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Abstract

Purpose

Medulloblastoma (MB) is a highly malignant pediatric brain tumor. In the latest classification,

medulloblastoma is divided into four distinct groups: wingless (WNT), sonic hedgehog

(SHH), Group 3, and Group 4. We analyzed the magnetic resonance imaging radiomics fea-

tures to find the imaging surrogates of the 4 molecular subgroups of MB.

Material and methods

Frozen tissue, imaging data, and clinical data of 38 patients with medulloblastoma were

included from Taipei Medical University Hospital and Taipei Veterans General Hospital.

Molecular clustering was performed based on the gene expression level of 22 subgroup-

specific signature genes. A total 253 magnetic resonance imaging radiomic features were

generated from each subject for comparison between different molecular subgroups.

Results

Our cohort consisted of 7 (18.4%) patients with WNT medulloblastoma, 12 (31.6%) with

SHH tumor, 8 (21.1%) with Group 3 tumor, and 11 (28.9%) with Group 4 tumor. 8 radiomics

gray-level co-occurrence matrix texture (GLCM) features were significantly different

between 4 molecular subgroups of MB. In addition, for tumors with higher values in a gray-

level run length matrix feature—Short Run Low Gray-Level Emphasis, patients have shorter

survival times than patients with low values of this feature (p = 0.04). The receiver operating

characteristic analysis revealed optimal performance of the preliminary prediction model
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Medical School, HUNGARY

Received: February 10, 2021

Accepted: July 17, 2021

Published: July 29, 2021

Copyright: © 2021 Chang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: K.H received funding from Ministry of

Science and Technology, Taiwan (MOST 106-

2314-B-038-033) and the Higher Education Sprout

Project by the Ministry of Education (MOE) in

Taiwan (DP2-110-21121-03-C-02-03). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

https://orcid.org/0000-0001-7725-9019
https://doi.org/10.1371/journal.pone.0255500
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255500&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255500&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255500&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255500&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255500&domain=pdf&date_stamp=2021-07-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0255500&domain=pdf&date_stamp=2021-07-29
https://doi.org/10.1371/journal.pone.0255500
http://creativecommons.org/licenses/by/4.0/


based on GLCM features for predicting WNT, Group 3, and Group 4 MB (area under the

curve = 0.82, 0.72, and 0.78, respectively).

Conclusion

The preliminary result revealed that 8 contrast-enhanced T1-weighted imaging texture fea-

tures were significantly different between 4 molecular subgroups of MB. Together with the

prediction models, the radiomics features may provide suggestions for stratifying patients

with MB into different risk groups.

Introduction

Medulloblastoma (MB) is the most common primary malignant brain tumor in children and

is currently treated on the basis of pathological and clinicoradiological risk stratification [1].

Despite progress in disease management, the overall survival remains dismal with 5 year sur-

vival rate around 70~75% [2]. Current therapeutic options have debilitating effects on develop-

ing children, highlighting the need for molecularly targeted treatments with reduced toxicity.

Recent developments in genome-wide sequencing techniques have improved understanding

regarding MB. Many target genes with dysregulated expression and mutation have been iden-

tified as possible drivers of MB. Research conducted over the past years has identified four dis-

tinct molecular variants, namely wingless (WNT), sonic hedgehog (SHH), Group 3, and

Group 4, each with different demographic, and genomic characteristics [3,4]. Improved

knowledge of signaling pathways and important oncogenic drivers in these subgroups has elu-

cidated the reasons for suboptimal clinical outcomes and therapeutic resistance. These find-

ings have ushered in a new era of therapeutic optimism, with latest clinical trials now pursued

on the basis of the molecular classification of MB. However, no consensus has been reached on

which genomic analysis protocol should be applied to identify MB molecular subtypes. More-

over, the heterogeneous spatial distribution of genomic features makes unguided surgical

biopsies prone to sampling errors, which may result in misclassification [5,6].

With the development of diagnostic imaging technologies, magnetic resonance imaging

(MRI) is now a standard examination procedure employed for pediatric brain tumors. This is

because MRI provides a wide range of physiologically meaningful contrasts for distinguishing

different components through imaging, thereby improving depiction of heterogeneous pat-

terns of tissue composition within tumors. Several reports have proved that MRI phenotype

can be applied to predict the genetic profiling of brain tumors [7]. A study by Perreault et al.

indicated that MRI substitute can be a favorable reference for MB molecular subgroups [8].

