 and mp21 were set to 1, and this value was used as their basal expression levels. During the parameter estimation, the
initial concentrations of p21-targeting miRNAs were set to 100, because in the publication [23] the expression levels of p21 and mp21 were
measured after the individual introduction of the p21-targeting miRNAs with amount of 100 nM. Due to the lack of biological information to
characterize the transcriptional activation function (𝑓act) of p21 and its targeting miRNAs, the corresponding functions were assumed to be
1 for simplicity. The data is adapted from our previous publication [4].

Initial concentration of variables and TF functions
Variable Description Initial concentration (a.u.)
p21 p21 protein 1

mp21 p21 mRNA 1

miR
𝑖=1,...,15

p21-targeting miRNAs 100

[mp21 | miR
𝑖=1,...,15

] Complexes formed by miR
𝑖
and mp21 0

𝑓act(TFmp21) p21’s transcriptional activation function 1
𝑓act(TFmiR𝑖 (𝑖=1,...,15)) The transcriptional activation function of miR

𝑖
1

Fixed parameter values
Parameter Description Value (hr−1) Reference
𝑘
mp21
syn Synthesis rate constant of mp21 0.1155 fixed
𝑘
mp21
deg Degradation rate constant of mp21 0.1155 [24]
𝑘
miR𝑖
syn (𝑖 = 1, . . . , 15) Synthesis rate constant of miR

𝑖
0.0289 fixed

𝑘
miR𝑖
deg (𝑖 = 1, . . . , 15) Degradation rate constant of miR

𝑖
0.0289 [25]

𝑘
p21
syn Synthesis rate constant of p21 1.3863 fixed
𝑘
p21
deg Degradation rate constant of p21 1.3863 [26]

Estimated parameter values

miRNA (state
variable)

𝑘
complex𝑖
deg

(𝑖 = 1, . . . , 15) (hr−1)

𝑘
complex𝑖
ass

(𝑖 = 1, . . . , 15)

(a.u. −1⋅ hr−1)

𝐹
miR𝑖
cost

(𝑖 = 1, . . . , 15)
Experimental data of p21 (protein, mRNA ± SD)

miR-298 (miR1)
∗ 0.1155 0.0254 3.4𝑒 − 004 (0.16, 1.074 ± 0.025)

miR-208a (miR2)
∗ 0.1155 0.0041 2.0𝑒 − 003 (0.51, 1.192 ± 0.022)

miR-132 (miR3)
∗ 0.1155 0.0275 2.4𝑒 − 003 (0.15, 1.21 ± 0.147)

miR-28-5p (miR4)
∗ 0.1155 0.0119 5.9𝑒 − 003 (0.28, 1.35 ± 0.06)

miR-125-5p (miR5)
∗ 0.1155 0.0018 1.8𝑒 − 003 (0.69, 0.85 ± 0.051)

miR-299-5p (miR6)
∗ 0.1155 0.0080 1.8𝑒 − 004 (0.36, 0.95 ± 0.038)

miR-345 (miR7)
∗ 0.1155 0.0051 1.1𝑒 − 004 (0.46, 0.96 ± 0.039)

miR-93 (miR8) 0.1564 0.0235 4.1𝑒 − 014 (0.17, 0.7776 ± 0.03)

miR-423-3p (miR9) 0.9118 0.0055 2.8𝑒 − 009 (0.44, 0.5102 ± 0.11)

miR-515-3p (miR10) 0.2098 0.0253 1.2𝑒 − 013 (0.16, 0.616 ± 0.037)

miR-363 (miR11) 0.2261 0.0399 2.2𝑒 − 014 (0.11, 0.56 ± 0.15)

mR-657 (miR12) 0.3465 0.0158 2.1𝑒 − 014 (0.23, 0.48 ± 0.12)

miR-639 (miR13) 0.4305 0.0327 1.8𝑒 − 017 (0.13, 0.36 ± 0.084)

miR-572 (miR14) 0.3039 0.0360 9.4𝑒 − 023 (0.12, 0.45 ± 0.044)

miR-654-3p (miR15) 9.7485 0.0024 3.0𝑒 − 014 (0.64, 0.63 ± 0.053)

These two miRNAs were chosen, because their predicted
target sites in the p21 3 UTR are in close proximity to each
other and thereby, they can induce cooperative repression on
p21 as suggested in [24]. The experiments were performed as
follows:

