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THE BIGGER PICTURE With the rapidly increasing market penetration of battery electric vehicles (BEVs)
worldwide, having reliable and publicly available information on BEV energy consumption is critical. The
disparity between standard-tested and real-world BEVs’ actual energy consumption, however, canmislead
the low-carbon development of the global automotive industry. To align standard testing with real-world
driving, standardizable energy evaluation frameworks should be adaptable to different driving conditions.
Such frameworks could then provide publicly available fundamental models for more reliable BEV energy-
consumption estimation and benefit broad stakeholders related to eco-driving guidance, carbon assess-
ment, policymaking, vehicle-grid interaction, and intelligent transportation.
SUMMARY
Standard energy-consumption testing, providing the only publicly available quantifiable measure of battery
electric vehicle (BEV) energy consumption, is crucial for promoting transparency and accountability in the
electrified automotive industry; however, significant discrepancies between standard testing and real-world
driving have hindered energy and environmental assessments of BEVs and their broader adoption. In this
study, we propose a data-driven evaluation method for standard testing to characterize BEV energy con-
sumption. By decoupling the impact of the driving profile, our evaluation approach is generalizable to various
driving conditions. In experimentswith our approach for estimating energy consumption, we achieve a 3.84%
estimation error for 13 different multiregional standardized test cycles and a 7.12% estimation error for 106
diverse real-world trips. Our results highlight the great potential of the proposed approach for promoting
public awareness of BEV energy consumption through standard testing while also providing a reliable funda-
mental model of BEVs.
INTRODUCTION

Battery electric vehicles (BEVs) significantly reduce emissions

from road transportation, where conventional combustion-en-

gine-based vehicles have long been the leading contributors to

global greenhouse gas emissions in the transportation sector.1–3

Considering the energy crisis and emission concerns, BEV en-

ergy consumption has become an increasingly critical factor to
This is an open access article under the CC BY-N
consider when addressing climate change and urban environ-

mental concerns in sustainable transportation.4–8 The energy-

consumption rate (ECR), i.e., the amount of energy consumed

per unit driving distance, has been widely used to evaluate the

energy consumption of BEVs. For standardization, the ECR is

determined under specific test conditions, namely, the standard-

ized driving cycle, which is considered the most representative

driving profile. This paradigm has been used to promote
Patterns 5, 100950, April 12, 2024 ª 2024 The Author(s). 1
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transparency and accountability within the automotive industry

since the late 1960s.9 However, as the most significant influ-

encing factor of standard evaluations of BEV energy consump-

tion, the standardized driving cycle has become the primary

development focus for most automotive manufacturers,10 with

diverse real-world driving conditions potentially overlooked dur-

ing the development phase. As a result, the standardized-cycle-

tested ECR has been increasingly criticized because it inaccu-

rately reflects real-world driving conditions,11,12 leading to

notable dissatisfaction and anxiety among consumers.13,14

Moreover, this discrepancy has created significant controversy

in carbon evaluations of BEVs. For instance, in Letmathe and

Suares,15 an uplift factor of 46% was adopted to compensate

for the underestimated real-world energy consumption in stan-

dardized testing. Conversely, Desreveaux et al.16 concluded

that standard driving cycles overestimate the real-world driving

energy consumption of BEVs, thereby reducing the potential

benefits of BEVs in terms of global warming potential by 50%.

Consequently, the unreliability of existing standard testing pro-

cedures poses a severe challenge for policymakers, engineers,

and academic researchers in developing reliable energy and car-

bon emission models to address future environmental goals.

Several studies have empirically corrected the mean real-

world biases of standard ECR evaluation results with scaling fac-

tors to obtain more realistic energy-consumption evaluation re-

sults that better reflect real-world driving,17–19 while other

studies have focused on developingmore representative test cy-

cles for different cities and regions (for more details, see Note

S1). However, corrected ECRs and cycle-tested ECRs are still

constant, while the ECRs of BEVs in the real world vary signifi-

cantly (for more details, see Note S2). Thus, ECRs determined

via empirical correction or highly representative cycle tests still

cannot be generalized to real-world driving.

Extensive studies have been performed to obtain generaliz-

able BEV energy-consumption data through modeling ap-

proaches. Notably, physically based models, e.g., TripEnergy,

have been developed and widely used.20,21 Although physically

based models encompass the underlying mechanisms of BEV

energy consumption and can achieve high accuracy, they are

rarely adopted for standard evaluation. This is primarily due to

the challenge of accurately calibrating the model parameters

within the context of standardized testing, which requires

simplicity and accessibility. Data-driven approaches, also

known as artificial intelligence methods,22 include neural net-

works,23 deep neural networks,24 fuzzy clustering,25 decision

trees,26 ensemble learning,26,27 and linear models23,28 and

have been adopted to estimate BEV energy consumption.