On the basis of objective radiomics analysis, imaging data can be transformed into a high-

dimensional space by using an automatically high-throughput feature extraction algorithm

[9]. Quantitative image-based features, including intensity, shape- and size-based, and textural

features, can be obtained using this process. Some of these features have been proven to be

associated with underlying gene-expression patterns [10].

In this study, multiparametric radiomics MRI analysis was conducted to reveal MB features.

Since different MB subgroups have distinct patient demographics, clinical management and

disease outcomes [11]. This non-invasive computer-aided quantitative diagnosis procedure

may be included as part of the diagnostic workup.
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Materials and methods

Data collection of patients with MB

This retrospective study was approved by the institutional review boards of Taipei Medical

University Hospital and Taipei Veterans General Hospital. The original material and data

were collected in compliance with all applicable laws, regulations, and policies for the protec-

tion of human participants. Informed consent was obtained from a parent and/or legal guard-

ian for inclusion in the study. The clinical information, frozen tumor specimens, and

preoperative magnetic resonance (MR) images of 52 patients with MB were obtained. 14

patients with incomplete clinical data, poor tumor tissue quality, and incomplete or poor-qual-

ity MR images were excluded from the research. Only 38 cases were finally included in our

study.

RNA-seq and clustering analysis

For RNA-Seq analysis, total RNA was purified from MB tissues by using the RNeasy Mini Kit

(Qiagen). The quality and quantity of RNA were assessed through spectrophotometry and cap-

illary gel electrophoresis, respectively. Next, the stranded mRNA libraries were generated by

using the TruSeq Stranded mRNA Library Prep Kit (Illumina). From each sample, 60 ng/μL of

poly(A)-selected RNA was run in two lanes of a MiSeq sequencing instrument (Illumina) for

100 cycles of multiplexed paired-end reads. We also performed read pseudoalignment and

quantification using Kallisto [12] with 200 bootstraps/paired-end reads aligned against the

human genome assembly, GRCh38 transcriptome definition. We extracted the gene-expres-

sion table by using the tximport package in RStudio with R, and fragments per kilobase of

transcript per million reads data sets were trimmed to obtain the protein coding genes, which

was followed by quantile normalization and log2 transformation of each data set [13]. For clus-

tering, we performed unsupervised clustering analysis with the consensus clustering default

parameters by using the t-distributed stochastic neighbor embedding (t-SNE) and nonnegative

matrix factorization (NMF) [14,15] packages, and validated by 22 subgroup-specific signature

genes expression levels (WNT: WIF1, TNC, GAD1, DKK2, and EMX2; SHH: PDLIM3, EYA1,

HHIP, ATOH1, and SFRP1; Group 3: IMPG2, GABRA5, NRL, MAB21L2, NPR3, and EYS

[EGFL11]; and Group 4: KCNA1, EOMES, KHDRBS2, RBM24, UNC5D, and OAS1) [16].

RNA-Seq results were sent to Taylor’s laboratory in the Hospital for Sick Children, Toronto in

helping with counterpart clustering.

MR image analysis

The MR sequences used for analysis included the axial T1 weighted image (T1WI), axial T2

weighted image (T2WI), axial T2 fluid attenuation inversion recovery (FLAIR) image, con-

trast-enhanced axial T1WI (CET1), and diffusion weighted image. In total, 14 patients were

excluded; 11 lacked preoperative MRI, and 3 had poor MRI quality. Thus, 38 patients were

enrolled in our study for imaging analysis. Quantitative imaging feature analysis was per-

formed as follows.

Image postprocessing and MR radiomics. To prevent variations in textural analytical

features resulting from different scanning protocols [17], we applied several postprocessing

steps on the MR images to decrease the discrepancy between imaging parameters used in dif-

ferent hospitals. All images were adjusted to voxel size 0.75 × 0.75 × 3.00 mm3 without gaps

between consecutive slices for each MRI modality. The T2W, T2 FLAIR images, and apparent

diffusion coefficient (ADC) maps derived from the diffusion-weighted image were then regis-

tered to the CET1s by using a six-parameter rigid body transformation and mutual
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information algorithm. Image intensity normalization was employed to transform MRI inten-

sity into standardized ranges among all subjects. The volume of interest (gross tumor volume)

covering the total tumor volume was delineated by a board-certified neuroradiologist (K.H.,

with 14 years of experience) who was blinded to the molecular status of all tumors. Pixels

included by the defined tumor contour were applied for feature extraction. A diagram illustrat-

ing image processing is displayed in Fig 1.

