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ABSTRACT: The epidermal growth factor receptor (EGFR) is part of a protein
family that controls cell growth and development. Due to its importance, EGFR
has been identified as a suitable target for creating novel drugs. For this research,
we conducted a 2D-QSAR analysis on a set of 31 molecules derived from
quinazoline, which exhibited inhibitory activity against human lung cancer. This
investigation incorporated principal component analysis (PCA) and multiple linear
regression (MLR), leading to the development of QSAR models with strong
predictive capabilities (R2 = 0.745, R2_adj = 0.723, MSE = 0.061, R2_test = 0.941,
and Q2_cv = 0.669). The reliability of these models was confirmed through
internal, external, Y-randomization, and applicability domain validations.
Leveraging the predictions from the QSAR model, we designed 18 new molecules
based on the modifications at the N-3 and C-6 positions of the quinazoline ring,
with electronegative substituents at these positions fostering optimal polar
interactions and hydrophobic contacts within the ATP-binding site of EGFR,
significantly enhancing the inhibitory activity against the lung cancer cell line. Subsequently, ADMET predictions were conducted
for these 18 compounds, revealing outstanding ADMET profiles. Molecular docking analyses were performed to investigate the
interactions between the newly designed molecules�Pred15, Pred17, Pred20, Pred21�and the EGFR protein, indicating high
affinity of these proposed compounds to EGFR. Furthermore, molecular dynamics (MD) simulations were utilized to assess the
stability and binding modes of compounds Pred17, Pred20, and Pred21, reinforcing their potential as novel inhibitors against human
lung cancer. Overall, our findings suggest that these investigated compounds can serve as effective inhibitors, showcasing the utility
of our analytical and design approach in the identification of promising therapeutic agents.

1. INTRODUCTION
Lung cancer is the leading cause of cancer-related deaths across
both sexes, responsible for roughly 18.4% of all cancer
fatalities, outstripping the death rates from colon, prostate,
and breast cancers combined. Manifesting primarily in two
forms, lung cancer is categorized as small-cell lung carcinoma
(SCLC), accounting for about 13% of cases, and nonsmall cell
lung cancer (NSCLC), which comprises 84% of cases.1−4

Despite noteworthy progress in diagnostics and drug
therapies,5 the survival rates for lung cancer patients remain
disappointingly low. The current treatment modalities include
chemotherapy,6 radiation therapy,7 systemic therapy,8 targeted
therapy,9 and immunotherapy.10 Nevertheless, for those with
metastatic lung cancer�a condition marked by the spread of
primary lung tumors to other parts of the body through the
blood and lymphatic systems, commonly impacting the adrenal
glands,11 liver,12 brain,13 bones,14 and lymph nodes15�the
options for effective treatment are severely limited. Lung
transplantation is acknowledged as an effective measure to
prolong the life of end-stage lung disease patients.16 Recent

research underscores the potential of pulmonary drug delivery
systems, especially those utilizing nanoparticles,17 to directly
target the lungs18 and significantly improve the effectiveness of
anticancer treatments.19−22 These nanoparticle-based delivery
platforms are becoming recognized as a highly promising
approach to enhance lung cancer therapy, offering a new and
potentially more effective strategy for battling this deadly
disease.23 Currently, EGFR inhibitors have emerged as a
pivotal category of anticancer medications. The discovery of
highly potent EGFR inhibitors holds immense significance in
combating various tumors, such as lung cancer, cervical cancer,
and breast cancer. Currently, a plethora of small-molecule
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tyrosine kinase inhibitors (TKIs) targeting EGFR have been
developed. Gefitinib (with an IC50 range of 23−79 nM) and
erlotinib (with an IC50 of 80 nM) stand as first-generation
EGFR-TKIs, surpassing standard chemotherapy in clinical
usage. These medications function as reversible competitive
inhibitors of ATP, effectively impeding EGFR autophosphor-
ylation. In the realm of breast cancer treatment, afatinib, a
second-generation EGFR-TKI with an IC50 of 0.5 nM, has
garnered significant attention.
Rational drug design can be understood as a collection of

innovative methods aimed at discovering new medications
based on the knowledge of biological targets. This process
often relies on computer modeling techniques, commonly
referred to as “in silico” methods.24 In this study, we focus on
developing novel EGFR inhibitors to explore new therapeutic
avenues for treating human lung cancer, utilizing computer-
aided drug design techniques. Specifically, we employ the
“ligand-based drug design” approach,25 which includes
quantitative structure−activity relationships (QSAR). This
method establishes a correlation between the calculated
properties of molecules and their experimentally determined
biological activities. Additionally, we utilize a second strategy
that targets the molecular structure, known as “structure-based
drug design” (SBDD).26 This approach is a successful,
appealing, and widely adopted strategy in both academic and
pharmaceutical research domains. It facilitates the examination
of the drug’s target structure, providing detailed molecular
insights into the mechanism of action and inhibition of the
target.
In recent years, in silico methods have emerged as essential

