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Abstract

The “multispecies” coalescent (MSC) model that underlies many genomic species-delimita-
tion approaches is problematic because it does not distinguish between genetic structure
associated with species versus that of populations within species. Consequently, as both
the genomic and spatial resolution of data increases, a proliferation of artifactual species
results as within-species population lineages, detected due to restrictions in gene flow, are
identified as distinct species. The toll of this extends beyond systematic studies, getting
magnified across the many disciplines that rely upon an accurate framework of identified
species. Here we present the first of a new class of approaches that addresses this issue by
incorporating an extended speciation process for species delimitation. We model the forma-
tion of population lineages and their subsequent development into independent species as
separate processes and provide for a way to incorporate current understanding of the spe-
cies boundaries in the system through specification of species identities of a subset of popu-
lation lineages. As a result, species boundaries and within-species lineages boundaries can
be discriminated across the entire system, and species identities can be assigned to the
remaining lineages of unknown affinities with quantified probabilities. In addition to the iden-
tification of species units in nature, the primary goal of species delimitation, the incorporation
of a speciation model also allows us insights into the links between population and species-
level processes. By explicitly accounting for restrictions in gene flow not only between, but
also within, species, we also address the limits of genetic data for delimiting species. Specif-
ically, while genetic data alone is not sufficient for accurate delimitation, when considered in
conjunction with other information we are able to not only learn about species boundaries,
but also about the tempo of the speciation process itself.

Author summary

Current coalescent-based species-delimitation approaches rely on the diagnosis of genetic
structure to identify putative taxa. However, when multiple population lineages from the
same species are sampled, the conflation of populations with species leads to a
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proliferation of artifactual “species”, resulting in inaccurate diversity estimates that are
challenging systematic studies and fields that rely upon accurately delimited species
boundaries. We present here a new approach to delimitation that explicitly models specia-
tion as an extended process, from the formation of new population lineages to the devel-
opment of independent species. This allows for computational discrimination between
genetic structure that corresponds to species lineages versus population lineages within
species, transforming species delimitation in both theory and practice in this age of high-
resolution genomic data.

This is a PLOS Computational Biology Methods paper.

Introduction

Computational (or statistical) species delimitation—the identification or demarcation of species
units in nature using algorithmic approaches—is being transformed by unprecedented amounts
of genetic data coupled with ever-increasing computational power to process that data. This
transformation has relied heavily on the multispecies coalescent (MSC) model (i.e., the cen-
sored coalescent model, as originally described [1]). The MSC provides a probability distribu-
tion for gene tree shapes from parameters that describe population sizes and the history of
divergence times between multiple lineages. In its application in species delimitation, the dis-
tinct lineages identified by this model are each equated with being distinct species. However, in
systems where there is within-species structure (as in, for example, population lineages), the
MSC is problematic for species delimitation [2]. This is because the MSC cannot distinguish
between genetic lineages associated with species boundaries from those associated with popula-
tion divergence within species. That is, the MSC detects genetic structure, not species per se [2].
Note that this problem is not an issue of correct or incorrect species concepts, nor is it the
result of adhering to any particular view or special model of the speciation process. Rather,
regardless of the species concept assumed or speciation model adopted by the investigator,
whenever detectable genetic structure arises from restrictions in gene flow before any specia-
tion, including, notably, population isolation, the MSC will incorrectly and artifactually elevate
these population lineages as distinct species. Thus, rather than being just a curious theoretical
problem that arises under a peculiar speciation model or particular species concept, for any
data in which there is detectable population genetic structure within species, such restrictions
in gene flow represent a fundamental and general issue with using the MSC to delimit species.
Of course, if an investigator considers that all and any restriction of gene flow, however small,
as the exclusive and unconditional criteria of defining species boundaries for their particular
system, then a pure MSC delimitation analysis will indeed yield results that are consistent with
this view. However, in most other cases, and in particular, when in a given system there may
be any degree of detectable restriction in gene flow within species, however partial or incom-
plete, then the MSC will still detect these within-species lineages (populations) as distinct
units, and when used in a species-delimitation context these will be interpreted as full species
by the investigator. This conflation of populations with species, resulting in oversplitting, has
been reported many times by many empirical systematists working in a range of systems [3—
19]. The recent explicit statistical demonstration and characterization of this phenomenon [2]
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simply provided theoretical support for the escalating concern about artifactual species being
inferred from coalescent-based species delimitation methods without any corroborating data
[18, 20, 21].

Recognizing the limitations of MSC-based applications for species delimitaton, some
researchers have proposed a return to heuristic approaches [22, 23]. For example, genealogical
indices developed more than a decade ago [24] might be applied in more elaborate statistical
frameworks to evaluate species status. Specifically, parameters of population divergence
(namely, 6, 7, and M) estimated under the MSC with either a summary method [22] or full-
likelihood method [23] can be used to calculate a genealogical divergence index, gdi. Species
status is then determined by a threshold value (e.g., gdi > 0.7; [22, 23]), which was based on
analyses of a few particular empirical datasets and not based on, or otherwise informed by bio-
logical or statistical theory.