We extracted 57 radiomic image features that describe tumor characteristics based on

Aerts’s work [18]. These features can be divided into three categories: tumor intensity (16 fea-

tures), shape and size (8 features), and texture (33 features). In the first category, tumor inten-

sity information are quantified using first-order statistics, obtained from the histogram of

entire tumor voxel intensity values. The second category are features based on the three-

dimensional geometry of a tumor, including surface area, volume size, and derived features.

The third category consists of three-dimensional texture features that are able to quantify the

intratumoral heterogeneity within a full tumor volume. The 16 intensity and 33 textural fea-

tures were extracted from T1WI, T2WI, T2 FLAIR, CET1, and ADC images to yield 245 fea-

tures. The eight size and shape features were computed based on the three-dimensional

morphology of the tumors. In total, a maximum of 253 MR radiomic features could be gener-

ated for each subject. All radiomic features were extracted by using the MR Radiomics

Fig 1. Diagram showing imaging process in radiomics. (a) Multiple postprocessing steps were applied to magnetic

resonance images, including image coregistration, adjustment of image resolution, and intensity normalization between

patients. (b) The volume of interest covering the total tumor was manually drawn by a neuroradiologist. (c) Three

categories of radiomics, namely histogram, three-dimensional geography, and textural analysis, were employed on the

processed magnetic resonance images to yield radiomic features.

https://doi.org/10.1371/journal.pone.0255500.g001
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Platform (MRP; http://www.ym.edu.tw/~cflu/MRP_MLinglioma.html) which is in line with

the regulations of Image Biomarker Standardization Initiative (IBSI) [19]. Detailed formulas

of MR radiomic features are provided in Supplementary S1 Table.

Handling missing values. After calculation of radiomic features for all subjects, we fur-

ther performed k-nearest neighbor (k-NN) imputation to compensate for the partially missing

values caused by the lack of image sequences for some of the subjects [20]. The k-NN method

is a common strategy in which missing values are imputed using values calculated from k near-

est neighbors that reach a certain similarity measure. K = 3 was selected in this study since the

smallest subgroup (WNT) in our cohort has only 7 cases [21]. The nearest, neighbors are

determined based on Euclidean distance function. The superiority of the k-NN method over

mean imputation is that the imputed values are influenced by only the most similar cases

rather than by all values. After application of the feature extraction protocol in T1WI, T2WI,

T2 FLAIR, CET1, ADC map with k-NN imputation, we extracted 253 radiomics features from

each tumor.

Comparison of radiomics features in 4 molecular groups. The extracted 253 MR radio-

mic image features were compared to find the difference between the 4 molecular subtypes of

medulloblastoma. Dunn’s multiple comparisons test was applied and the significance level

(alpha) is set at 0.05.

Analyzing the impact of imaging biomarkers on disease survival. We applied univariate

and multivariate Cox proportional hazards modeling to investigate the relationships between

quantitative radiomic features and overall survival. The Wald test was used to determine the

significance of Cox models, and the most significant features were selected to define the radio-

mic risk subgroups. The log-rank (Mantel–Cox) test was used to compare the survival curves

of different subgroups, and hazard ratios were used to report the direction of the survival

effect. The significance level (alpha) is set at 0.05.

Establishing a prediction model of 4 molecular subtypes of MB. We tried to establish a

prediction model to estimate the molecular subtypes of each MB based on different radiomics

imaging features. Different feature selection algorithms including minimum redundancy max-

imum relevance, sequential backward elimination and sequential forward selection were

applied to obtain the best future combination [22,23]. A support vector machine (SVM) imple-

mented with nested leave one out cross validation was applied to find the best model [24,25].

The performance of models was scored using several metrics, namely sensitivity, specificity,

and accuracy (ACC). However, a meaningful prediction model was hard to be created based

on such a small cohort. The detailed methods and preliminary results were presented in sup-

plement S1 Text, S2 and S3 Tables.