tools in the field of drug discovery, particularly for under-
standing and predicting activity against cancer-related targets
such as kinases. Multitarget quantitative structure−activity
relationship (QSAR) models have played a pivotal role in these
advancements. These models enable researchers to simulta-
neously analyze multiple targets, offering a comprehensive
overview that is crucial for the development of broad-spectrum
cancer therapeutics. A notable advancement in this area is the
development of predictive therapeutic modeling for lung
cancer (PTML), which facilitates the design of inhibitors that
target multiple proteins and cells implicated in pancreatic
cancer.27

Furthermore, the integration of fragment-based topological
design into QSAR and machine learning models enhances the
physicochemical and structural interpretation of molecular
interactions. This methodology supports the rational design of
novel molecules, as it allows for the intricate dissection of
molecular fragments that contribute significantly to the activity
against specific targets. Noteworthy applications of this
approach include the design of dual inhibitors of CDK4 and
HER228 and BET bromodomain inhibitors using multitarget
QSAR models.29

Additionally, combining ensemble learning with fragment-
based topological approaches has led to significant innovations
in drug discovery. This combined method has been employed
in the in silico design of Hsp90 inhibitors, generating new
molecular diversity that could potentially lead to more effective
cancer treatments.30,31 The TOPS-MODE approach further
exemplifies the utility of these advanced QSAR models in
developing inhibitors for a range of tyrosine kinases, which are
critical in the regulation of cancer cell growth and survival.32

These methodologies not only enhance the accuracy of drug
design but also streamline the discovery process by predicting

the efficacy and safety of multitarget inhibitors against complex
diseases like cancer. By leveraging these advanced in silico
techniques, researchers can significantly reduce the time and
cost associated with traditional drug discovery processes.
In this research, 2D-QSAR techniques were used to develop

and predict the anticancer potential of novel molecules based
on a set of 31 analogs of quinazoline derivatives. Molecular
docking assessment and simulations revealed significant
enhancement in binding affinity and inhibitory effects against
EGFR, a pivotal receptor in lung cancer, in comparison to
erlotinib, the current standard lung cancer medication. These
findings lay the groundwork for the synthesis of novel
quinazoline analogs with enhanced efficacy against lung cancer.

2. RESEARCH METHOD
2.1. Data Sources. In order to establish a relationship

between the structure and activity of various compounds
quantitatively, we analyzed a collection of 31 quinazoline
derivatives. These compounds, which act as tyrosine kinase
(EGFR) inhibitors, were sourced from a study conducted by
Bridges et al.33 In the calculation of pIC50, the constant “6” is
subtracted from the negative logarithm of the IC50 value,
which is calculated as follows: pIC50 = 6 − log10 (IC50).
This adjustment allows for the direct comparison of binding

affinities across a range of concentrations, simplifying the
interpretation of lower IC50 values as higher potencies.
The collected data was randomly segmented into two sets: a

training set and a test set. The training set comprised 26
compounds and was utilized to develop a 2D-QSAR
(quantitative structure−activity relationship) model. Mean-
while, the test set consisted of five compounds, which were
used to assess and validate the accuracy and quality of the
developed model.
2.2. Molecular Descriptors. In our endeavor to develop a

robust QSAR model, we meticulously calculated over 26
molecular descriptors from the studied series. These
descriptors, covering physicochemical, topological, geomet-
rical, and constitutional aspects, were computed using a variety
of software tools, including ChemOffice34 and Gaussian 09
Software,35 as detailed in Tables S1 and S2. For optimization
purposes, we employed the MM2 method. We also refined the
geometries of the 31 quinazoline derivatives using the density
functional theory (DFT) approach, incorporating the B3LYP
functional36 and the 6-31G(p, d) basis set.37 Following the
quantum computations,38−40 we extracted several critical
structural parameters. These parameters included the highest
occupied molecular orbital energy (EHOMO), lowest unoccu-
pied molecular orbital energy (ELUMO), dipole moment (μm),
total energy (TE), absolute hardness (η), absolute electro-
negativity (χ), and reactivity index (ω). Specific equations
were utilized to determine the values of η, χ, and ω.