Heuristics are not the answer to addressing inadequacies of the MSC for species delimita-
tion. In fact, heuristic criteria for interpreting the results from the MSC are less than ideal, just
as they were when they were originally proposed decades ago. Heuristic criteria may be dis-
connected from speciation: for example, while monophyly criteria can easily be applied to
identify species boundaries, monophyly across the genome is not reached until many genera-
tions after species divergence [25]. Sensitivity of heuristic criteria to processes unrelated to spe-
ciation can also give rise to misleading interpretations. For example, if a population is founded
by a few individuals, or if the two populations have very different sizes, indices become unreli-
able for making interpretations about species status (e.g., elevated values of gdi result because
of the dependency of index on population divergence time relative to population size; [23]).

Here we introduce a new framework—speciation-based delimitation—that distinguishes
species and population boundaries using full probabilistic models. Specifically, by incorporat-
ing an explicit model of an extended speciation process into the delimitation analysis (Fig 1),
the formation of population lineages and their subsequent development into independent spe-
cies are decoupled and modeled separately. Furthermore, this framework allows for the incor-
poration of existing systematic information in the form of known species identities for a subset
of population lineages in the study. This information will be used to estimate a tempo of speci-
ation, which can then be used to estimate more reliable and accurate species delimitations for
the remaining subset of population lineages of unknown or uncertain species identities. In this
way, our approach also implicitly captures the species concept used by the investigator or con-
sidered by the investigator to be appropriate for the particular system, rather than enforcing
any particular pre-defined species concept on the analysis. In the following sections, we
describe in detail the approach implemented in the new software DELINEATE, followed by
presentation of two different types of delimitation analysis, as well as a novel macroevolution-
ary analysis of diversity. We then assess the performance of our approach using simulations
under a broad range of conditions that include challenging parts of parameter space to fully
characterize the approach’s strengths, as well as its weaknesses. What we present is certainly
not the only, or necessarily the best, speciation model that might be incorporated into delimi-
tation analyses. Nonetheless, our work represents a significant step towards a future where not
only the full potential of genetic data can be realized through model-based inference, but the
limits of genetic data for delimitation are also explicitly addressed.

Materials and methods
Types of inferences under DELINEATE

DELINEATE has three modes of inference, depending upon the goals of a study, the ancillary
information a researcher has on the focal taxa, and/or the study design. For example, in most
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Fig 1. The Protracted Birth Death (PBD) model of the speciation process [26, 27] implemented in DELINEATE
separately models lineage splitting and completion of speciation events, such that “speciation” is an extended
process. For example, considering a phylogeny of population lineages inferred under the MSC [1, 28], the lineage
splitting events correspond to the formation of new isolated population lineages (not species) through restrictions in
gene flow in an ancestral population (e.g., V). These lineages may themselves give rise to other population lineages
(V2 through V9), or go extinct (X1 through X3). Population lineages develop into an independent species at a fixed
background rate, providing they are not otherwise lost (i.e., there is duration between the initiation and completion of
speciation). Changes in status from incipient to full or good species are marked by speciation completion events,
shown by the blue bars. Under the PBD, a “species” is thus made up of one or more population lineages not separated
from one another by a speciation event. In this example, five speciation completion events divide the seven extant
populations into four species: {4, B}, {C}, {D, E}, and {F, G}.

https://doi.org/10.1371/journal.pcbi.1008924.9001

species delimitation applications, we very rarely have absolutely no knowledge of any species
identities of the sampled individuals. Instead, we typically have some understanding of the spe-
cies assignments of some of the individuals in a dataset, often by design, and it is the species
identities of only a subset of the collected data that we are interested in actually inferring. In
such cases, the “constrained” mode of inference would be applied in DELINEATE, rather than
the “unconstrained” inference mode. Alternatively, the “tempo of speciation” mode of infer-
ence might be preferred if the focus of the study is on speciation dynamics, rather than delimi-
taion per se (see below).

Constrained species delimitation. Under this mode of inference, the species identities of
some of the lineages in the input tree are specified a priori. DELINEATE will assign species
identities to the remaining lineages of unknown species identities, with these estimated species
assignments being either to existing (i.e., known or specified) species, or new ones entirely. In
particular, with species identities of a subset of lineages specified as constraints on possible par-
titions to be evaluated, DELINEATE will estimate the speciation dynamic parameter (specifi-
cally, the speciation-completion rate, o) based on the tree induced by this subset, and then
calculate the probabilities of all possible partitions that include the species identities given the
estimated speciation-completion rate. The different partitions can then be ranked according to
their probabilities, with the partition of the highest probability constituting the maximum like-
lihood estimate of the delimited species boundaries. (Note that the speciation-completion rate
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or ois the primary parameter that regulates the number of species in the system and captures
the tempo of species formation as opposed to population lineage isolation or fragmentation. It
is the rate that an independent population lineage develops full distinct species status. This is
described in detailed in the “Statistical Model Description and Inference Algorithm” below.)

In addition to identifying the most probable species assignments while estimating parame-
ters of the speciation process (i.e., 0 is unknown), this mode of inference in DELINEATE
could also be used to focus upon the identities a particular subset of lineages (e.g., a set of con-
specific lineages for a particular species). By integrating across partitions (i.e., alternative spe-
cies assignments) and o, the probability of their identities—whether or not they belong to the
same species or not—can be summarized taking into account uncertainty across delimitation
models (i.e., uncertainty in the identities of non-target taxa, as well as the speciation
dynamics).

