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Abstract: Nanoparticle drug formulations have enormous application prospects owing to

achievement of targeted and sustained release drug delivery, improvement in drug solubility

and reduction of adverse drug reactions. Recently, a variety of efficient drug nanometer

carriers have been developed, among which carbon nanotubes (CNT) have been increasingly

utilized in the field of cancer therapy. However, these nanotubes exert various toxic effects

on the body due to their unique physical and chemical properties. CNT-induced toxicity is

related to surface modification, degree of aggregation in vivo, and nanoparticle concentra-

tion. This review has focused on the potential toxic effects of CNTs utilized as anti-tumor

drug carriers. The main modes by which CNTs enter target sites, the toxicity expressive types

and the factors affecting toxicity are discussed.
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Introduction
Malignant tumors are one of the leading causes of human disease and death, contribut-

ing to increasing mortality rates over the years.1 All clinically available anti-cancer

drugs have several limitations, such as poor stability, low bioavailability,2 restricted

targeting ability, degradation and potential drug resistance.3–5 Although breakthroughs

have been achieved in the clinical field of oncology, various treatment options have

been shown to cause damage to normal cells along with eliminating tumor cells,

resulting in local or systemic toxicity. Therefore, development of a targeting drug

system (TDS) that allows delivery of drugs to tumors while avoiding injury to normal

tissue is essential to improve therapeutic efficacy. Nanometer TDS based on the

advantages of nanotechnology has developed rapidly in recent years. Nanometer-

targeted preparations have successfully achieved improved drug solubility and bioa-

vailability and specific targeting of drugs to organs or cells, allowing sustained or

controlled release, prolongation of drug retention times, and more rapid and efficient

drug entry through physiological barriers. These preparations have enriched the selec-

tion range of pharmaceutical dosage forms and thus attracted considerable research

attention. Nanometer materials are ubiquitous in biomedical fields, including in vivo

imaging,6 cancer treatment,7 targeted transport8,9 and drug discovery.10

CNTs are a type of highly efficient nanometer TDS displaying adequate adsorp-

tion activity that have considerable potential as anticancer drugs with high selec-

tivity for tumor sites.11,12 Recent in vitro studies have shown that CNTs internalize

into mammalian cells easily, effectively transporting molecular cargo into the

cytoplasm and potentially nucleus.13–16 CNTs mainly comprise multiple coaxial
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tubes composed of hexagonal carbon atoms. A seamless,

hollow tubular novel nanometer material is rolled into

a graphite sheet constituting carbon atom bonds (sp2

hybridization).17,18 According to the number of sp2 hybrid

carbon atoms, CNTs are subdivided into single-walled

carbon nanotubes (SWCNT) and multi-walled carbon

nanotubes (MWCNT). Due to their unique structures,

SWCNTs and MWCNTs display excellent physical, che-

mical, electrical and thermodynamic properties, such as

ultra-high specific surface area, good adsorption ability,

unique fluorescence, and Raman spectroscopy in the near-

infrared region.19,20 CNTs can convert infrared light to

heat and effectively utilize the property of poor heat

resistance of tumor cells. At a tumor site temperature of

>42°C, cell killing phenomena are evident, such as

destruction of cell membrane, denaturation of proteins

and irreversible damage of tumor cells,21,22 while normal

cells remain intact. These anti-tumor effects are greatly

enhanced upon coupling with anti-tumor drugs.23,24

Combination of CNTs with inorganic materials, polymers,

can be utilized as a strategy to simultaneously diagnose

and treat cancers.25–27 As a nanometer carrier type dis-

playing high drug loading, strong targeting and easily

penetrable cell membranes,28,29 CNTs are commonly

employed in multiple biomedical fields, in particular,

drug delivery30–33 and cancer treatment.34–36

On the other hand, the safety of clinical application of

CNTs as anti-tumor drug carriers has been a subject of

concern in recent years.37 Toxic effects exerted by CNTs

mainly stems from their similarities in structure to asbestos

fibers.38–40 Commonly reported toxicities include inflamma-

tory response,41,42 malignant mesothelioma43,44 and biologi-

cal persistence.45,46 A recent study by Ursini et al47 clearly

demonstrated the toxicity of original MWCNTs. Moreover,

functionalized MWCNTs (MWCNT-OH and MWCNT-

COOH) exerted toxicity to specific cell types (e.g., human

alveolar (A549) epithelial cells and normal bronchial

(BEAS-2B) cells) through multiple mechanisms. However,

inconsistent findings on the potential toxicity of CNTs have

been obtained to date. A number of other studies have

reported no damage or toxicity to normal tissue by

CNTs.48,49 Induction of toxicity by anti-tumor nanometer

preparations of carrier CNTs may be attributable to the

specific methods used for the experiment and related to sur-

face modification, degree of aggregation, and nanotube

concentration.