=
E E

2
LUMO HOMO

(1)

=
+E E
2

LUMO HOMO
(2)

=
2

2

(3)

The topological descriptors were calculated using ChemO-
ffice software.34 Various parameters were evaluated in this
process, such as the molecular weight (MW), the number of
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hydrogen bond acceptors (NHA), and the number of
hydrogen bond donors (NHD). Other considerations included
the octanol−water partition coefficient (LogP) and water
solubility (LogS). Furthermore, several indices and coefficients
were also assessed, including the Balaban Index (J), the
molecular topological index (MTI), the polar surface area
(PSA), the radius (RDWV), the shape coefficient (I), the sum
of valence degrees (SVD), the boiling point (BP), the Wiener
index (WI), and the number of rotatable bonds (NROT).
2.3. Statistical Analysis. 2.3.1. Principal Component

Analysis. Principal component analysis (PCA) is a data
analysis technique used to reduce the dimensionality of large
data sets, simplifying information and minimizing redun-
dancy.41 The results obtained from PCA are crucial in
determining the relationships among descriptors, aiding in
the identification of key input variables necessary for the QSAR
model.

2.3.2. Linear Regression. In linear regression, the metrics
employed to gauge the relationship between dependent and
independent variables comprise the coefficient of determi-
nation (R2), the root mean square error (RMSE), and the
Fisher ratio’s value (F-test). The equation for multiple linear
regression (MLR) is established as follows:

= +
=

Y b biXi
i

n

0
1 (4)

In this model, Y signifies the predicted value of biological
activity. Xi corresponds to the molecular descriptors, which
serve as the independent variables. The term n represents the
count of molecular descriptors, and b0 is identified as the
constant within the equation.
2.4. QSAR Model validation. The QSAR model was

developed utilizing anticancer activity data obtained from a
study by Bridges et al.33 A robust QSAR model is capable of
making reliable predictions concerning a set of query
compounds. To ascertain our model’s reliability, we conducted
both internal (represented by R2) and external (denoted by
R2

pred) cross-validations. The cross-validated correlation
coefficient (R2) and the predictive squared correlation
coefficient (R2_pred) are key indicators in the conventional
validation of QSAR models employing MLR, detailed in eqs
5−7. A principal method applied in this validation procedure is
the leave-one-out (LOO) cross-validation, explicitly presented
in eq 6.

=Q
Y Y

Y Y
1

( )

( )
2 obs(train) pred(train)

2

obs(train) training
2

(5)
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Y Y

Y Y
1
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( )
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2

obs(train) obs(train)
2

(6)

=R
Y Y

Y Y
1

( )

( )pred
2 obs(test) pred(test)

2

obs(test) training
2

(7)

In eqs 5 and 6, Yobs(train) denotes the observed activity for the
training set, Ypred(train) indicates the predicted activity for the
molecules in the training set, derived using the LOO
technique, Ycalc(train) refers to the response calculated by the
model for the training set, and Yobs(train) represents the average
of the observed response values for the training set.

Additionally, the Golbraikh and Tropsha-proposed param-
eters for calculating a QSAR model’s external predictability
were derived.41

2.4.1. Y-Randomization. Y-randomization is an auxiliary
approach for evaluating the robustness of a model. By shuffling
the values of the dependent variable (Y) and preserving the
integrity of the descriptor values, this method facilitates the
creation of new MLR models. This process is repeated n times,
generating n different models. The R2 and Q2 values of each
new model are then compared with those of the original
models. A model is considered robust if these values are as low
as possible.

2.4.2. Domain of Applicability. The applicability domain of
the model refers to the theoretical space occupied by
compounds, as defined by their descriptors and modeled
activity, where a QSAR model can make reliable predictions.42

This concept is instrumental in identifying both structural and
response outliers within the training and test sets. A leverage
approach was utilized to assess the chemical space of the
QSAR model, employing a specific plot known as the Williams
plot. This plot juxtaposes standardized residuals against
leverage values (h). Compounds are deemed within the
model’s applicability domain if their leverage scores fall below
a certain threshold (h < h∗), and their standardized residual
scores reside within ±3.0σ (standard deviation units).43 The
warning leverage (h∗) is ascertained through a specific
calculation:

* = × +
h

d
N

3
( 1)

(8)

Here, d refers to the quantity of descriptors used in the
model while N indicates the total number of compounds
forming the training set.
2.5. Drug-Likeness and ADMET Properties. Today’s

drug research and development are characterized by substantial
costs and extensive time commitments. These challenges are
exacerbated by the complexities associated with emerging
diseases and the unpredictability of research outcomes.44

Computational strategies have significantly transformed this
domain, facilitating rapid optimization of pharmacokinetic
properties and the comprehensive evaluation of drug candidate
toxicity. Fundamental to the development of new drug
candidates is an exhaustive examination of Absorption,
Distribution, Metabolism, Excretion, and Toxicity (ADMET)
properties. A thorough assessment of these ADMET character-
istics is crucial for reducing failure risks during the drug
discovery process, thereby ensuring the efficacy and reliability
of the resulting pharmaceutical products.45