Although these models do not require specialized expertise

and can accurately estimate BEV energy consumption under

various driving conditions, they have rarely been employed in

standard testing. This is primarily because their complex algo-

rithms and underlying mechanisms pose challenges in fulfilling

the interpretability criteria for standard testing; therefore, trans-

parent and easily understandable methodologies are needed

to ensure consistent and reliable results. Additionally, because

of time limitations and cost concerns associated with official

standard tests, the amount of data collected during standard

testing is insufficient for advanced machine learning models.29

In brief, the existing modeling approaches can provide general-
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ized estimates of BEV energy consumption, but they usually fail

to meet the requirements of standard testing.

We address standard testing here because of its significance

in terms of public awareness regarding BEV energy consumption

compared with other approaches. Other approaches typically

require additional testing or parameters specific to a particular

BEV model. However, the accessibility of such testing or param-

eters for the majority of BEV models is limited, thus hindering

their widespread implementation. In contrast, standard testing

is mandatory for all BEV models, providing an inherent opportu-

nity for characterizing BEV energy consumption. Considering the

global trend toward decarbonization in the transportation sector,

there is an increasing need for reliable and publicly available in-

formation on BEV energy consumption for all different BEV

models. Accurate publicly available energy-consumption infor-

mation on BEVs can increase public awareness of BEV energy

consumption and eco-driving activities, reduce range anxiety,

and contribute to advancing energy-consumption regulations

to promote the comprehensive optimization of BEVs. Moreover,

this information holds significant value across a broad spectrum

of research fields that require accurate energy-consumption es-

timates and optimization, such as for carbon assessments,

vehicle-grid interactions, and route planning. As a result, estab-

lishing an improved evaluation framework that comprehensively

captures the energy-consumption characteristics of BEVs while

ensuring reliable and standardizable testing designs is crucial.

In this work, we present a physically interpretable data-driven

approach to characterize the energy consumption of BEVs and

propose generalized ECRs (GECRs) as an alternative to the

ECR for standard evaluation. Since GECRs decouple driving

conditions from energy consumption, they reflect the inherent

energy-consumption characteristics of BEVs, making them

adaptable to a wide range of driving profiles. We experimentally

validated our approach in both laboratory and real-world envi-

ronments. In the laboratory tests, the GECRswere characterized

and evaluated for different test cycles, including standardized

driving cycles for various road types in different regions and con-

stant-speed segments (CSSs). Our results showed that the

mean absolute percentage error (MAPE) of the GECRs was

3.84% for a set of 13 laboratory test cycles, approximately five

times less error than that based on existing standard results.

Additionally, aMAPE of 7.12%was achieved for 106 driving trips

in our real-world tests, further validating the generalizability of

the GECRs. The results highlight the improved generalizability

and physical interpretability of our approach while confirming

its compatibility with existing standards. These findings demon-

strate the great potential of our approach for enhancing existing

standards and significantly reducing the discrepancy between

standard testing and real-world driving.

Driving features
Feature selection is a key technique for data-driven models.30

The incorporation of a limited number of physically rational fea-

tures is particularly critical when applying data-driven ap-

proaches in standard evaluation procedures. Although the rela-

tionship between energy consumption and driving profiles is

complex, the energy consumption of various components is

correlated throughout different energy transfer paths. These cor-

relations can be used to simplify the relationship between energy
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Figure 1. Energy flowchart of a BEV

The energy flow is represented by the red arrows. The energy flows from the battery and eventually dissipates, as shown by the gradually deepening hue.

Specifically, as the electric energy flows out of the battery, part of the energy is used to directly power the ancillaries and the remaining energy is consumed by

aerodynamic resistance, rolling resistance, and braking through the electric motor and drivetrain, with some of the braking energy flowing back into the battery

through the electric motor and drivetrain via regenerative braking.
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consumption and the driving profile. During a BEV driving cycle,

electric energy flows out of the battery through different paths,

consisting of power electronics, electric motors, and drivetrains,

and eventually dissipates as one of four types of physically inde-

pendent loss (final work): rolling friction loss, aerodynamic loss,

braking loss, or ancillary loss (pumps, fans, lighting, infotain-

ment, and microcontrollers) (Figure 1). From this perspective,

the energy consumption throughout the energy transfer path

can be simplified into two parts: the final work performed by

the energy flow and the efficiency of the energy flow, which is

approximately proportional to the final work performed.

Based on this model, the energy consumption of a BEV is

determined primarily based on the four types of final losses.

Other losses can be attributed to energy flow efficiencies, which

are approximately proportional to the four final losses. As a

result, we defined driving features based on the relationships be-

tween the final losses and the driving profile, including the speed

intensity, high-speed braking intensity, low-speed braking inten-

sity, and slow-driving intensity (detailed in the experimental pro-

cedures). The speed intensity represents the driving behavior

proportional to the aerodynamic loss, the braking intensities

reflect the driving behavior proportional to the braking loss,

and the slow-driving intensity is related to driving behavior pro-

portional to ancillary losses. The driving features corresponding

to the rolling losses are not defined, because rolling resistance is

approximately independent of the driving speed. The braking in-

tensities during high-speed and low-speed braking are defined

separately, because regenerative braking (recovery of braking

energy with the electric motor operating as a generator) displays

distinct characteristics in different speed ranges31 (effective at

high speeds but not at low speeds, as detailed in Note S3).