We acknowledge that in the context of estimating o from genetic data and the species con-
straints, the lineage tree is not independent of the species constraints. That is, each heterospe-
cific constraint is more compatible with a longer path along the lineage tree, and each
conspecific constraint is more compatible with shorter paths. Given that the information
about path length from the species constraints is likely to be much weaker than the informa-
tion provided by the genetic data, here we approximate the results by performing sequential
inference of the lineage tree and the o parameter value. The dependence would require joint
inference of the lineage tree and ¢, which is beyond the scope of this paper. The performance
measures as reported here show generally high accuracy, and that accuracy is primarily
affected by other factors (e.g., number of lineages and the tempo of speciation).

Using the “constrained” mode of DELINEATE provides a straightforward and elegant way
to incorporate the knowledge, insight, expertise, and perspective that investigators have about
a particular system into the species delimitation analysis. This would be intuitively (though not
statistically or operationally) comparable to the prior in a Bayesian analysis or a training data-
set in a machine learning analysis. This information is communicated to the DELINEATE
analysis through the constraints, i.e. the assignment of species identities to a subset of the pop-
ulation lineages. As discussed above, DELINEATE uses information from the assignment of
species identities specified in the constraints to learn about the speciation process (i.e., the spe-
ciation completion rate) and estimate the probabilities of the species identities of the unknown
population lineages. As such, these estimates will reflect the investigator’s understanding of
“species; for the data being analyzed. That is, different species concepts are accommodated
(and reflected) in the constraints specified by the investigator, and the probabilistic assignment
of unknown lineages to new or existing species will be consistent with concept provided by the
investigator.

Unconstrained species delimitation. The most probable species assignments may be
inferred without specifying any information about known or believed species identities with
DELINEATE, an analysis type hereafter referred to as unconstrained species delimitation.
However, this mode of inference requires the input of speciation dynamic parameters (in our
model, the speciation-completion rate). Information for setting a given ¢ in empirical studies
might come from estimates of o from a comparable (but distinct) data set, such as a related
group of species for which information on species identities can be used to estimate o (e.g.,
using DELINEATE in the constrained species delimitation mode, as already described), and
for which similar speciation dynamics might be assumed.

Tempo of speciation dynamics. An interesting and useful application of DELINEATE is
to study the temporal dynamics of speciation. In particular, with estimates of the speciation-
completion rate, we can calculate the speciation-completion time, that is, the waiting time for a
single isolated population or incipient species lineage to complete the speciation process
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Fig 2. Overview of speciation-based delimitation using DELINEATE. Starting with genomic data (a), a lineage tree (b) is inferred under the
multispecies coalescent (MSC) model using any of a number of programs, such as BP&P [28] or *BEAST [30]. The inferred lineages, which are
consistent with a Wright-Fisher population under the MSC model (i.e., cannot be divided any further), are (c) organized into sets of one or more
species in DELINEATE, with each possible organization (referred to as a “partition”) representing a different hypothesis about species boundaries.
Partitions can range from a single species (i.e. all lineages assigned to the same species) to as many species as their are lineages (i.e., there are no
population lineages, only different species). The probability of each of the different partitions is calculated and reported by DELINEATE, The partition
with the highest probability is the maximum likelihood estimate, but investigators have at their disposable all the partitions in the 95% confidence
interval as well if they wish to summarize support for particular results as well.

https://doi.org/10.1371/journal.pcbi.1008924.9002

assuming it does not go extinct. Under the PBD model, there is no known analytical solution
or maximum likelihood estimator for the speciation-completion rate, o [29]. However,
DELINEATE can provide an estimate of the speciation-completion rate, o, either by optimiz-
ing the parameter during the course of a standard constrained species delimitation analysis
(see above), or by running DELINEATE in a special mode where the species assignments of all
lineages are given and o is the only unknown parameter estimated.

Statistical model description and inference algorithm

We treat the data as a set of samples of sequences (D) for K loci from M populations (lineages),
with N,, individuals sampled from population m. A population tree with branch lengths is
inferred from these sequences using the “censored coalescent” or multispecies coalescent
(MSC) model of [28]. In our current implementation or DELINEATE, the inference of the
population tree under the MSC thus represents the first stage of analysis (Fig 2). Following the
notation of [28], A represents the assignment of populations to species, and S is tree of popula-
tion relationships, with branch lengths, estimated from multilocus data resulting from infer-
ence under the MSC model. The posterior probability of a particular partition given the data
would require taking an integral over all possible trees of populations and all possible values of
the other parameters of the model. While this could be approximated using Markov chain
Monte Carlo methods, here we assume that species assignment is independent of the process
of molecular evolution, once we condition on the lineage tree. Our approach focuses on calcu-
lating the likelihood of a species partition given a lineage tree and the speciation-completion
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rate, o:

L=Pr(A|o,S)

To take uncertainty in the lineage tree into account, one could sample lineage trees from
their posterior distribution (e.g., generated using software such as *“BEAST), and average Pr
(A|a, S) over this sample.