In an earlier study, Jabr-Milane and co-workers bound

doxorubicin (DOX) to the SWCNT complex for targeting

WiDr colon cancer cells. Upon separation of the DOX-

SWCNT complex, DOX was released into the nucleus

while SWCNTs remained in the cytoplasm.50 Following

injection of SWCNT into tumor-bearing mice, transmis-

sion electron microscopy (TEM) observation disclosed

a large quantity of SWNT in urine of mice after 30 min.

After 2 h, SWCNTs were collected from blood-rich tis-

sues, such as liver and heart, and showed accumulation in

the tumor area after 20 h.51 Free CNTs were preferentially

distributed in normal tissues, giving rise to the concern

that these nanomolecules may be more toxic to normal

than tumor cells.52 This review has focused on the toxicity

of CNTs used as anti-tumor carriers in terms of: (1) main

routes used by CNTs to enter the target site; (2) toxicity

expressive types; and (3) the factors affecting toxicity.

Entry Mechanisms of Anti-Tumor
Carriers CNTs into Target Sites
Relative to the low cell permeability of macromolecules and

small-molecule anticancer drugs, CNTs are considered

a highly efficient novel material carrier for the delivery of

anticancer drugs and diagnostic molecules.53,54 CNTs contain-

ing antitumor drugs should be delivered to cancer cells from

the site of administration. Subsequently, free CNTs are dis-

persed from the target site to the excretory organ.55,56 The

ability of CNTs to move forward in vivo may depend on their

chemical reactivity, surface characteristics, and ability to com-

bine with body proteins.57,58 CNTs transport anti-tumor drugs

into target cells through two principal pathways: non-energy-

dependent diffusion and energy-dependent endocytic

pathways59,60 (Figure 1). The differences in access routes are

related to CNTsize.61 Kan and colleagues co-cultured SWNTs

of different lengths with Hep G2 cells for 5 h. Confocal

imaging and flow cytometry data disclosed that the internali-

zation of L-SWNTs into cells mainly occurred through

energy-dependent endocytosis. S-SWNTs partly utilized

energy-independent pathways such as diffusion across the

cell membranes for cell entry.62 The group of Imaninezhad

further highlighted that integrins promote CNTentry into cells.

In their experiments, CNTs were co-cultured with NIH 3T3

fibroblasts and PC12 neuron-like cells and randomly divided

into two groups (one treated with an integrin inhibitor

CWHM-96). Cells treated with CWHM-96 spread further

and showed elongated shape while control cells with no

CWHM-96 displayed round morphology. These findings con-

firmed that integrins promote CNT entry into cells, leading to

more significant effects.
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Non-Energy-Dependent Diffusion Pathways
The length and chemical nature of CNTs are the main factors

affecting entry into target cells.63 Since the cell membrane

consists of a phospholipid bilayer, CNTs in the non-energy

diffusion pathway enter the cell based on their diminutive

sizes (submicron-sized) and hydrophobicity. Pantarotto and

co-workers64 incubated HeLa cells with CNTs containing

sodium azide (an inhibitor of energy-dependent cellular

Figure 1 Schematic diagram illustrating the cells entering process of anti-tumor nanometer preparation with CNTs as a carrier.
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processes). Molecular dynamics simulation revealed that

cationic functional groups on the CNT surface bind the

HeLa cell membrane surface, allowing spontaneous entry

through cell membrane diffusionwith no energy dependence.

Raffa et al65 reached a similar conclusion that functionalized

CNTs can effectively enter cells through non-energy-

dependent internalization pathways.

Energy-Dependent Endocytic Pathways
Supramolecular CNTs complexes enter cells in a manner

dependent on energy. The CNT surface is usually loaded

with bio-macromolecules, such as antibodies, amino acids

and siRNAs, which are often involved in energy-

dependent endocytic pathways.66 Several studies have

confirmed that CNTs enter the cell with the aid of

endocytosis.67–71 In a study by Kayo et al, endocytosis

was shown to incorporate a combination of three path-

ways: (1) clathrin-mediated endocytosis, (2) caveolae-

mediated endocytosis, and (3) macropinocytosis.72 Lima

and co-workers suggested that the endocytic pathway is

divided into three stages: (1) cell membrane contact, (2)

penetration of lipid head groups, and (3) entry of lipid

tails. Moreover, entry of CNTs into cells depends on

physicochemical characteristics, such as size and shape.

CNTs with sizes ranging from 100 to 200 nm undergo

clathrin-mediated endocytosis while CNTs <50 nm enter

the cells through energy-independent passive diffusion.95

In a study conducted by Kam et al73 green fluorescence-

labeled SWCNT (a) and SWCNT-biotin-green fluores-

cently streptavidin (b) were incubated with HL60 cells

for 1 h at 37°C. Confocal microscopy revealed green

fluorescence in group A and yellow fluorescence in

group B (SWCNT showed green fluorescence and endo-

somes of red dots overlapped to produce yellow fluores-

cence). Their findings indicate that SWCNTs use the

endocytotic pathway as a cellular uptake mechanism and

accumulate in the cytoplasm after internalization. The

group of Ke74 cultured HeLa cells with AO-SWCNTs

(20 mg/mL) for 30 min at 37°C (AO binds DNA to emit

green fluorescence and RNA to emit red fluorescence).