Therefore, the four defined driving features are physically inter-

pretable and decoupled, enhancing the linearity, convergence,

and interpretability of our data-driven model.
Generalized energy-consumption rates
Using the defined driving features, we propose GECRs, which

consist of the ECR constant, speed sensitivity, high-speed

braking sensitivity, low-speed braking sensitivity, and slow-

driving sensitivity. The ECR constant corresponds to the con-

stant portion of the ECR, which does not vary with the driving

speed, and the speed sensitivity, high- and low-speed braking

sensitivities, and slow-driving sensitivity correspond to the

ECR components and are proportional to the four driving fea-

tures (a detailed physical derivation is provided in Note S4).

The GECRs are designed to be characterized through existing

standard testing procedures. We compare our approach with

current standards32–34 to demonstrate its high compatibility

and improved generalizability. According to the existing stan-

dards (Figure 2A), historical driving data are used to obtain

real-world driving statistics, and probabilistic approaches such

as Markov chains are utilized to generate standardized driving

cycles. The evaluation result is based on the ECR of the stan-

dardized driving cycle. However, standardized driving cycles

are unable to accurately reflect diverse individual behaviors

due to their uniqueness and the spatial and temporal limitations

of historical data; therefore, standard-test-based ECRs are

inconsistent with consumer experience. In our approach (Fig-

ure 2B), a similar test procedure is used; however, the driving

features of the test cycle are extracted and decoupled from

the ECR during the postprocessing of the experimental data.

Thus, paired with the driving features of a specific driving profile,

GECRs represent the corresponding ECR; therefore, they can be

generalized to various users.

In detail (Figure 2C), by introducing a stepwise regression

approach, the relationship between the standardized-cycle-

tested ECR and the driving features of the standardized cycle

is decoupled to obtain the GECRs. The driving features of a spe-

cific driving profile are extracted and serve as scaling factors for
Patterns 5, 100950, April 12, 2024 3
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Figure 2. Schematic of the proposed approach

(A) Illustration of the energy-consumption evaluation approach used in the existing standards. The standardized driving cycle is generated based on historical

driving data, and the BEVs are tested under repeated standardized driving cycles in a laboratory environment. As an evaluation outcome, the ECR is provided to

various users regardless of the users’ actual driving profiles.

(B) Illustration of the proposed energy-consumption evaluation approach. An additional driving-feature-extraction module and a driving-feature-decoupling

module are added to the evaluation process. With the driving features decoupled from the ECR, the GECRs are obtained rather than the ECR. As a result, the

evaluation outcomes can be adapted to different users by pairing the users’ real-world driving features.

(C) Illustration of the principle of adapting the GECRs to users’ driving profiles. The GECRs are decoupled from the ECR of the standardized test cycle and divided

into five parts based on four normalized driving features: speed intensity, high-speed braking intensity, low-speed braking intensity, and slow-driving intensity.

The ECR for a user can be estimated as the sum of linearly scaled GECRs based on the driving features of the specific driving profile.
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the GECRs. The estimated ECR for the specific driving profile is

simply the sum of the rescaled GECRs. As a result, the specific

energy-consumption information for different users can be ob-

tained based on individual driving profiles.

In essence, GECRs approximate a linear relationship be-

tween a driving profile and the corresponding ECR, thereby

representing the inherent energy consumption characteristics

of a BEV independent of driving behaviors. Although the linear
4 Patterns 5, 100950, April 12, 2024
approximation of GECRs is influenced by the nonlinearity of

the powertrain and regenerative braking efficiencies, as well

as by various unmodeled factors, the primary nonlinearity in

BEV energy consumption from longitudinal dynamics is de-

coupled based on driving feature selection. Additionally,

GECRs are evaluated at the trip scale, but nonlinearity and un-

modeled factors are generally reflected by the differences in

second-by-second variations, which are usually averaged
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Figure 3. Framework of this study

The framework consists of two primary parts: en-

ergy-consumption testing and the data-driven pro-

cess. The energy-consumption testing includes 34

laboratory test cycles and 106 real-world driving

trips. In the data-driven process, the GECRs are

characterized from the lab training set. Subse-

quently, by incorporating the driving features of the

laboratory and real-world test sets into the charac-

terized GECRs, the energy-consumption rates of

these cycles or trips can be estimated. The gener-

alizability of the GECRs is validated by comparing

the estimated energy-consumption rates with

measured values.

ll
OPEN ACCESSArticle
over a trip; therefore, their impact is significantly reduced in

the characterization of GECRs (for a more detailed discussion,

see Note S4).
Data generation
The framework of this study is shown in Figure 3. All the data

were collected via experimental testing with a Tesla Model 3

(2019 standard range plus, RWD), which has been a mass-pro-

duced, globally sold typical BEV model. We characterized the

GECRs based on a variant China light-duty-vehicle test cycle

(CLTC) procedure, with repeat tests based on the CLTC and

three CSSs (Note S5). To validate the generalizability of the char-

acterized GECRs, laboratory and real-world driving tests were

performed. In the laboratory tests, nine different standardized

driving cycles (used in the United States, Europe, and Japan)

and four different CSSs were selected, and the experiments

were repeated twice; a total of 26 observations of diverse driving

cycles were obtained (Note S6). For the real-world driving tests,

30 trips on six typical routes and 76 random-driving trips,

yielding 106 total trips, were recorded (Note S7). The selected

routes included state highways, urban highways, arterial roads,

and residential roads, and 5 trips on each selected route were re-

corded to account for the impact of nonroute factors. The

random trips were recorded by randomly following cars at

various locations.