Information about the speciation-completion rate is inferrable from the lineage tree, S,
induced by the set of taxa the researcher has previously classified as the constrained leaf set
(C); we denote the species partition of this subset of leaves as A .. We assume that C is a random
sample of the full leafset to calculate Pr(A, | o, S,) as the likelihood for g, otherwise, some sort
of correction would be needed for an ascertainment bias.

We use a Poisson distribution to obtain the probability of 0 or > 1 speciation completion
events occurring along a branch given an instantaneous speciation-completion rate of ¢. That
is, given a branch with duration time of 7;, then the probability of the speciation process not
completing on this branch is given by:

Pr(No speciation completion events | o,7,) = ™%,

while the probability of the speciation process completing is given by:
Pr(Speciation completion | g,7,) = Pr(One or more speciation completion events | o, 1,)
=1 — Pr(No speciation completion events

=1—e4.

Note, thus, that the conspecific/heterospecific status of an ancestor-descendant pair only
depends on whether the number of speciation completion events is 0 or greater than 0. Despite
only having to keep track of two states for each branch (0 vs > 0 speciation completion events),
the number of possible configurations over the entire lineage tree (S.) can be quite large: 2°°I=2,
where 2|C| — 2 is the number of branches in a rooted tree. Fortunately, calculating the likeli-
hood, £ = Pr(A, | g, S,) only entails summing over those configurations of speciation comple-
tion events across branches that are compatible with all of the constraints implied by A,. For a
fixed lineage tree and a moderate size of C, this calculation is feasible via dynamic programming.
Bookkeeping similar to Felsenstein’s pruning algorithm can be performed during a post-order
traversal of the tree to determine the likelihood of the constrained leaf partition given a tree and
0 (details of the dynamic programming algorithm used are provided in S1 Text.).

Note that if the researcher’s prior information on alpha taxonomy only consists of conspecific
constraints, then 6 = 0 because in that case the probability of all lineages belonging to the same
species would have a probability of 1. Similarly, if the researcher’s constraints are all heterospeci-
fic constraints, then 6 = oo because this will assign a probability of 1 to a scenario in which
every tip is its own species. Thus, one would expect a plausible estimate of o only when the set of
input constraints has at least one conspecific and at least one heterospecific constraint.

Performance assessments

The performance of each of the different modes of inference available within our full probabi-
listic model for species delimitation was evaluated using simulated data. These assessment
include identifying the limitations of DELINEATE in addressing the various delimitation
objectives discussed above. In all cases, post-inferential statistical analyses and visualization
were done using the pandas [31], seaborn [32], and Matplotlib [33] Python libraries. The 95%

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008924 May 13, 2021 7/19


https://doi.org/10.1371/journal.pcbi.1008924

PLOS COMPUTATIONAL BIOLOGY Incorporating the speciation process into species delimitation

confidence intervals were calculated by adding partitions in decreasing order of probability
until 95% of the (constrained) probability is accounted for (i.e., the interval consists of the set
of the highest-probability partitions, with the sum of probabilties equal to at least 0.95).

Constrained species delimitation mode of inference. Recovery of the true species parti-
tion given a priori species assignments for some lineages and an unknown speciation-comple-
tion rate (i.e., joint estimation of the species partition and o) was assessed by generating 100
replicate datasets across a range of parameter values and dataset sizes, and for varying propor-
tions of unknown species identities per dataset randomly assigned to lineages. Specifically, we
simulated datasets with each distinct combination of the following parameters:

« number of lineages (i.e., tips in tree): 20, 40, and 80,

« number of unconstrained lineages (i.e., lineages of unknown species identities) that may
either belong to an existing or new species: 5, 10, and 15, and

« speciation-completion rate: 0.001, 0.005, 0.010, 0.050, and 0.100.

Each dataset was analyzed where known species identities for the subset of taxa were speci-
fied (according to parameters described above); the speciation-completion rate was estimated,
not specified. For each analysis in DELINEATE we recorded: (a) whether the species partition
with the highest probability corresponded to the known or true species partition, and (b)
whether the true species partition was in the 95% credibility set.

Unconstrained species delimitation mode of inference. To assess the accuracy of the
species partition probability calculation when no species constraint information is provided,
we generated test data by simulating species on a random population tree under a known spe-
ciation-completion rate using the “ProtractedSpeciationModel” class in the Den-
droPy phylogenetic computational library. The true speciation-completion rates varied from
0.01 to 0.1 in 0.01 increments, and population isolation and extinction rates were fixed to 0.1
and 0.0, respectively. Due to computational limits with enumerating all possible species parti-
tions, the population tree size was limited to 15 tips, and only 10 replicates were conducted
under each speciation-completion rate.

The tempo of speciation mode of inference. To assess the accuracy of the estimates of
the speciation-completion rate, we first generated test data by simulating species on a random
population tree with a known speciation-completion rate. More specifically, using the “Pro-
tractedSpeciationModel” class in the DendroPy phylogenetic computational library,
we generated 40 tip population trees with fixed population isolation rate of 0.1, extinction rate
of 0.0, and the following speciation-completion rates (0): 0.001, 0.002, 0.004, 0.008, 0.01, 0.02,
0.04, 0.08, and 0.1. Thus, across all cases, speciation-completion rates varied from 100 times
slower to equal to the population isolation rate. This range of values, from 0.01 to 1.0 relative
to the population isolation rate, spans (and exceeds) the relative range of speciation-comple-
tion rates reported for a variety of empirical systems by [27]. A total of 100 replicates were run
under each configuration, and the resulting trees and associated true species partitions were
each submitted as data to the tempo of speciation mode of inference in DELINEATE to calcu-
late the maximum likelihood speciation-completion rate, which was compared to the known
(true) value used to simulate the data. 95% confidence intervals were calculated using the
Fisher information approach [34].