(i) Melanoma cells (Sk-Mel-147) were transfected with
the mature miRNAmimics of the twomiRNAs either
individually (100 nM) or in combination (50 nM
each), whereas untreated cells were used as control
(Figure 2(b)).
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Figure 3: Different p21 dynamics in different network motifs. We ran simulations to show the different dynamics of p21 for two different
network motifs (a) and (b). Through simulations, two dynamical patterns of p21 were identified: saturation and pulse ((c), top). For each
network motif, the corresponding distributions of the two dynamical patterns were plotted ((c), bottom). For different combinations of
the transcriptional strengths, the normalized distance (𝑑

𝑖
) between peaks (𝑝

𝑖
) and steady states (ss

𝑖
) of p21 is determined by the equation

𝑑
𝑖
= (𝑝
𝑖
− ss
𝑖
)/𝑝max, 𝑝max = max(𝑝

1
, . . . , 𝑝

𝑛
). If 𝑑

𝑖
= 0, for the corresponding combination of transcriptional strengths the p21 dynamics is

saturation, otherwise it is pulse. The regions showing different dynamical patterns of p21 are separated using the white lines.

(ii) Next, the cells were treated with doxorubicin,
a genotoxic-stress inducing agent. The agent can
upregulate the expression of p53, which is a knownTF
of p21, and therefore it can result in the upregulation
of p21 (Figure 2(c)).

(iii) After doxorubicin treatment, the expression levels of
p21 were measured by immunoblotting at different
time points (0, 2, 4, 6, 8, 24 hr). The p21 expression
values were normalized based on the p21 expression

level in the control group measured at time point 0 hr
(Figure 2(d)).

By doing so, we obtained the p21 response after genotoxic
stress in four scenarios: (1) endogenous miRNA expression
(Control); (2) overexpression of miR-572; (3) overexpression
of miR-93; and (4) both miRNAs moderately overexpressed.
Thereafter, we derived a model of seven ODEs based on
the original equations which was configured according to
the designed experiments, making the simulation results
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Figure 4: p21 expression regulated by cooperative miRNAs for different cellular processes.The associations of themiRNAs with these cellular
processes were derived from GO terms of their TFs. A miRNA was supposed to be expressed (in bold black font) in a cellular process only
if its TF is related to the corresponding GO term of this process. The p21 expression levels are computed for each process with (w)/without
(wo) considering the cooperative effect among the p21 targeting miRNAs.

comparable with the experimental data. As shown in the
Figure 2(c), the simulations are in good agreement with the
experimental observations. The individual overexpression of
miR-572 or miR-93 led to the reduction of the upregulation
of p21 response after genotoxic stress induction. The two
miRNAs cause different degrees of repression due to their
different repression efficiencies on p21. Interestingly, the com-
bined overexpression of both miRNAs induced the strongest
downregulation of p21, and therefore verifying the hypothesis
of their cooperative regulation of p21. Above all, the results
not only validated themodel but also demonstrated the ability
of our method to identify cooperative miRNA pairs for p21.

(3) Predictive Simulations. As there are abundant of network
motifs such as FFLs in p21 regulatory network and these
network motifs are important for determining p21 dynamics,
it is interesting to investigate the dynamics of p21 in network
modules where FFLs are involved. To do so, two network
modules including both miR-93 and miR-572, and their
TFs were exemplified. In Figure 3(a), the network module
contains an incoherent FFL composed by AF2𝛼, miR-93 and
p21, and a cascaded regulation in which p21 is repressed

by FOXF2 via miR-572; in Figure 3(b), the same cascaded
regulation together with a coherent FFL composed of TP53,
MYC, miR-93 and p21 forms another regulatory module
of p21. By modulating the transcriptional strengths of the
two miRNAs by their TFs, two types of p21 dynamics were
identified: saturation and pulse (Figure 3(c), top). In the
former, the p21 expression increases and reaches its steady
state at the highest level; in contrast, in the latter the p21
expression increases to a peak and thereafter drops to a
steady state at lower level. For the two different network
modules, various combinations of transcriptional strengths
of the two miRNAs lead to different distributions of the
two p21 dynamical patterns. For the network module of an
incoherent FFL plus the cascaded regulation (Figure 3(c),
bottom left), the saturation pattern appears in two distinct
regions: one with weakened transcriptional strength of miR-
93 and the other with enhanced transcriptional strength of
miR-93; for the other module (Figure 3(c), bottom right),
the saturation pattern only appears in the region, in which
the transcriptional strength of miR-93 is enhanced. Taken
together, the results showed that for the two different network
motifs the dynamical pattern of p21 is changing according to
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different combinations of its upstream regulators, suggesting
the adaptation of p21 dynamics for different biological con-
texts.