Overall, our dataset contained data from 34 laboratory

test cycles and 106 real-world driving trips. To our knowledge,

our dataset is the most comprehensive and highest-

quality publicly available dataset for BEV energy-consumption

tests; it contains high-resolution driving data from many labo-
Table 1. Characterized GECRs

GECR Value (Wh/km)

ECR constant 66.3

Speed sensitivity 24.9

High-speed braking sensitivity 3.8

Low-speed braking sensitivity 10.6

Slow-driving sensitivity 11.9

Sum of the GECRs (estimated ECR of

the CLTC)

117.5
ratory test cycles and real-world driving scenarios for the

same BEV.

All laboratory tests were performed following the standard en-

ergy-consumption test procedure for BEVs,32–34 and the real-

world driving data were recorded via a controller area network

(CAN) bus (Note S7). The state-of-charge (SOC) values of the

BEVs in the tests were all less than 90%. This is critical, because

high SOC values may alter energy consumption characteristics

(Note S8). We did not consider the impact of a high SOC in this

study because it is small over the full SOC range, and charging

the battery to an extreme SOC is not recommended to improve

the overall lifespan of the battery. Our ECR calculations were

based on the DC discharged energy; however, the AC recharged

energy was also recorded, and the corresponding ECRs and

GECRs were derived (Note S9).

RESULTS

Characterized GECRs
The characterized GECRs are shown in Table 1, where each

GECR contributes to the energy consumption corresponding

to a driving feature. For example, the ECR constant is 66.3

Wh/km, representing the base ECR that exists constantly

regardless of the driving conditions. The speed sensitivity is

24.9 Wh/km, indicating that the BEV consumes 24.9 Wh/km of

additional energy for a given unit increase in the normalized

speed intensity. The high-speed braking sensitivity is low, which

indicates that braking at high speed consumes little energy due

to the high braking regeneration efficiency at high speeds (for

more details, see Note S3). With the physical interpretability of

GECRs, our model quantitatively explains the variations in

ECRs for diverse driving profiles. Additionally, by summing the

GECRs, an ECR of 117.5 Wh/km for the CLTC is estimated,

which is compatible with the existing standard.

Driving feature distribution
The test sets are used to validate the generalizability of the

GECRs. The names of the laboratory-tested cycles are briefly

explained in Table 3, while more detailed introductions are pro-

vided in Note S6. The distribution of their driving features is visu-

alized (Figures 4A and 4B) to show the driving feature space,

which was broadly probed in laboratory tests. The test cycles
Patterns 5, 100950, April 12, 2024 5



Figure 4. Driving feature distribution and ECR estimation results

(A) 3D distributions of driving features for laboratory test cycles. The x, y, and z axes represent the normalized low-speed braking intensity, slow-driving intensity,

and speed intensity, respectively. The color scale represents the normalized high-speed braking intensity. Each ball represents a test cycle, and the size of the ball

represents the measured ECR of the cycle.

(B) Boxplot of the driving feature distributions of the laboratory test cycles. The x axis is the driving features, the y axis is the normalized driving features

(normalized based on the CLTC), the box limits represent the 25th and 75th percentiles, the center line represents the median, the whiskers represent the 1.53

interquartile range, and the red dots represent the data samples.

(C) Histogram of the estimation error of the GECRs for laboratory tests. The x axis is the relative estimation error, and the y axis is the number of test cycles.

(D) 3D driving feature distributions for real-world driving trips, similar to (A).

(E) Boxplot of the driving feature distributions of the real-world driving trips, similar to (B).

(F) Histogram of the estimation error of the GECRs for real-world trips, similar to (C).
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include comprehensive driving, highway driving, aggressive

driving, congested driving, and constant-speed driving condi-

tions. Comprehensive driving cycles, such as the CLTC, urban

dynamometer driving schedule (UDDS), and worldwide harmo-

nized light-vehicle test cycle (WLTC), are distributed in the center

of the feature space. Highway and aggressive driving cycles,

such as the Artemis motorway test cycle, US06 test cycle, and

highway fuel economy test (HWFET) cycles, are associated

with higher speed intensities, and congested driving cycles,

such as Artemis urban and New York City cycle (NYCC), are

associated with low-speed braking intensities and slow-driving

intensities. The CSSs exhibit opposite trends in terms of the
Table 2. Metrics for the results of the training set and test sets

Metric

Training set

(laboratory)

Test set

(laboratory)

Test seta

(real world)