Software and data

Software for inference under the DELINEATE model is publically available at: https://github.
com/jeetsukumaran/delineate This software is written in Python [35], and makes use of the
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NumPy [36], SciPy [37], and DendroPy [38] software libraries. The package is fully documen-
tated, with documentation available online at https://jeetsukumaran.github.io/delineate/. The
documentation includes a primer on background concepts as well as a fully worked empirical
case example using a Lionepha dataset recently published by [39], illustrating analytical proce-
dures and guides.

Scripts that were used generate data and analyze them for the performance tests are avail-
able S1 Data.

Results

By simulating across a broad range of parameter space, we identify properties of delimitation
analyses that can be accurately inferred and are generally robust to different study conditions,
as well as those whose accuracy varies, thereby informing which modes of inference in
DELINEATE might be more or less appropriate for a specific study. With respect to inferring
the number of species [Fig 3a], DELINEATE performs very well using the constraint mode of
inference. Specifically, regardless of data set size and the number of lineages with inferred (as
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Fig 3. Accuracy of species delimitation under different levels of species constraints and dataset sizes (i.e., number
of lineages in the tree). Simulations span differing speciation-completion rates (indicated by color gradient with
darker colors representing lower rates and lighter colors representing higher rates). Even with inferring the speciation-
completion rate from the data, (a) recovery of the correct number of species is extremely reliable across a broad range
of conditions, comparing the true number of species with the the inferred number of species; each dot corresponds to
the analysis of one replicate dataset. However, whether the (b) identity of species is accurately inferred differs
depending upon the size of the data set (i.e., number of lineages), the constraint level (i.e., the number of lineages with
designations set a priori; e.g., “30/40” corresponds to a tree with 40 lineages, 30 of those with known species identities,
and 10 lineages with inferred identities), and the particular speciation-completion rate the data were simulated under
(note that this rate was inferred during the analyses). Shown are the proportion of 100 replicates for each set of
conditions in which the partition with the highest probability corresponded to the correct assignments of all species
identities.

https://doi.org/10.1371/journal.pcbi.1008924.9003
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opposed to a priori assigned) species identities, the estimated number of species shows a strong
correspondence with the actual number of species in the simulated data sets. Moreover, esti-
mates of the number of species were robust to differences in the underlying speciation dynam-
ics (i.e., were insensitive to the speciation-completion rate, which was also estimated).

The accuracy of inferred species identities, unlike estimates of the number of species, varied
depending on the speciation dynamics and properties of the dataset [Fig 3b]. With respect to
correctly assigning all lineages to their respective species designations, three trends are appar-
ent from the analyses. Unsurprisingly, the more constraint information provided in terms of
known species identities of lineages, the better the performance. The proportion of replicate
datasets with the correct inferred species identities across all lineages also increases with data-
set size (i.e., with increasing numbers of lineages in the tree), and with lower speciation-com-
pletion rates. Despite the obvious sensitivities to these conditions, when inferring the species
identity of 5 out of the 20 lineages under a speciation-completion rate of 0.001 (i.e., one hun-
dred times lower than the population isolation or splitting rate of 0.1), the partition with the
highest maximum likelihood corresponded to the correct species identities for all lineages in
almost 80% of the replicates. For larger datasets of 80 lineages, the identity of 5 unknown line-
ages is correctly inferred in 96% of the replicates for the same speciation-completion rate
[Fig 3b]. Also note that in all these analyses under the constrained mode of inference, the spe-
ciation-completion rate is also inferred, thus we learn about the tempo of speciation in addi-
tion to the species boundaries.

Note that the analyses span a range of dataset configurations with respect to the number of
species, or conversely population, lineages (see the range of values for any single speciation-
completion rate in [Fig 3a]). However, regardless of dataset size or number of constraints (i.e,
the number of lineages with an assigned species designation), the correct delimitation model
was rarely inferred under high speciation-completion rates—that is, as the speciation-comple-
tion rate is on the same order or as much as half the population isolation rate. Such rates are
not likely to be biologically realistic; they are presented here to illustrate changes in perfor-
mance across the entire theoretical parameter space, not to represent rates that are likely to be
apply in practice.