Furthermore, we performed a number of simulations to
show the influence of miRNA regulation on p21 expression
levels in different cellular processes arranged in a consecutive
manner. In this procedure, a cell is first in the process of
cell cycle followed by proliferation (cell growth), then the
cell responses to DNA damage and enters into the process
of senescence, and finally apoptosis is initiated. As shown in
Figure 4, during the cell cycle process, the p21 expression is
low due to the activation of most of its targeting miRNAs;
when the cell starts proliferating, the p21 expression declines
to an even lower level because of more activated miRNAs
in this process; after responding to DNA damage, the p21
expression soars to a high level, which is caused by the
activation of its TFs like p53 and fewer expressed miRNAs.;
although the p21 expression keeps at a similar level while
the cell is undergoing senescence, the expressed miRNAs are
different from the previous process; finally, the p21 expression
decreases again to a low level due to the reemergence of
most of its targeting miRNAs and the cell enters apoptosis.
Interestingly, the model simulations are also consistent with
experimental observations: under non-stressed condition the
low expression level of p21 is needed for cell proliferation; the
upregulation of p21 happens after response to DNA damage
via p53 and the increased p21 expression further results in
cell cycle arrest leading to senescence and apoptosis [25].
Besides, when considering the effect of cooperatingmiRNAs,
the p21 expression levels were indistinguishable from the
previous simulation of DNA damage response. However, for
the other processes p21 expression levels were significantly
lower compared to the simulations without considering the
cooperative effect of the miRNAs. Above all, these results
indicated that selective expression of cooperative miRNAs
could be adopted by cells to ensure diverse expression levels
of p21 tomeet the requirements of different cellular processes.

3. Conclusions and Discussion

In this paper, we presented a systems biology approach, com-
bining data-drivenmodeling andmodel-driven experiments,
to investigate the role of miRNA-mediated repression in gene
regulatory networks.This approach provides a systematicway
to gain a deeper understanding of the regulation of target
genes by mutiple and cooperative miRNAs. Using the regu-
lation of p21 by multiple miRNAs as a case study, we showed
how the ODE-basedmodel, which is calibrated and validated
by means of experimental data, is suitable for predicting the
temporal dynamics of molecular concentrations involved in
biochemical systems.

Provided there are sufficiently rich quantitative data sets
avaliable to characterize the model, the use of the methodol-
ogy here shown can be extended to more complex regulatory
networks, involving multiple targets, cooperating TFs and
miRNAs and signaling pathways displaying cross-talk via
post-tranlational modifications. In this case, the critical
element is the quality and quantitiy of the available data.

Insufficiency and low quality of experimental data can cause
errors in the process of model construction and overfitting in
parameter estimation can lead to uncertainties in the model
predictions. We believe that the quick development of quan-
titative high throughput techniques such as transcriptomics,
proteomics and miRNomics will facilitate the construction
and characterization of larger miRNA-mediated regulatory
networks.

Other modeling frameworks than ODE-based models
can be used to describe biological systems, such as prob-
abilistic (e.g., Bayesian) or logical (e.g., Boolean) models.
Importantly, different modeling frameworks have different
properties and perform well regarding different perspectives
and levels of mechanistic details of biochemical systems [46].
For example, Bayesian models are helpful in the construction
of connections in signaling networks and can reveal the most
likely underlying structure of the network in a probabilistic
manner. Boolean models use binary values (0 and 1) and
logical gates (AND, NOT, and OR) to describe activities of
network components and the information flow among them.
We believe that in the coming future, hybrid models, which
consist of modeling framework and experimental technique
specific sub-modules, will provide the necessary compromise
between quantitative/qualitative accuracy and scalability for
the investigation of large biochemical networks [47].
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