RMSE

(Wh/km)

1.87 8.30 13.56

MAPE (%) 1.47 3.84 7.12
aThe ECR constant bias and elevation differences in real-world driving

were compensated for (detailed in experimental procedures and

Note S10).
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speed and slow-driving intensity, with the braking intensity equal

to zero. The distribution of the driving features from real-world

driving tests is also visualized (Figures 4D and 4E and Note

S7). The 3D distribution of results for real-world driving trips is

very similar to that for laboratory tests, i.e., distributed from the

lower left to upper right; however, the braking intensity and

slow-driving intensity in real-world driving are significantly

greater than those in standard test cycles, which is a common

issue observed in many cities due to increased traffic conges-

tion. These results further highlight the irrationality inherent in us-

ing a fixed driving cycle to represent a wide range of real-world

driving conditions, as is common among existing standards. In

summary, since various laboratory test cycles and real-world

driving trips are used in our validation, the generalizability of

the GECIs can be reliably evaluated.

Validation of the estimation performance
The GECRs were subsequently used to estimate the ECRs of the

laboratory test cyclesand real-world trips in the test set (the results

are shown in Table 2). For the laboratory test, the MAPE of the 26

test cycles was 3.84%. Notably, the errors of most of the estima-

tion results (Figures 4C and S1) were concentrated at approxi-

mately zero, except for those of the urban congestion cycles (the
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Figure 5. Comparison of the GECR results and the existing standards for estimating the ECRs of different driving cycles

(A) The GECRs, (B) the CLTC (used in China), (C) the WLTC (used in Europe), and (D) the combined ECRs from the UDDS and HWFET (used in the United States).

Radial bar plots are used to show the adaptability of the evaluation indices, where 17 different driving cycles are distributed around the circles. The height of the

bar represents the relative error in estimating the ECRs of the test cycles, namely the standardized test cycles in China, Europe, the United States, and Japan, and

for CSSs. Due to space limitations, the test cycle names are shortened.

The full names of the test cycles are as follows: UD, UDDS; HW, HWFET; US, US06; NY, NYCC; W, WLTC; AM, Artemis motorway; AR, Artemis rural; and AU,

Artemis urban. An outward-protruding error bar indicates that the estimated ECR is larger than the tested ECR, while an inward-protruding error bar indicates that

the estimated ECR is smaller than the tested ECR.

ll
OPEN ACCESSArticle
Artemis urbancycle andNYCC). TheMAPEwas reduced to2.17%

when urban congestion cycles were excluded (the MAPE for 22

test cycles). This accuracy is extremely high because the uncer-

taintyandmeasurementerror instandard testsofasametestcycle

often exceed 1%.35 The estimation performance slightly deterio-

rates under traffic congestion conditions due to the high nonline-

arity of low-speed braking energy consumption (Notes S3 and

S4). For the real-world test cycles (Figures 4F and S2), the MAPE

of the 106 real-world trips was 7.12%. Although the error was

larger than that in the laboratory results, the GECRs still effectively

characterize the real-world energy consumption of BEVs consid-

ering the impact of unobserved factors in the real world, such as

the wind speed, road surface differences, steering variations,

and driving-speed measurement error.

DISCUSSION

To further demonstrate the advantages of our method for evalu-

ating the energy consumption of BEVs, we compare the accu-

racy and adaptability of the GECR-based paradigm with those

of existing standards by using the results from our laboratory

tests (Figure 5). There is a significant error when adapting the ex-

isting standards to other test cycles (Figures 5B–5D). The

maximum relative error is approximately 50%, and the MAPEs

based on the CLTC, WLTC, and US cycles are 17.1%, 20.5%,

and 16.6%, respectively. Since test cycles represent different

typical driving profiles, these results confirm that the existing

standard BEV energy-consumption assessment methods are

incapable of being adapted to diverse driving conditions. In

contrast, the error for the GECRs is very small (Figure 5A), and

the MAPE of the estimated ECRs for the 17 different driving cy-

cles is only 3.3%, approximately five times less than that for the

existing standards. This comparison further validates the signif-

icantly improved generalizability of the GECRs over the conven-

tional standard evaluation approaches.

By decoupling the impact of the driving speed, the GECRs are

approximately speed independent, allowing them to be adapted

to various regions, time periods, and drivers. Moreover, obtain-

able through standard test procedures, GECRs hold significant

potential for broad application across many BEV models and
for providing publicly available BEV energy-consumption infor-