Results

Clinical characteristics and molecular subtypes of the study cohort

In total, 52 children with MBs were collected from the archives. We clustered these cases into 4

molecular subgroups by running unsupervised clustering analysis with NMF and t-SNE

according to significantly different expressed genes (Fig 2). Furthermore, we validated the

cluster using the 22 subgroup-specific signature gene list [16]. However, 14 patients were

excluded because complete preoperative MR images were unavailable. Thus, 38 cases were

included in our research, and the mean age of this cohort at diagnosis was 7.8 years. The final

subgroups of WNT, SHH, Group 3, and Group 4 consisted of 7 (18.4%), 12 (31.6%), 8 (21.1%),

and 11 (28.9%) patients, respectively. Clinical profiles of the included patients are listed in

Table 1.
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Difference of radiomics features in 4 groups. We have compared the 253 radiomic

image features between 4 molecular subtypes of medulloblastoma. 6 features were significant

different between 3 groups of medulloblastoma and 2 features were significant different

between 4 groups of medulloblastoma. In 4 features (Cluster Tendency, Contrast, Difference

entropy, Dissimilarity, Fig 3A–3D), WNT and G3 groups tended to have the higher values

than SHH and G4 groups. In the rest 4 features (Entropy, Inverse Difference Normalized

(IDN), Inverse Difference Moment Normalized (IDMN), Cluster Prominence, Fig 3E–3H)

SHH and G4 groups tended to have the higher values than WNT and G3 groups. All of them

are textural features illustrating local patterns in tumors.

The impact of imaging biomarkers on disease survival. In univariate Cox Proportional-

Hazards regression model, 6 radiomic features were proved to be significant correlated to the

period of patient survival: Mean (p = 0.04), Median (p = 0.04), Skewness (p = 0.02), Energy

(p = 0.01), Short Run Low Gray-Level Emphasis (SRLGLE) (p = 0.01), and Long Run Low

Gray-Level Emphasis (LRLGLE) (p = 0.04). However, only Short Run Low Gray-Level

Fig 2. Pediatric MBs were divided into four molecular subgroups. (A) unsupervised NMF and (B) t-SNE analyses of

the RNA-Seq gene-expression table. The 52 patients with MB were classified into WNT (7), SHH (17), Group 3 (14),

and Group 4 (14). Abbreviations: NMF: Nonnegative matrix factorization; t-SNE: t-distributed stochastic neighbor

embedding; WNT: Wingless; SHH: Sonic hedgehog; MB: Medulloblastoma.

https://doi.org/10.1371/journal.pone.0255500.g002
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Emphasis (SRLGLE) (p = 0.02) were significant correlated to patient overall survival in multi-

variate Cox Proportional-Hazards regression model.

SRLGLE was selected as the prognosticator. And we found that in tumors with SRLGLE val-

ues higher than the third quartile values 0.08, patients have shorter median survival than

tumor don’t have these features (627 vs 1666 days, Hazard ratio: 4.28; 95% Confidence Interval

1.03 to 17.78, p = 0.04, Log-rank [Mantel-Cox] test, Fig 4).

Preliminary prediction model for molecular subgroups of MB. Our result revealed that

features extracted from CET1 GLCM features by using sequential forward selection algorithm

delivered the highest performance to differentiate 4 molecular subgroups. Receiver operating

characteristic analysis revealed optimal performance for predicting WNT, Group 3, and

Group 4 MB (area under the curve [AUC] = 0.82, 0.72, and 0.78, respectively). But the predic-

tion performance for SHH MB is suboptimal (AUC = 0.50). (Fig 5) The overall accuracy of the

model to estimate the molecular subtypes of each MB is 71%. The model proposed in this

study is still in the preliminary stage because a meaningful prediction model was hard to be

created based on such a small cohort. The detailed methods and other preliminary results were

presented in supplement S1 Text, S2 and S3 Tables.

Discussion

Our result demonstrated that there is significant difference in MR radiomics features between

different MB molecular subtypes. Some features can be applied as prognosticators to predict

the outcome of MB.

In 2010, an international panel of experts reached consensus on the four main subgroups of

MB [24,26]. This proposal was subsequently adopted in the revised World Health Organiza-

tion classification of central nervous system tumors published in 2016 [27]. WNT group MBs

originate from dorsal brainstem precursors [28] and are featured by activation of the WNT

pathway. Mutations in exon 3 of CTNNB1 and monosomy chromosome 6 are usually detected

[29]. SHH group MBs arise from granule cell precursors of the cerebellum and cochlear

nucleus [30] and are characterized by activation of the SHH pathway. This group commonly

contain mutations in the SHH pathway, including SMO, PTCH and SUFU [31]. Group 3 MBs

are featured by recurrent MYC amplifications and almost 20% of patients harboring an MYC

amplicon [29]. Overall outcome is poorer compared with the other subgroups. Group 4 is the

Table 1. Clinical profiles of the study cohort.