TEM observations revealed green fluorescence in the cyto-

plasm of HeLa cells. After treatment with chlorpromazine

(an endocytosis inhibitor), green fluorescence was attenu-

ated. The authors concluded that CNTs enter cells through

the endocytic pathway after transporting the anticancer

drug to the target site.

When CNTs enter cells into the blood circulation, phago-

cytic cells of the immune system (neutrophils, eosinophils and

macrophages) internalize nanoparticles and NADPH oxidase

is activated for accumulation on the phagolysosomal mem-

brane. Electrons are transferred to oxygen to form superoxide

(ROS).75,76 The degradation of CNTs by neutrophils,77

macrophages78 and primary microglia79 has been further

investigated. CNTs are removed mainly via enzymatic

degradation. Hydrogen peroxide is converted to different

acids that eliminates CNTs by peroxidases, such as human

myeloperoxidase,80 the horseradish peroxidase system,81 and

catalase.82,83 In addition, degradation of CNTs is associated

with proteins, whereby binding to proteins enhances their

ability to enter cells, thus promoting degradation.84–86 The

group of Karimi87 conjugated actin to CNTs via covalent

bonding, which was subsequently incubated with HeLa cells

(immunofluorescence labeling) for 4 h. CNTs were indirectly

modified by actin, as determined based on fluorescence inten-

sity. Actin can generate mechanical forces to drive CNTs into

the nucleus. Therefore, future studies should focus on utiliza-

tion of the properties of enzymes and proteins in cells to

enhance degradation of CNTs.

Oxidative stress is one of the leading causes of

cytotoxicity.88,89 During the process of CNT entry into

cells for degradation, high levels of ROS are induced,

leading to destruction of cellular structure and enhanced

lethality against cancer cells. Homeostasis may be disrupted

upon significant elevation of intracellular ROS levels.

However, during the process of blood transport, CNTs are

also in contact with normal cells. Excessive ROS levels can

trigger DNA strand breakage,90 protein-peptide chain

disruption,91 lipid peroxidation92 and other macromolecular

damage, eventually leading to cell death.93,94 The main

targets of CNT cytotoxicity are cell membrane, lysosome,

mitochondria, nucleus and cytoskeleton (such as actin).

Damage to these structures induces loss of phagocytic abil-

ity, release of ROS, and injury to normal tissues.95,96 At the

molecular level, many of the mechanisms underlying CNT

toxicity involve specific cellular signaling pathways and

programs. Signaling pathways activated by CNTs include

NF-kB, NLRP3 inflammasome, p53, TGF-β, and MAPK.93

However, these pathways may be involved in the develop-

ment of fibrosis, leading to cytotoxicity and apoptosis of

normal cells. Huaux et al97 proposed immunosuppression as

another mechanism of CNT-induced cytotoxicity. In their

experiments, a specific type of CNT, Mitsui-7 CNT, was

injected into the peritoneal cavity of Wistar rats and

C57BL/6 mice for 12 months, and development of mesothe-

lioma and monocytic myeloid-derived suppressor cells

(M-Changes in MDSC) were examined. In the early stages
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of CNT-induced mesothelioma formation, M-MDSC

rapidly and continuously accumulated in the peritoneal

cavity of rats, preventing tumor cell monitoring by immune

cells and thereby inducing mesothelioma. The group of

Shvedova additionally reported that CNT-induced lung

tumor formation is associated with the upregulation of

MDSC.98 Therefore, immunosuppression presents another

key mechanism underlying cytotoxicity, mainly through

accumulation of MDSC and upregulation of TGF-β toxicity,

promoting tumor emergence.99

Toxic Manifestations of Anti-Tumor
Drug Carrier CNTs
Following delivery of anticancer drugs to target cells, CNTs

are transported by blood to the heart, liver, lungs, kidneys,100

brain,101 embryo102 and other organs (Figure 2), producing

oxidative stress and causing cellular damage.103,104 Due to

their specific surface properties and small size, even purified

CNTs can cause toxicity to tissues or organs. For example,

after 48 h co-culture of HeLa cells with 100 μg/mL untreated

and purified SWCNTs by Tsuji and colleagues, 70% HeLa

cells in the untreated group displayed apoptosis relative to

40% HeLa cells in the purified group, supporting the theory

that CNTs are inherently toxic irrespective of the purity of the

preparation.105 Therefore, it is necessary to consider the poten-

tial types of toxicity to body organs induced by anti-tumor

nanoformulation prepared with CNTs. CNT-induced asso-

ciated toxicities include hepatotoxicity,106 lung toxicity,107

and cardiovascular toxicity.108

Hepatotoxicity
Since most chemicals are metabolized by the liver, the pro-

blem of potential CNT-triggered liver toxicity should not be

underestimated. Recent studies have indicated that CNTs

intercepted by the reticuloendothelial system are primarily

concentrated in the liver of mice.109,110 Pathological changes

caused by CNTs accumulating in the liver mainly include

macrophage damage, cell swelling, non-specific inflamma-

tion, spot necrosis and blood coagulation.111

An earlier study by Ji et al112 reported on the hepato-

toxicity of MWCNTs. In their experiments, Kunming mice

were injected with phosphate buffer saline (PBS) (10 and

Figure 2 This figure shows the sites that CNTs may accumulate after separation from anticancer drugs, resulting in toxicity to different organs. CNTs mainly cause damage