mation, with profound significance for society, industry, and

academia. Specifically, for society, awareness of BEV energy

consumption will improve, which is crucial for reducing range

anxiety, guiding eco-driving practices, and promoting the

acceptance of BEVs. For industry, GECRs enable the interoper-

ability of energy-consumption results among standard tests in

different regions, as well as for real-world driving scenarios, ex-

hibiting great potential for promoting the advanced regulation of

BEV energy efficiency. Academically, GECRs provide a publicly

available and easy-to-implement fundamental model for reliable

BEV energy-consumption estimation. Consequently, scholars

across diverse domains can readily gain insight into various

BEV energy-consumption characteristics, enabling the utiliza-

tion of specific traffic or driving behavior information to accu-

rately estimate energy consumption for remaining range estima-

tion36; infrastructure planning37,38; energy, carbon, or economic

assessment6–8,39; and other tasks. On the other hand, the GECR

model can be alternatively used to optimize speed profiles, such

as to guide driving behavior,40 further enhance route planning,41

and optimize charging navigation.42,43

However, the results show that the GECRs slightly underesti-

mate the energy consumption under extremely congested con-

ditions due to the highly nonlinear energy consumption of low-

speed braking. Nevertheless, because low-speed driving is

associated with a short driving distance and limited total energy

consumption, accurately estimating energy consumption in con-

gested traffic situations is generally not critical for evaluating and

predicting BEV energy consumption.44 The sampling frequency

might also affect the model accuracy. The sampling frequency

in our experiments was 20 Hz due to the requirements of existing

standards, which is sufficient for capturing vehicle speed dy-

namics. However, the sampling frequency of some real-world

driving data collection projects is less than 0.1 Hz. At low sam-

pling frequencies, the deceleration process may not be well

captured during BEV braking, which may reduce the accuracy

of brake-related energy-consumption estimation.

Ideally, all relevant factors, including temperature,45 wind

speed,46 road surface conditions,47 road slope,48 battery aging,49

etc., should be considered in energy-consumption evaluations.
Patterns 5, 100950, April 12, 2024 7
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However, this study focused primarily on the driving speed profile,

since it is the focus of the current standards and represents the

most crucial factor due to its highly dynamic and complex charac-

teristics (discussed in Note S2). In many scenarios, such as the

real-world trips in this paper, the impact of other factors is rela-

tively constant and can be simply compensated for by an offset.

Among these factors, temperature is an influential factor in addi-

tion to speed. While the complexity of the temperature model is

relatively low, conducting temperature tests is notably time

consuming and is beyond the scope of this paper.

Conclusion
In conclusion, we propose a data-driven approach that effectively

balances standardizability and generalizability when evaluating

the energy consumption of BEVs. This approach significantly re-

duces the discrepancies between standard testing and real-world

driving. Through our experimental results, we demonstrate the

great potential of GECRs for supporting accurate and generaliz-

able standardized energy-consumption evaluations for various

BEV models. This approach, in turn, is expected to promote the

understanding and acceptance of BEVs for consumers while

also providing a comprehensive and credible fundamental model

for policymaking, scientific studies, and industrial applications.

Additionally, our approach highlights the feasibility of using

data-driven solutions to enhance the existing standards, enabling

them to better reflect real-world characteristics.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to the lead

contact, Xinmei Yuan (yuan@jlu.edu.cn).

Materials availability

No new unique reagents were generated in this study.

Data and code availability

The data supporting the findings and the source code associated with this

article are available at https://doi.org/10.6084/m9.figshare.23904102.50

Experimental setup

The laboratory test was performed with a 4WD chassis dynamometer

(HORIBA VULCAN II EMS-CD48L 4WD Xcold). The DC discharged energy

was measured with a four-channel power analyzer (Hioki PW3390 with AC/

DC current probe CT6844-05). The DC energy consumption and driving speed

were measured during the entire test procedure at a 20 Hz sampling frequency

and synchronized over ethernet. The full AC recharged energy was also

measured by a power analyzer to obtain the relationship between the AC

and the DC energy consumption (Note S9). The laboratory test procedure

was performed according to the corresponding test standards in China.34

Dedicated drivers conducted driving tests according to the given speed pro-

files. The battery was charged by a slow charger.

A variant of the CLTC test was conducted to characterize theGECRs. The test

included repeated CLTCs and CSSs of 110, 65, and 20 km/h (detailed in Note

S5). The measured data were split into separate test cycles during postprocess-

ing, where continuous measured data with speed errors less than ±1 km/h were

captured for each CSS, and the high-SOC test data and data for the transitions

between test cycles were discarded; as a result, separate CLTC and CSS data-

setswere obtained forGECRcharacterization.Other laboratory test cycles, such

as UDDS, US06, HWFET, NYCC, WLTC, Artemis motorway, Artemis rural,

Artemis urban, JC08 test cycles, and CSS at 35, 50, 80, and 95 km/h, with

each cycle repeated twice, were employed for generalizability testing. The cycle

tests and postprocessing steps were similar to those of the CLTC tests.