WNT SHH Group 3 Group 4

Case number 7 12 8 11

Age at diagnosis 6.2 ± 4.1 5.5 ± 4.5 8.3 ± 5.1 10.0 ± 2.9

Boy–girl ratio 1:6 5:7 5:3 6:5

Clinical risk stratification

Non-met (M0-1) AR 7 7 4 3

Non-met (M0-1) HR 0 3 3 5

Met (M2-3) HR 0 2 1 3

Treatment strategy

CMT alone 0 1 0 0

RT alone 0 1 1 1

RT + CMT 7 9 7 10

Abbreviations: WNT: Wingless; SHH: Sonic hedgehog; Met: Metastasis; AR: Average risk; HR: High risk; CMT: Chemotherapy; RT: Radiation therapy.

https://doi.org/10.1371/journal.pone.0255500.t001
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most common subgroup, and the most common aberration is isochromosome 17q, MYCN
amplifications, SNCAIP duplications and loss of 11q [32]. Molecular subgroups can be identi-

fied using various genomic approaches and platforms, including fluorescence in situ hybridiza-

tion or expression array methods, molecular inversion probe single-nucleotide polymorphism

assay, or genome-wide methylation [16]. Two independent validated methods performed in

accredited laboratories were recommended to reach the correct subgroup assignment [33].

Clinical trials which tailor therapies for each of the subgroups and assess whether this

approach can improve outcomes are underway [34].

Fig 3. Comparison of the radiomics features which were statistically different between 4 molecular subtypes of

medulloblastoma. In first 4 features (A-D) WNT and G3 groups tended to have the higher values than SHH and G4

groups. In the rest 4 features (E-H) SHH and G4 groups tended to have the higher values than WNT and G3 groups.

(�: p<0.05; ��: p<0.01).

https://doi.org/10.1371/journal.pone.0255500.g003
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Linking MRI features with genomic data can help identify not only unique genetic informa-

tion but also MR phenotypes, which may play a role in genetic dosage alteration [8]. We pro-

posed several quantitative radiomic features in this study for predicting molecular subgroups.

These features were categorized according to intensity, morphology, and texture, each provid-

ing different perspectives for distinguishing MB molecular subgroups. According to our

results, texture features proved the most distinct in differentiating MBs at the molecular level.

In previous reports [10,35], researchers likewise observed that texture features in MR images

were the most illustrative phenotype for differentiating molecular subtypes of brain glioma.

Texture analysis is a defining feature of radiomics that describes the patterns and spatial varia-

tions of voxel intensities, calculated from gray-level co-occurrence and gray-level run-length

texture matrices, respectively. The classifying features in our cohort were Cluster tendency,

Cluster prominence, Entropy, Difference entropy, Dissimilarity, IDN, IDMN, and Contrast.

Cluster tendency measures groupings of voxels with similar gray-level values. As a measure of

heterogeneity, it places higher weights on neighboring intensity level pairs that deviate more

from the mean [18]. Cluster prominence is a measurement of the skewness and asymmetry of

gray-level co-occurrence. Higher values imply more asymmetry of the mean value, whereas

lower values imply a peak near the mean with less variation [36]. Entropy is a statistical mea-

sure of randomness that has been proven to capture intratumoral heterogeneity [37] and has

Fig 4. Comparison of survival in MB patients with different radiomics values. For tumors with Energy value> 0.23 or SRLGLE value> 0.08, patients

have shorter survival time than tumor don’t have these features (p = 0.04 in Log-rank [Mantel-Cox] test).

https://doi.org/10.1371/journal.pone.0255500.g004
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also been associated with tumor staging [38], outcome [39], and expression of molecular path-

ways. Dissimilarity illustrates local intensity variation, which is defined as the mean absolute

difference between the neighboring pairs; a higher value represent greater disparity in intensi-

ties among neighboring voxels [40]. IDN (also called similarity) and IDMN (also called homo-

geneity) are both measures of the local homogeneity [40]. Our study revealed that WNT-MBs

have a similar texture value to Group 3 MBs and SHH-MBs have similar texture features to

Group 4 MBs. Further studies on the similarities and dissimilarities of these molecular sub-

groups are warranted.