and toxicity to organs such as heart, liver, lung, kidney, brain and embryo.
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60 mg/kg) and MWCNT (10 and 60 mg/kg), respectively,

and changes evaluated after 15 and 60 days. Compared with

the PBS group, total bilirubin and aspartate aminotransfer-

ase levels of the MWCNT group were increased in a dose-

dependent manner and hepatocyte mitochondria showed

swelling and dissolving. Meanwhile, partial gene expression

patterns of mouse liver in the MWCNT group changed,

including those associated with G protein coupled receptor,

cholesterol biosynthesis, cytochrome P450 metabolism,

along with Gsta2 downregulation, Cyp2B19 upregulation

and Cyp2C50 downregulation. These results clearly indi-

cated that MWCNTs cause hepatotoxicity in mice. Patlolla

et al113 intraperitoneally administered varying doses of

functionalized MWCNTs (carboxyl groups) (0.25, 0.5, and

0.75 mg/kg) to mice for 5 days and examined consequent

hepatotoxicity produced based on pathological features of

the liver. Compared to the control group, mice exposed to

functional MWCNTs showed significantly increased liver

weight, hepatocyte vacuolization mucus or nuclear cohe-

sion, hepatocyte rupture and atrophy of hepatocytes.

Moreover, activities of liver enzymes (ALT/GPT and

AST/GOT) in various types of serum were enhanced with

functionalized MWCNT concentration, leading to the con-

clusion that functionalized MWCNTs induce hepatotoxicity

and oxidative stress as the main toxicological mechanisms.

Isaac and co-workers administered a suspension of carbox-

ylate MWCNTs at concentrations of 0.25, 0.5, 0.75, and

1.0 mg/kg in rats for 5 consecutive days. Rats in the control

group were administered normal saline plus 1% Tween-80

in a similar manner to the treatment group. Venous blood

was obtained from the iliac crest and the liver function

index analyzed. Notably, serum activities of aspartate

AST, alanine aminotransferase (ALT), alkaline phosphatase

and gamma glutamyltransferase were significantly higher in

the treatment than the control group. Conversely, super

superoxide dismutase and glutathione S-transferase activ-

ities as well as glutathione levels were significantly reduced.

The collective results clearly suggest that carboxylate

MWCNTs cause damage to the liver by destroying the

antioxidant defense system.113

Pulmonary Toxicity
The lung is the target organ of nanoparticles and one of the

pathways of nanoparticle entry into the body. Some nanopar-

ticles are engulfed by pulmonary macrophages or absorbed by

epithelial cells and finally deposited in the lungs.114,115

A proportion of nanoparticles can also be transferred to liver,

embryo, kidney and lymph nodes, causing toxic effects in

other organs.116 Nanoparticles induce significant production

of ROS, which have an oxidative stress effect. Pulmonary

toxicity of CNTs is mainly attributable to their similar struc-

tures to asbestos. Inhalation of asbestos fibers is known to

trigger asbestosis, lung cancer and pleural malignant

mesothelioma.40 Epithelioid granulomas and small nodules

have been reported in the lungs of rodents as a dose-

dependent inflammation. Even purified CNTs are known to

induce granuloma in the lung.114,117–119 At the same time, even

purified CNTs are known to induce granuloma in the

lung.41,120 Anti-tumor nanoparticles used as therapy for lung

cancer reach the organ and effectively act on cancer cells but

can additionally exert toxic effects on normal cells. The group

of Chou divided ICR mice into two groups (untreated control

and treatment group administered a single dose of 0.5 mg/kg

SWCNTs into the trachea). On day 3, the condition of mice

was assessed. Foamy macrophages with SWCNTs in the

injection group had accumulated in the alveolus. After day

14, granuloma containing multifocal macrophages was pro-

duced around the SWCNT aggregation site and chronic lung

inflammation observed. In these in vivo experiments, produc-

tion of granulomas promoted SWCNT cytotoxicity character-

ized by abnormal lung inflammation.121 In a study by Ming

et al,122 0, 0.1 and 0.5 mg CNTs were instilled into trachea of

mice (using carbon black as a negative control). Animals were

euthanized 7 and 90 days after a single treatment and the lungs

isolated for histopathological analysis. In terms of changes,

CNT aggregation in alveolar macrophages and concentration-

dependent cytotoxicity were observed. Inflammation around

bronchi was evident 7 days after treatment, with a more pro-

nounced degree of inflammation at 90 days after administra-

tion. In contrast, the lungs of mice remained unaffected in the

control group. These experiments clearly demonstrated serious

damage induced by CNTs to lung. In another study, Qin and

co-workers injected SWCNT into the tail vein of experimental

mice, which were assigned to six groups (1, 7, 30, 60, 90 and

120 days). At the end of each time-period, 8 mice were

randomly selected and lungs removed for follow-up studies.