A real-world driving test was conducted in Changchun, China. DC energy

consumption and driving speed were measured via a CAN buswith a sampling
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frequency of 20 Hz. As in the laboratory test, dedicated drivers followed road

traffic on selected or random routes. Finally, 30 real-world driving trips on

selected routes and 76 real-world driving trips on random routes were used,

as shown in Figure 3 (detailed in Note S7).
GECR model

Our GECR model is expressed as follows:

ECRj = GbECRT$Ij ; (Equation 1)

where ECRj is the ECR for driving cycle j and GbECR is a five-dimensional co-

efficient vector representing the GECRs, which is expressed as:

GbECR =
� bG0; bGspd; bGhi brk; bG lo brk; bGslw

�T
; (Equation 2)

where bG0; bGspd; bGhi brk; bG lo brk, and bGslw represent the ECR constant, speed

sensitivity, high-speed braking sensitivity, low-speed braking sensitivity, and

slow-driving sensitivity, respectively, and Ij is a five-dimensional driving feature

vector for driving cycle j, which is represented as:

Ij =
�
1; Ispd;j ; Ihi brk;j ; Ilo brk;j ; Islw;j

�T
; (Equation 3)

where Ispd;j ;Ihi brk;j ;Ilo brk;j, and Islw;j are the speed intensity, high-speed braking

intensity, low-speed braking intensity and slow-driving intensity, respectively.

These variables can be calculated as:

IspdðVÞ =
Xn� 1

i = 1

vðiÞ3
,Xn� 1

i = 1

vðiÞ; (Equation 4)

Ihi brkðVÞ =
Xn� 1

i = 1

vðiÞR vth

EbrkðiÞ
,

ts
Xn� 1

i = 1

vðiÞ; (Equation 5)

Ilo brkðVÞ =
Xn� 1

i = 1

vðiÞ<vth

EbrkðiÞ
,

ts
Xn� 1

i = 1

vðiÞ; (Equation 6)

IslwðVÞ = ðn � 1Þ
, Xn� 1

i = 1

vðiÞ (Equation 7)

where V is the set of driving speeds in a test cycle, n is the number of sampling

points, ts is the sampling period, and vth is the threshold velocity for low- and

high-speed driving, which is selected to be 15 km/h in this study according to

Miri et al.31 and Note S3. v is the average speed in a sampling period, and

EbrkðiÞ is the braking energy in the ith sampling period. The average speed in a

sampling period is defined as:

vðiÞ =
vðiÞ+vði+1Þ

2
; (Equation 8)

where vðiÞ is the speed at the ith sampling time. The braking energy in the ith

sampling period is expressed as:

EbrkðiÞ =

�
0 DEk

0ðiÞ% 0
DEk

0ðiÞ DEk
0ðiÞ> 0

; (Equation 9)

where DEk
0ðiÞ is the kinetic energy change due to accelerating or braking.

Assuming that the sampling period is small enough that the driving or braking

state doesnot changewithin a samplingperiod,DEk
0ðiÞ can beapproximatedas:

DEk
0 =

Z tðiÞ+ts

tðiÞ

�
� m

dvðtÞ
dt

� A � BvðtÞ � CvðtÞ2
�
vðtÞdt; (Equation 10)

wherem is the testedmass of the vehicle and A;B;C denote the road load coef-

ficients from coastdown testing, also called the target coefficients in the United

mailto:yuan@jlu.edu.cn
https://doi.org/10.6084/m9.figshare.23904102
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States. Using bilinear transform, the discrete form of Equation 10 can be approx-

imated as:

DEk
0 =

1

2
m
�
vði � 1Þ2 � vðiÞ2

�
� A

2
ðvði � 1Þ+ vðiÞÞDt

�B

3

�
vði � 1Þ2 + vðiÞ2 + vði � 1ÞvðiÞ

�
Dt

�C

4

�
vði � 1Þ3 + vði � 1Þ2vðiÞ+ vði � 1ÞvðiÞ2 + vðiÞ3

�
Dt

: (Equation 11)

By using the driving features of the speed profile in a standardized test cycle as

the base values, all the features are normalized as:

Ispd;j = IspdðVjÞ
	
IspdðVbaseÞ; (Equation 12)

Ihi brk;j = Ihi brkðVjÞ
	
Ihi brkðVbaseÞ; (Equation 13)

Ilo brk;j = Ilo brkðVjÞ
	
Ilo brkðVbaseÞ; (Equation 14)

Islw;j = IslwðVjÞ
	
IslwðVbaseÞ; (Equation 15)

where Vj is the set of driving speeds in the jth test cycle and Vbase is the set of

driving speeds in the selected standardized cycle. As a result, the normalized

driving features Ij are unitless, the units of GECRs are the same as those of the

ECR, and the sum of the GECRs is approximately equal to the ECR of the CLTC.

Characterization procedures

Considering that the condition number of Equation 1 is large, which leads to

unstable regression results,common linear least-squaresmethodsarenotsuitable

for characterizingGECRs. To solve this problem, a stepwise regression approach

is proposed by leveraging the fact that some driving features are equal to zero un-

der certain driving conditions; e.g., during idle periods, the speed intensity and

braking intensity are equal to zero, and in a CSS, the braking intensity becomes

zero. Three stepswere applied in the characterization process, which is illustrated

in Figure 6.