For data analyzed using the unconstrained mode of inference, which was restricted to
smaller dataset sizes because of computational constraints (see Materials and methods for
details), 925 out of a total of 1000 replicates across all speciation-completion rates (i.e., in
approximately 92.5% of the replicates) the true species partition was recovered in the 95% con-
fidence interval. For these analyses of 15 lineages per replicate, the true species delimitation
model (i.e., partition) ranged from 2 to 12 species, with an average of approximately 5 distinct
species per replicate (mean = 5.092; s.d. = 2.1217). However, the number of partitions in the
confidence intervals of the DELINEATE analysis ranged from 108 to 187,554, with a median
of 16,832 and a mean of 23,625. Moreover, while the true species partition was in the confi-
dence interval most of the time, only in 12 cases (i.e., 1.2%) was the true species partition (i.e.,
the delimitation model with all lineages assigned correctly) the one with the highest probabil-
ity. Overall, the results demonstrate that while we are able to reduce the uncertainty of species
assignments, the residual level of uncertainty indicates that genomic data alone is insufficient
to infer all species identities. This is because, as pointed out by [23], the speciation process is
conditionally independent of the population tree.

Tests to evaluate the performance of DELINEATE for estimating the speciation-completion
rate showed that the maximum likelihood estimates generally tracked the true speciation-com-
pletion rates well (Fig 4). The estimates were particularly good at low to moderate speciation-
completion rates, and tended to be underestimated when the true speciation-completion rate
was high. This is most likely due to saturation, where, at high rates of speciation-completion,
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Fig 4. Accuracy of DELINEATE maximum likelihood estimates of speciation-completion rate compared with the true speciation-completion
rate; the ribbon shows the minimum and maximum of the 95% confidence interval ranges for the various estimates under that true rate. Note that
the population isolation rate was fixed at 0.1, so the range of speciation-completion rates, from 0.001 to 0.1 spans rates from one hundred times slower
to equal to the population isolation rate.

https://doi.org/10.1371/journal.pcbi.1008924.9004

multiple speciation completion events may occur along the same branch without changing the
shape of the data in terms of distinct species identities at the tips. For the 60 lineage trees ana-
lyzed, each replicate ranged from 4 to 37 species each, with an average of approximately 20 dis-
tinct species per replicate (mean = 19.97; s.d. = 7.97).

Discussion

With the new class of speciation-based delimitation we introduce here, we can confidently
infer species identities within a reasonable part of realistic parameter space, distinguishing
genetic structure within species from that associated with species boundaries, thereby avoiding
the overestimation that occurs with applications based on the MSC [2]. Moreover, we show
that our delimitation approach can provide accurate inferences about the completion rate of
speciation. As such, our results showcase not only the significant improvements that specia-
tion-based delimitation can provide for inferences about species boundaries, but also the
broad utility of the approach for studying the linkages of micro- and macroevolutionary pro-
cesses. But importantly, because we model the biological reality of restrictions of gene flow
before speciation (i.e., genetic structure within species), our study also explicitly addresses the
fundamental limits of genetic-based delimitation, despite their popularity, or proclaimed supe-
riority for systematic study (e.g., [40]). Namely, Multispecies Coalescent species delimitation
inferences that rely on genetic data alone, without reference to any other information for
delimiting species, are not reliable. Below we discuss the implications of our findings and what
they suggest about the future of species delimitation, including possible directions for specia-
tion-based delimitation in particular.

Accurate to inaccurate inference

The substantial accuracy of species assignments when the identities of a subset of lineages are
provided contrasts strongly with the relatively poor performance of analyses using genetic data
alone (i.e., without supplemental information), speaking to the limits of knowledge possible
with genomic data used in isolation. However, even so, while actual species identity assign-
ments may remain challenging without supplemental information, even in these cases infer-
ences regarding the number of species are remarkably robust generally [Fig 3a]. In particular,
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these estimated species numbers are also markedly more reliable than those inferred under the
MSC (see Fig 2a, [2], which shows the the MSC dramatically overestimates species numbers).

With respect to inferring the species status of unknown lineages, the delimitation model
with the highest probability corresponded to the true partition under a broad parameter space,
with two notable exceptions [Fig 3b]. First, accurately identifying the species status of all line-
ages is unlikely if half of those lineages have no information about them to constrain the infer-
ence procedure. Under such situations, the only property that can be reliably estimated is the
number of species [Fig 3a]. Second, the probability of inferring the correct delimitation model
depends upon the history of diversification itself. In particular, it is unlikely to correctly iden-
tify the species status of all lineages when the speciation-completion rate is very high. However,
as we emphasized earlier, we simulated data over a parameter space designed to identify the
theoretical limits, not just the promise, of DELINEATE. As such, the reported poor perfor-
mance in specific areas of parameter space does not necessarily imply a limited utility of speci-
ation-based delimitation in practice.

In practice, with more biologically realistic speciation-completion rates (e.g., half or tenth
of the population isolation rates, as opposed to the relatively unrealistic cases where popula-
tions form at the same rate as species), and with even a little information in the form of known
species assignments of some population lineages, the performance of DELINEATE increases
dramatically. For example, accuracy approaches the 80%—90% range of simulated datasets in
which the species status of all unknown lineages were correctly inferred. Note that in DELIN-
EATE the user does not need to provide any information regarding the speciation process itself
in the form of the speciation-completion rate parameter (¢): DELINEATE “learns” this from
analysis of the data based on the known species assignments. Moreover, despite noise in the
estimation of this parameter [Fig 4], estimation of the actual species delimitation model seems
to still perform relatively well as long as the true rates themselves are not extreme (i.e., specia-
tion-completion rates approaching parity with population isolation rates) [Fig 3].