The results showed that the total amount of carbon in lung was

positively correlated with length of time. Pulmonary capillary

continuous embolization, granuloma formation, pulmonary

fibrosis, and numerous pro-inflammatory factors were

stimulated.123 Therefore, consideration of the chronic toxicity

and cumulative toxicity of free CNTs distributed in the body is

essential before clinical application of CNTs as anti-tumor

drug carriers.
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Cardiovascular Toxicity
CNTs released in the body are strongly dependent on the

blood vessel wall. These nanomolecules have a significant

killing effect on tumor blood vessels and can also cause

cardiovascular damage during circulation in the body. CNTs

possess high hardness and mechanical strength, which may

cause mechanical damage upon contact with the vessel

wall.124 Furthermore, CNTs can trigger substantial release

of ROS or inflammatory factors, leading to cellular damage

and inhibition of growth. At the same time, these nanotubes

could affect the reconstruction of new blood vessel walls

and cause myocardial ischemia, leading to cardiovascular

toxicity, such as atherosclerosis.125

Ge et al126 administered a solution containing SWCNTs

to male spontaneous hypertensive rats once a day for two

continuous days, followed by examination of mouse hearts.

Compared with the control group, arterial vascular thicken-

ing and myocardial fibrosis were evident in treated mice.

Capillary congestion and spongy appearance were obvious

upon microstructural analysis, along with thrombosis and

oozing of blood vessels as well as mitochondrial swelling.

The results clearly suggest that that SWCNTs cause damage

to the cardiovascular system and are therefore a high risk

for patients with cardiovascular disease. Similar findings

were reported by Chen et al127 who highlighted the risk of

long-term toxicity of SWCNTs. The effects of CNTs on

important monocyte adhesion during atherogenesis and

endothelial progenitor cells (EPCs) isolated from human

atherosclerotic model ApoE/mouse bone marrow were

ascertained by Suzuki and co-workers.128 To this end, nor-

mal human aortic endothelial cells (HAECs) were cultured

and exposed to SWCNTs for 16 h. ApoE/mice were

exposed to SWCNTs or DWCNTs (10 or 40 μg/mouse)

once every other week for 10 weeks via pharyngeal aspira-

tion. As a result, adhesion molecule (ICAM-1) was upregu-

lated and THP-1 monocyte adhesion with HAEC enhanced.

Compared with the blank group, the ApoE/mouse plaque

area was increased, as observed from aortic oil red

O staining, and ICAM-1 expression upregulated. The

study concluded that SWCNTs and DWCNTs enhance

atherogenesis by promoting adhesion of monocytes to

endothelial cells and inducing EPC dysfunction. Cell mor-

phology of human umbilical vein endothelial cells

(HUVEC) co-cultured with MWCNTs (0.5, 5 and 20 μg/

mL) for 24 h was examined by the group of Guo.

Microscopic examination revealed formation of cell solute

vacuoles, disordering of cellular orientation and decreased

cell densities. TEM analysis showed that compared with the

control group, the MWCNT group (20 μg/mL, 24 h) dis-

played significant vacuolization and internalization of

HUVECs, with vacuoles containing several MWCNTs.

Moreover, MWCNT-induced cytotoxic effects were dose-

dependent. Flow cytometry using Annexin V-FITC and PI

staining was used to examine the extent of HUVEC apop-

tosis in the MWCNT-treated groups. Cells in the MWCNT

group showed a greater decrease in viability relative to

control cells, indicating that the decrease in HUVEC activ-

ity may be at least partially attributed to MWCNT-induced

apoptosis.129

Other Toxicities
Upon administration of CNT anti-tumor drug carriers, free

CNTs not only accumulate in normal cell but are also

distributed through the blood to other organs and exert

toxic effects. The studies below represent recent investiga-

tions on the toxicity of CNTs to various tissues and organs

(Table 1).

Factors Influencing CNT-Induced
Toxicity
Unlike traditional chemical materials, surface modifica-

tion, aggregation, concentration, size and shape of CNTs

are associated with biological effects. To optimize the

therapeutic efficacy of CNTs in the medical field, elucida-

tion of the factors and mechanisms underlying CNT-

mediated toxicity is critical.