In our machine learning protocol, features generated from multiparametric MR sequences

including CET1, T1W, T2W, T2 FLAIR, and ADC map were input into the algorithms to

determine the optimal features for molecular subgroup prediction. The results revealed that

the combination of textural features generated from CET1 achieved the highest ACC. We

therefore only compared features generated from CET1 images. In CET1 images, several path-

ological features including tumor necrosis and cysts can be clearly identified. Furthermore, the

intensity of contrast enhancement is linked to angiogenesis module activity within the tumor

[41,42]. Therefore, it is reasonable that CET1 features may depict the molecular profiles and

predict outcome of MB because they provide substantial information regarding tumor

Fig 5. Receiver operating characteristic analysis of the preliminary prediction model. The prediction performance

for predicting WNT, SHH, Group 3, and Group 4 MB was illustrated (area under the curve = 0.82, 0.50, 0.72, and 0.78,

respectively).

https://doi.org/10.1371/journal.pone.0255500.g005

PLOS ONE MR radiomics features and prognosticators in Medulloblastoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0255500 July 29, 2021 10 / 15

https://doi.org/10.1371/journal.pone.0255500.g005
https://doi.org/10.1371/journal.pone.0255500


characteristics. Iv et al’s report also investigated the prediction model for medulloblastoma

[43]. However, their model didn’t take all routine MR sequences into consideration. And even

with substantial case number, the prediction accuracy for some molecular subgroup is still

suboptimal.

Several radiomic features have been identified as potential prognosticators in our study.

Many prognostic factors of medulloblastoma patients has been proposed, including presence

of metastases at diagnosis, age< 3 years, extend of resection, residual disease� 1�5 cm2,

molecular subgroups, craniospinal radiation, and geographic location of therapy [44–47].

Imaging is a routine examination for pediatric brain tumors, with no additional costs associ-

ated. By applying radiomic image features, we can quantify all tumor characteristics without

risking a biopsy. Therefore, radiomics analysis may be another helpful tool for stratifying

patients into different risk groups.

Limitations

Because the MB occurrence rate is low, this preliminary study was limited by its small sample

size. Therefore the accuracy of the established prediction model based on the machine learning

is not optimal (S3 Table). Further studies with a larger sample size are warranted. The trained

prediction model and developed MRP are available on our website (www.ym.edu.tw/~cflu/

MRP_MLinglioma.html), and the complete content will be available after paper publication to

encourage researchers worldwide to test these models and refine them accordingly. Another

limitation is that we only used images generated from original MR images. Further investiga-

tions on other image postprocessing techniques, such as wavelets or ranklets, are necessary.

In conclusion, 8 CET1 texture features were found to be significant different between 4

molecular subgroups of MB. Another CET1 features were found to be a good prognosticator

of MB. These features may provide suggestions for further stratifying patients with MB into

different risk subgroups.

Supporting information

S1 Fig. Diagram showing nested leave-one-out cross-validation procedure. The data are

repeatedly split in testing and decoding sets. The decoding set itself is split in multiple training

and validation sets with the same decoding set, forming an inner cross-validation loop used to

set the regularization hyperparameter, while the external loop varying the testing set is used to

measure the performance of prediction. The process was repeated according to the case num-

ber in both inner and external loops. (� 4 cases were excluded during the validation because of

their missing values).

(PDF)

S1 Table. Employed 57 radiomic features.

(PDF)

S2 Table. Prediction results obtained in different molecular subgroups using the proposed

model based on the sequential forward selection algorithm. The details of the prediction

results in different molecular subgroups were demonstrated by using the proposed model

based on the selected CET1 features. Overall prediction accuracy was highest in WNT.

(PDF)

S3 Table. Accuracy of the prediction model based on different combinations of imaging

features extracted from different MR parameters and feature selection algorithms. The

Highest accuracy was obtained with sequential forward selection algorithm using CET1

images. (Abbreviations: mRMR, minimum redundancy maximum relevance; SBE, sequential
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backward elimination; SFS, sequential forward selection).

(PDF)

S1 Text. Establishing a prediction model. Taking the RNA-Seq-based molecular subtypes as

the gold standard, a prediction model was established to estimate the molecular subtypes of

each MB based on the most significant radiomics imaging features defined by the feature selec-

tion procedure. The generalizability of the selected features was validated through leave-one-

out cross-validation (LOOCV).

(PDF)
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