Irrespective of whether the focus is on delimiting all, or just a subset, of lineages with
unknown species status (or on speciation dynamics rather than delimitation per se; as dis-
cussed below), the study design under our new approach will differ from those in the past. In
particular, investigators should adopt study designs that include lineages of known species
identities, in addition to the lineages that they wish to assign to species, when they collect
genetic data. That is, instead of restricting analysis to a set of genomic data collected in individ-
uals in which we have no idea as to any of the species assignments, systematic studies should
design analysis to span a broader context that includes at least some lineages of known species
identities. Many species delimitation studies in fact do this routinely, as it is rather unusual for
a system not to have any information about species identities for any of its lineages. This study
design parallels those for analyses of divergence times in which the operational taxonomic
units (i.e., the tips of the tree) are selected to include taxa for which calibration or fossil data is
available. In the context of DELINEATE, the relationship of the number of species identities
known a priori to accuracy is the simplest to understand, at least on a trivial level: the more
information that we provide to the model, the better the model performs. In addition, it should
be noted that the benefits of this information are not only in terms of informing the model,
but also restricting parameter space in terms of the number of partitions to visit, thus speeding
up computational times. However, computational time also becomes an important component
the higher the total number of lineages. Although the amount of information about the specia-
tion process that can be gleaned increases under such conditions, and allows for better infer-
ence about the delimitation model (see [Figs 3 and 4]), there is a computational trade-off.
With larger datasets, the accuracy of inferences improves, but the number of partitions to be
scored grows very quickly, making calculations infeasible when analyzing too many lineages.
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Speciation dynamics

We note that the incorporation of an explicit speciation process opens new frontiers not only
in species delimitation analysis, but also in macroevolutionary studies of diversity. Specifically,
and in particular using the model applied in DELINEATE, the rate of development of species
isolation mechanisms, as distinct from the rate of population isolation, can be directly esti-
mated. This is a valuable evolutionary biology study objective in its own right [41]. But, in
addition, this provides investigators with a framework for studying the linkages between popu-
lation and species-level processes. For example, understanding why species diversity differs
among geographic areas or among taxa requires an understanding of how diversity is gener-
ated and maintained. As such, speciation-based delimitation approaches like DELINEATE
can be used to address such questions, including testing “museum” vs “cradle” models to
explain the higher diversity in the tropics compared with temperate areas (i.e., the “museum”
with lower extinction rates or the “cradle” with higher speciation rates in the tropics) [42-53].
Instead of just characterizing “cradle” areas as having higher speciation rates, with estimates of
the speciation-completion rate, we can ask whether the higher diversity reflects higher rates of
population isolation (perhaps due to complex or dynamic geographies) or higher rates of
development of speciation isolation mechanisms (see [53]), because these two processes that
affect the duration of speciation [29] are decoupled in our model. Just as importantly, evolu-
tionary biologists [53-62] have long highlighted the need and importance for modeling specia-
tion as an extended process as done by the PBD, and the modeling of lineage splitting
(population isolation) and species development as two separate processes in the PBD has been
shown to provide novel and important insight into understanding how diversity is generated
and maintained [26, 29, 53]. The nuances and ramifications of these two different paths to
higher speciation rates provide deeper insight into the evolutionary history of a system by
building a better understanding of how patterns at evolutionary time-scales are shaped by
mechanisms and processes at ecological time-scales [53, 61]. Distinguishing between high
rates of population isolation versus development of speciation isolation mechanisms are also
useful for analyzing some interesting modes of speciation, such as ephemeral or ecological spe-
ciation [59, 62]. Insights about the speciation-completion rate as estimated by DELINEATE
may explain how macroevolutionary patterns are regulated by microevolutionary processes.

“Objective” species delimitation

DELINEATE allows for existing taxonomic knowledge, subjective or otherwise, to be incorpo-
rated into an objective species delimitation analysis. In contrast, when using the MSC alone
for species delimitation, species boundaries are inferred algorithmically entirely from genomic
data, without requiring any pre-existing taxonomic information. This might lead to the per-
ception that the MSC is an entirely objective analysis in comparison with DELINEATE, as the
MSC does not require or make use of any subjective information with regard to species status,
concepts, or criteria. However, this characterization of the MSC is misleading.

The MSC adopts a single criteria for delimiting species boundaries: any and all detectable
restrictions of gene flow. The criteria is subjective in the sense that it was not selected through
an objective statistical optimization procedure, nor does it represent a scientific consensus
regarding species boundaries that is universally accepted by all investigators for all systems.
Furthermore, as it is a necessary assumption made when using the classical MSC alone for spe-
cies delimitation, it remains an implict subjective choice even if it was not explicitly stated,
understood, or put forward by the investigator. Thus, while the classical MSC model does
indeed provide an objective approach to species delimitation, it does so under a specific sub-
jective species criteria or concept, albeit perhaps one not always recognized by investigators.
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This subjective species boundary criteria might be valid for some systems. However, it is
clearly invalid in many systems in nature—that is, in systems with multiple within-species
population lineages (e.g., any species with population structure [10, 18, 20]), even if divergence
occurs with gene flow (i.e., divergence with gene flow models based on the MSC, such as [63],
are insufficient and will be misleading when applied to any system in nature in which there is
detectable within-species population genetic structure).