Surface Modification
Surface modification is performed to improve the dispersion,

excretion, and biocompatibility of CNTs.145,146 Poor water

solubility of CNTs carrying anti-tumor drugs is a major con-

tributory factor to their toxic effects on the body, which may

be addressed by surface modification.147–150 The addition of

proteins and surfactants on the CNT surface has been shown

to not only facilitate effective targeting of cancer cells but

also reduce toxicity83 and improve therapeutic effects.151–154

Among these, folate receptors are expressed on a variety of

tumor cells, and binding of folate to CNTs improves both

tumor targeting and toxicity in vivo.155–157

Ji and co-workers158 designed a novel drug delivery

system involving modification of chitosan (CHI) on the sur-

face of SWNTs to control the loading and release of the

anticancer agent DOX, which led to simultaneous improve-

ment of the water solubility and biocompatibility of SWNTs.
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Loading of folic acid (FA) on SWCNTs was shown to

achieve targeted killing of tumor cells. In these experiments,

the liver cancer cell line, HCC SMMC-7721, was treated

with DOX and DOX/FA/CHI/SWNT (100 μg/mL), and cell

viability recorded at 24, 48 and 72 h. The results showed

lower cell viability of the DOX/FA/CHI/SWNT than the

DOX group, indicative of time-dependent inhibition of

liver cancer growth in nude mice.

Table 1 Toxicities of CNTs to Different Organs

Carbon

Nanotubes

Subject Types of

Toxicity

Result Reference

MWCNTs Male Sprague Dawley rats Nervous system Inhalation of MWCNTs significantly alters the

balance between sympathetic and

parasympathetic nervous system.

[130]

MWCNTs Mice Nervous System

and BBB

Acute pulmonary exposure to MWCNTs

induce nerve inflammation responses

dependent on the disruption of BBB integrity.

[131]

CNTs Male NMRI mice Neurotoxicity CNTs may cause behavioral toxicity associated

with depression or anxiety expression.

[132]

SWCNTs PC-12 cells Neurotoxicity SWCNTs are toxic to PC-12 cells and more

toxic to differentiated PC-12 cells.

[133]

SWCNTs Male C57BL/6 mice Pulmonary

immune system

SWCNTs can increase susceptibility to

respiratory viral infections as a novel

mechanism of toxicity.

[134]

SWCNTs Six-week-old specific-pathogen-free ICR

mice

Immune toxicity

and reproductive

toxicity

SWCNTs produce immune toxicity and have an

impact on reproduction and development.

[135]

SWCNTs BALB/c macrophage cell line J774A and

Female BALB/c mice

Immune toxicity SWCNTs are immune toxic to the body, and

the dispersion of SWCNTs is negatively

correlated with immune toxicity.

[136]

MWCNTs T lymphocytes Immune toxicity MWCNTs are toxic to human T cells in

a concentration-dependent manner.

[137]

SWCNTs Six to eight weeks old females of the CD1

outbred strain. Mouse ES cell line D3 and

NIH3T3 cells

Embryo toxicity SWCNTs can trigger embryo toxicity in

mammals.

[138]

CNTs Kunming mice Embryo toxicity CNTs can cause embryo toxicity, damage to

the fetus and even miscarriage.

[139]

MWCNTs Zebrafish embryo Embryo toxicity MWCNTs have serious developmental toxicity,

which is related to the length of MWCNTs.

[140]

CNTs Mouse embryonic fibroblasts (MEFs) and

p53+/− (C57BL/6J) male and female mice

Embryo toxicity CNTs may induce embryo toxicity, which is

hereditary.

[141]

Oxidized

SWCNTs

Artemia salina Developmental

toxicity

O-SWCNTs cause deformity to salina and

produce a lot of ROS.

[142]

CNTs Male BALB/c mice Genital toxicity CNTs have toxic effects on the reproductive

organs of mice.

[143]

SWCNTs

and

MWCNTs

MeT-5A cells and BEAS 2B cells Genotoxicity MWCNTs and SWCNTs induce DNA damage

in MeT-5A cells.

[144]

Yan et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:1410186

http://www.dovepress.com
http://www.dovepress.com


Wu et al159 performed surface functionalization of CNTs

via enrichment of carboxylic groups with optimized oxidiza-

tion treatment, followed by covalent linking of hydrophilic

diaminotriethylene glycol via amidation reaction. Finally,

hydroxylcamptothecin (HCPT) was chemically attached to

CNTs through a cleavable ester linkage to successfully gen-

erate a novel MWCNT drug delivery system. Subcutaneous

liver H22 tumor-bearing mice were used as model animals

for injection of MWCNT-HCPT (5 mg/kg). After 15 days,

compared with the currently used HCPT preparations,

tumors treated with the MWCNT-HCPT complex were

extensively damaged while normal tissue sites remained

relatively unaffected. Overall, the newly generated

MWCNT-HCPT complex showed excellent antitumor activ-

ity and low toxicity. Furthermore, the complexity of

MWCNT-HCPT led to longer blood circulation times and

higher tumor-specific drug accumulation. Therefore, reason-

able surface modification of CNTs should enhance the anti-

tumor effect and decrease toxicity to normal tissues of the

body. The group of Patlolla additionally evaluated the toxi-

city of primary and oxidized MWNTs on normal human

dermal fibroblasts (NHDF). To this end, NHDFs were cul-

tured with three different concentrations (40, 200, 400 g/mL)

of raw and oxidized MWCNTs. The results showed dose-

dependent toxicity of both MWNT types. Compared to the

control group, 400 g/mL oxidized MWNTs inactivated

NHDF via DNA damage.111 Therefore, for effective utiliza-

tion of CNTs as drug carriers, both the concentrations of

CNTs accumulating in the body and modifying groups on

the CNT surface need to be considered.