Step 1: idling characterization. All the idle segments in the CLTC are

captured, and the mean idle power is calculated to characterize the

slow-driving sensitivity of the tested BEV:

bGslw = pidle$IslwðVbaseÞ; (Equation 16)
where pidle is the mean idle power and Vbase is obtained from the standard

speed profile in the CLTC.34

Step 2: CSS characterization. Repeated CSSs at 110, 65, and 20 km/h are

captured. The speed intensities and slow-driving intensities are calculated

basedonEquation4 andEquation7, respectively, and thebraking intensities

are assumed to be zero. The impact of the slow-driving intensity can be

estimated using the result of Equation 16. Then, Equation 1 can be

expressed as

ECRj � bGslw $ Islw;j = bG0 + bGspd$Ispd;j : (Equation 17)

A linear least-squares approach is applied to Equation 17 to obtain the ECR

constant bG0 and the speed sensitivity bGspd.

Step 3: braking characterization. The braking losses in a sampling period

are approximated as:

Eloss
brk ðiÞ = maxðEbrkðiÞ + minðpdðiÞts;0Þ; 0Þ; (Equation 18)

where pdðiÞ is the mean discharge power of the battery in the ith sampling

period; then, the braking losses in the high- and low-speed ranges can be

calculated as:

E loss
hi brkðVÞ =

Xn� 1

i = 1

vðiÞR vth

E loss
brk ðiÞ; (Equation 19)

Eloss
lo brkðVÞ =

Xn� 1

i = 1

vðiÞ< vth

E loss
brk ðiÞ: (Equation 20)

Using the energy consumption model in Equation 1, the braking losses are

approximately equal to the product of the braking sensitivity and braking inten-

sity. The following equation applies when the low-speed braking loss is not zero:

E loss
hi brkðVjÞ

Eloss
lo brkðVjÞ =

bGhi brkIhi brk;jbG lo brkIlo brk;j

: (Equation 21)
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Table 3. List of abbreviations

Abbreviation Definition

BEV battery electric vehicle

ECR energy-consumption rate

GECR generalized energy-consumption rate

RMSE root-mean-square error percentage

MAPE mean absolute percentage error

CAN controller area network

SOC state of charge

Test cycle names

CSS constant-speed segments

CLTC China light-duty vehicle test cycle

UDDS urban dynamometer driving schedule

developed by the US EPA

WLTC worldwide harmonized light-vehicle

test cycle

NYCC New York City cycle

HWFET highway fuel economy test cycle developed

by the US EPA

Artemis European assessment and reliability of

transport emission models and inventory

systems

US06 supplemental federal test procedure

developed by the US EPA

JC08 Japan light-duty vehicle test cycle
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The CLTC is split into three phases—slow, medium, and fast—according to

its definition.34 Phase 1 and phase 3 are used for characterizing braking inten-

sities due to their typical low- and high-speed braking characteristics.

Substituting the estimated bGc, bGspd, and bGslw values into Equation 1 yields:

bGhi brk $ Ihi brk;j + bG lo brk$Ilo brk;j = ECRj � bG0 � bGslw$Islw;j � bGspd$Ispd;j :

(Equation 22)

By substituting Equation 21 into Equation 22, the high-speed sensitivitybGhi brk and low-speed sensitivity bG lo brk can be obtained.

Because brake regenerative efficiency is the most nonlinear factor in the

model, the proposed stepwise regression approach avoids the influence of un-

certainty in brake regenerative efficiency on other terms, thereby achieving

highly stable results.
Evaluation

We evaluated the generalizability of our approach by estimating the ECRs of

the other 13 3 2 laboratory test cycles and 106 real-world driving trips using

characterized GECRs. The ECRs of the laboratory test cycles and the real-

world driving trips were estimated with Equation 1. However, due to the differ-

ences between laboratory test results and real-world driving environments,

compensation for the ECRs of real-world driving trips estimated with Equa-

tion 1 was performed via the following equation:

ECRR = bECR+ECRg + bGcorr
const; (Equation 23)

where ECRR is the estimated ECR of a real-world driving trip, bECR is the ECR

estimated with Equation 1, and ECRg estimates the impact of slope on the

ECR, which is directly calculated as:

ECRg = mgDh; (Equation 24)

where g is gravitational acceleration and Dh is the difference in elevation be-

tween the start and the endpoint of a trip. bGcorr
const is the constant ECR bias in
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real-world driving and was estimated over NR randomly selected trips using

the following equation:

bGcorr
const =

PNR

i = 1



ECRi � bECRi � ECRg;i

�
NR

; (Equation 25)

where 6 trips (NR = 6) were randomly selected from the 106 trips in this study,

and we performed 100 random selections to verify the stability of this compen-

sation approach. A discussion is provided in Note S10.

Two metrics were chosen in this study to evaluate the performance of the

proposed models.

The RMSE (root-mean-square error) is the standard deviation of the resid-

uals. This variable reflects how far predictions fall from observations using

Euclidean distances, as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i = 1

ðbyi � yiÞ2;
s

(Equation 26)

where n is the number of samples, byi is the estimated value, and yi is the

observation.

The MAPE measures how accurate the estimation is as a percentage, as

shown in Equation 27. It is the most widely used metric because it yields an

intuitive interpretation of relative error:

MAPE =
100%

n

Xn

i = 1

byi � yi
yi

: (Equation 27)

For a list of abbreviations used in this paper, please see Table 3.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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