Like the MSC, DELINEATE, too, provides for an objective species delimitation analysis
under subjective criteria. However, unlike the MSC, this subjective criteria is not fixed and
forced upon the study regardless of whether it is valid or not. Instead, DELINEATE allows for
the criteria to vary based on the investigator’s particular understanding of what constitutes a
species.

Distinguishing between species and population boundaries by modeling
the speciation process

By conducting analyses that rely only on genetic data, with no other information to inform
species delimitation (i.e., the unconstrained mode of inference in DELINEATE), our study
speaks to the limits of knowledge and how much we can learn from genomic data alone. That
is, with no information at all as to the species identities of any populations, while the true spe-
cies partition is found within the 95% confidence interval, it is the best-preferred delimitation
in only 8% of the cases. This is not a novel finding: such a non-integrated approach to species
delimitation analysis—where a set of genomic data is used with no supporting or corroborat-
ing information and an algorithm is expected to “magically” [23] distinguish between popula-
tions and species boundaries to diagnose species—has always been problematical and
unreliable [2-17, 20, 21].

Because we provide the true speciation-completion rate, estimation of the parameter itself
is not compromising our model’s performance. As such, our work shows that the inherent lim-
itation arises from distinguishing genetic structure associated with populations versus species.
That is, the actual challenge for accurately delimiting species (as well as what makes the MSC
an inadequate model for species delimitation) is the presence of restrictions in gene flow before
speciation rather than gene flow after speciation. Yet, this issue has received very little attention
(at least in theoretical treatments). Instead, a popular focus has been on gene flow after specia-
tion (e.g., [64]), as if it is also the central problem with applications of the MSC for species
delimitation. Hopefully this study will help dispel this misconception and future work can
focus on how methods might provide robust inference by contending with genetic structure
that arises before speciation. Genetic structure within populations before speciation is the fun-
damental impediment to more general genetic-based applications (e.g., [2-4, 9, 11, 20]), as
well as for the new class of speciation-based delimitation models we introduce here.

We acknowledge that there are a number of limitations and simplifying assumptions with
our approach as currently implemented in DELINEATE- e.g., we assume a constant fixed spe-
ciation-completion rate, and we face computational challenges with large numbers of lineages
with unknown species identities. We found, for example, that analyses with more than 15 pop-
ulation lineages with unknown identities were the limit that could be executed without
recourse to machines of 1TB or more of memory. Note that this number, 15, is specifically the
number of population lineages with unknown species assignments; the entire analysis could
easily consist of several hundred or more population lineages as long as most of these were of
known species assignments. Given that the principal computational challenge in our current
implementation is the requirement to enumerate all possible partitions, adopting any of the
standard optimization heuristics such as hill-climbing for maximum likelihood estimation or
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various forms of MCMC for Bayesian estimation in future work should increase the efficiency
of DELINEATE. With this increased efficiency, analysis of larger datasets are possible, and
with the higher information content of these larger datasets, we are optimistic that the efficacy
of DELINEATE will increase as well. This potentially provides an opening for more sophisti-
cated modeling to capture the biological realities of diversification dynamics, such as differing
speciation-completion rates across taxa.

Nevertheless, even with the current limitations, the big picture that emerges is this: the
accuracy of species delimitation is improved with modeling of the speciation process. This
modeling not only allows us to avoid conflating genetic structure within species with that
between species [Fig 3a], it also allows us to ask and answer more sophisticated questions in
macroevolutionary biology (see [Fig 4]). There are many different speciation processes that
can be considered that will prove useful in this regard. For example, Morlon et al. [65]
described 13 theoretical models and 8 empirical patterns of speciation. Our adoption of the
protracted speciation model [26, 27, 29, 66] is, in fact, just one of this variety. We both hope
and expect that other speciation models that better reflect either the realities of particular bio-
logical systems, or the perspectives of other investigators, will be incorporated into speciation-
based delimitation approaches in the future.

Supporting information

S1 Text. A description of the general DELINEATE dynamic programming algorith is pro-
vided in S1 Text.
(PDF)

S1 Data. All scripts required to replicate our analyses are provided in S1 Data. This is an
compressed archive that includes: scripts to simulate data, construct analysis pipelines, and
cluster execution job files (delineate-performance-setup/bin); some notes on the
parameter space we used (delineate-performance-setup/docs); scripts to collate,
compile, and analyze results, as well as generate plots/figures from results data (delineate-
performance-results/bin/); CSV/TSV files summarizing each replicate, including
(true) parameters as well as inferred parameter values and probablities, as well as metadata
such as analysis execution date/time, cluster location, etc. (delineate-performance-
results/data/extracts); TSV files containing data simulation/generation logs, includ-
ing random seeds etc. (delineate-performance-results/data/logs). Note that
we omit the full (simulated) data sets due to size (> 5TB). However, these can be easily regen-
erated in identical detail using the same random seeds for the data generation (given in the
“logs”) with the scripts found in the “setup” section above. Note also that the automatically
generated logs provided above span a broad variety of studies and analyses, including not only
the production runs reported here but also pilot runs, experimental studies, etc. Production
run details relevant to this paper can be identified by correlating date/time/cluster with the
information found in the “extracts” subdirectory above.
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