Degree of Aggregation
Nanoparticles with small particle size and large specific sur-

face area have intense aggregation tendency owing to van der

Waals attractions in solution.160 A number of studies have

indicated that SWCNT toxicity in vivo is caused by aggre-

gates rather than individual molecules.161,162 Highly aggre-

gated CNTs can become bulky and strong,163 consequently

exerting more harmful effect on cells.

To investigate the potential lung toxicity of dispersed

SWCNTs, Mutlu et al107 administered equivalent doses of

dispersed and aggregated SWCNTs for 30 days after intra-

tracheal administration to mice. Dispersed SWCNTs were

taken up by alveolar macrophages through cilia via mucosal

clearance or other mechanisms that gradually cleared over

time. Aggregated SWCNTs displayed a granulomatous struc-

ture with mild fibrosis in mouse trachea. Accordingly, it was

concluded that the toxicity caused by SWCNTs in vivo is

mainly attributable to aggregates rather than SWCNTs with

a large aspect ratio.164 A number of studies have highlighted

that dispersed MWCNTs with extreme aspect ratios induce

higher cytotoxicity than those with low aspect ratios.165 In

a study by Wick et al166 the mesothelioma cell line, MSTO-

211H, was exposed to disperse CNT bundles and three

different concentrations of CNT agglomerates (7.5, 15 and

30 g/mL). After three days, significant cellular morphologi-

cal changes and decreased cell activity were observed in the

CNT aggregation groups. Toxicity was increased in

a concentration-dependent manner. CNTs exert toxic effects

on cancer cells, and therefore, damage to normal cells is not

unexpected. Belyanskaya and co-workers studied the effects

of SWCNTs with varying degrees of aggregation on chicken

embryonic spinal cord and dorsal root ganglia. Two dissim-

ilar degrees of agglomerates were utilized, specifically,

SWCNT agglomerates (SWCNT-a) and better dispersed

SWCNT bundles (SWCNT-b). The overall DNA content of

mixed glial cells in SWCNT-a and SWCNT-b groups at

a concentration of 30 μg/mL was determined with the

Hoechst assay, which revealed a marked decrease in the

DNA content in the SWCNT-a group. SWCNTs induced

acute toxicity in the central and peripheral nervous systems

after entry into the body.167 Moreover, the level of toxicity

was dependent, in part, on the agglomeration state of

SWCNTs. Dispersed SWCNTs showed an increased aspect

ratio relative to the resulting aggregates. Phagocytic cells

were able to eliminate SWCNTs and reduce toxicity to the

body to a greater extent.168,169

Concentration
After anti-tumor nanometer preparations with CNTs are

separated from target organs and drugs, a proportion is

removed from the body while the remainder translocates to

different parts of the body via the blood circulation and

exerts toxic effects. The magnitude of toxicity is signifi-

cantly correlated with the concentration of aggregated

CNTs.170 Bottini et al137 incubated T lymphocyte cells

with 40 μg/mL and 400 μg/mL CNTs and collected them

for examination at different time-periods. The trypan blue

exclusion assay was employed to assess the effects of

CNTs on T cell viability and annexinV binding assay

used to determine cell apoptosis. Cells lost 80% viability

within 5 days in the presence of 400 μg/mL CNTs. Further

microscopic examination was performed for chromatin

condensation and membrane vesicles, which are markers

of apoptosis. At a concentration of 40 μg/mL, CNTs did

not appear to have toxic effects on T cells, leading to the

Dovepress Yan et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
10187

http://www.dovepress.com
http://www.dovepress.com


conclusion that CNTs do not cause measurable damage to

cells at this concentration and toxicity is positively corre-

lated with dose. Fanizza and co-workers evaluated

MWCNT toxicity to human bronchial normal cells

(BEAS-2B) by exposing cells to 10, 40 and 100 μg/mL

MWCNTs. Cellular microvilli structural changes, micro-

villi reduction and mild herpes development were

observed after 24 h. At the same time, cell DNA damage

in the 40 and 100 μg/mL MWCNT-treated groups was

evident after 4 h using the comet assay. Data from these

experiments confirmed the cytotoxicity of MWCNTs in

normal cells.171

CNT Size
Different sizes of CNTs may induce various degrees of

toxicity.172–177 Diminutive CNTs have a large specific sur-

face area and strong ability to cross cell membranes.153 These

molecules can damage cellular components and proteins,

causing dysfunction or even death of macrophages.132 In

a study by Sohaebuddin et al178 3T3 fibroblasts were posi-

tioned in the environment of MWCNTs with diameters <8

nm and morphology recorded after 12 h. MWCNTs with

small diameters could induce membrane instability of lyso-

somes and promote release of components while those with

large diameters caused little damage to lysosomes. The toxi-

cities of different lengths of SWCNTs on HepG2 cells were

further reported by the group of Shen.180 Measurements of

cell viability and oxidative stress revealed that SWCNTs of

different lengths induced a decrease in HepG2 viability and

increase in intracellular ROS. Martinez et al179 used

a zebrafish model to evaluate the effects of different sizes

of MWCNTs on juveniles. The physiological and behavioral

responses of juvenile fish indicated that short MWCNTs are

neurotoxic and immunotoxic to larvae while long MWCNTs

induce developmental malformations, cardiotoxicity and

immunotoxicity, indicating that different-sized CNTs of the

same material exert different toxicities. However, long

SWCNTs exerted stronger cytotoxic effects than their shorter

counterparts, supporting the theory that cytotoxicity may be

effectively reduced by controlling CNT size.

Shape
CNTs are needle-like structures similar to fibers that form

various shapes depending on the number of layers and length,

such as single-walled carbon nanotubes (SWCNT), multi-

walled carbon nanotubes (MWCNT), high aspect ratio nano-

tubes, short nanotubes, straight carbon nanotubes, and curved

carbon nanotubes. Interestingly, CNTs of different shapes

may exert differential toxic effects.177,181–184 A number of

reports suggest that more profound toxicity stems from

SWCNTs than MWCNTs185 and SWCNTs inhibit phagocy-

tosis more intensely than equivalent doses of MWCNTs.181

In an earlier investigation, El-Gazzar and co-workers divided

rats into DWCNT and MWCNT-7 treatment groups.

Equivalent doses of DWCNTand MWCNT-7 were adminis-

tered via intratracheal intrapulmonary spray every other day

for 15 days and rats sacrificed after six weeks. Notably, the

PCNA index of lung cells of the MWCNT-7 group was

increased, compared with the DWCNT group.186 The results

indicate that it is preferable to use CNTs with a small number

of layers as carriers for antitumor nanometer preparations. In

another study, Fenoglio and colleagues incubated MWCNTs

of different thicknesses with murine alveolar macrophages

(MH-S) and assessed cytotoxicity based on changes in ROS

and glutathione. In these experiments, thin MWCNTs

appeared significantly more toxic than the thicker

counterparts.187 MWCNTs with four different shapes were

injected into mice by the group of Rittinghausen and the

effects on mesothelioma examined. With increased curvature

of different MWCNT types, the probability of inducing

mesothelioma was decreased. In other words, straight nee-

dle-shaped MWCNTs induced the greatest toxicity and

carcinogenicity.188 Luisana et al189 incubated needle-like

and tangled MWCNTs with the mouse macrophage cell

line, Raw 264.7, and alveolar macrophages, MH-S. The

cell viability value of the needle-like MWCNT-treated

group was significantly decreased with high nitrite accumu-

lation in the medium, clearly supporting the theory that

MWCNT shape is related to cytotoxicity. Sakamoto and co-

workers further compared the carcinogenicity of seven

MWCNTs showing differences in size and shape. The carci-

nogenic rates of four needle-shaped MWCNTs were as

high as 100% while tangled MWCNTs did not induce

mesothelioma.190 Comprehensive findings from multiple

studies thus suggest that different shapes of CNTs exert

differing levels of cytotoxicity, with the greatest toxicity

induced by needle-shaped CNTs.

Conclusion
With the extensive development and utilization of nano-

technology in the field of oncology, CNTs have been

generated that play an irreplaceable role as anticancer

drug carriers. However, these nanomolecules have

a number of drawbacks in the clinic. During CNT-

mediated delivery of anticancer drugs to target organs,

free CNTs are retained in the body after dissociation of
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the drug, causing secondary damage. The mechanisms of

action of CNTs on normal cell tissues are not fully under-

stood at present, thus limiting their clinical application. To

resolve this issue, specific proteins could be loaded on the

surface of CNTs, which stimulate MPO release by neutro-

phils so that CNTs themselves degrade and eventually

achieve attenuation effects. Simultaneously, dual drug-

loading methods may be effective in protecting normal

tissues.

In recent years, the changes and mechanisms of gene

expression associated with CNT toxicity have been

a considerable focus of research interest. The development

of CNTs as anti-tumor nanometer carriers in the future will

depend on the consequences of effective treatment. Due to

the special nanostructural properties of CNTs, potential

toxic effects and improved biocompatibility may be

avoided to ensure clinical drug safety. To achieve these

positive effects, we need to clarify the mechanisms under-

lying CNT-induced toxicity to eliminate toxic nanometer

formulations. Furthermore, determination of the absorp-

tion, distribution, metabolism and excretion properties of

CNTs in the body is essential. In summary, comprehensive

evaluation of the safety of nanoformulations, optimization

of drug payload and reduction of potential toxicity are

essential steps to maximize their anti-tumor effects.
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