To assess the pharmacokinetic and pharmacodynamic
properties of molecules, their formats are converted from.cdx
to SMILES using the SwissADME server. This conversion
facilitates the evaluation of various attributes, such as synthetic
accessibility and compliance with Lipinski’s, Veber’s, and
Egan’s rules. The molecules, now represented in SMILES
format, are submitted to the pkCSM server (http://biosig.
unimelb.edu.au/pkCSM/)46 for property calculations. This
includes determining the MW, NHA, NHD, and NRot.
According to Lipinski’s rule of five, a molecule is likely to be
orally active if it satisfies the following criteria: MW less than
500 g/mol, LogP 5 or less, NHD fewer than 5, NHA fewer
than 10, and NRot 10 or fewer.
The pkCSM servers47 provide extensive information on

selected molecules, covering various absorption properties
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such as water solubility, intestinal absorption, and Caco-2
permeability.48 Additionally, they offer insights into distribu-
tion attributes like permeability to the central nervous system
(CNS)49 and the blood−brain barrier (BBB).50 The servers
also detail metabolic aspects, including the inhibition of
CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4, as well
as overall clearance. Information regarding AMES toxicity and
skin sensitization is also made available.51

2.6. Molecular Docking. Eighteen compounds, or ligands,
were analyzed through in silico docking experiments using
AutoDock Vina52 and AutoDock Tools53 on Windows 10. The
two-dimensional structures of the ligands were crafted in
ChemDraw and converted to 3D using ChemOffice.34

AutoDock Tools facilitated the preparation of the ligands for
docking, converting them from MOL file format to PDBQT
files. Data, including the cocrystallized form of EGFR, were

sourced from the RCSB Protein Data Bank (https://www.rcsb.
org). After evaluating multiple submissions, a ligand-bound
complex (PDB entry: 1M17)54 was selected based on its high
resolution and the structural similarity of the cocrystallized
ligand to the test compounds. Noninteracting water molecules
and ions were removed from the EGFR PDB file using
Discovery Studio 2021.55 AutoDock Tools was used to prepare
the proteins and generate PDBQT files from PDB files, adding
every polar hydrogen atom to the macromolecule to enhance
docking. Grid settings were configured using AutoDock Tools,
and details were compiled in a “conf.txt” file. The grid
dimensions were set at 40 × 40 × 40 XYZ points and centered
at coordinates 22.014, 0.253, and 52.794. AutoDock’s scoring
algorithms evaluated the nine best poses for each ligand,
recording the binding free energy of each ligand in a log file.
Poses with the lowest binding free energy (ΔG) were selected,

Table 1. pIC50 Values and Chemical Descriptor Analysis for Quinazoline Derivatives against EGFR: Observed, Predicted
Activities, and MLR Model Residuals

substituent

no. X Y EGap boiling Point observed pIC50 predicted pIC50 residuals

1 H H 4.204 647.27 6.463 6.592 −0.129
2 3-F H 4.244 644.61 7.252 6.662 0.590
3* 3-Cl H 4.269 665.98 7.638 7.417 0.221
4 3-Br H 4.265 677.99 7.569 7.770 −0.201
5* 3-CF3 H 4.305 650.70 6.239 7.078 −0.840
6 H 6-OMe 4.036 670.94 7.260 6.693 0.567
7 3-Br 6-OMe 4.076 701.64 7.523 7.791 −0.268
8 H 6-NH2 4.003 689.89 6.113 7.152 −1.039
9 3-CF3 6-NH2 4.033 693.27 6.241 7.371 −1.130
10 3-Br 6-NH2 4.023 720.56 9.108 8.179 0.929
11 H 6-NO2 3.358 702.97 5.301 5.138 0.163
12 3-Br 6-NO2 3.452 733.67 6.046 6.438 −0.393
13 H 7-OMe 4.237 670.94 6.921 7.449 −0.528
14 3-Br 7-OMe 4.302 701.64 8.000 8.638 −0.638
15 H 7-NH2 4.306 689.86 7.000 8.290 −1.290
16 3-F 7-NH2 4.350 687.18 8.699 8.375 0.324
17 3-Cl 7-NH2 4.376 708.55 9.602 9.132 0.470
18* 3-Br 7-NH2 4.373 720.56 10.000 9.490 0.509
19 3-CF3 7-NH2 4.410 693.27 8.481 8.789 −0.307
20 H 7-NO2 3.294 702.97 4.921 4.897 0.024
21 3-F 7-NO2 3.368 700.29 5.215 5.094 0.120
22 3-Cl 7-NO2 3.408 721.66 6.091 5.904 0.187
23* 3-Br 7-NO2 3.397 733.667 6.000 6.234 −0.234
24 H 6,7-Di-OMe 4.195 694.59 7.538 8.019 −0.482
25 3-F 6,7-Di-OMe 4.233 691.92 8.420 8.082 0.338
26 3-Cl 6,7-Di-OMe 4.256 713.29 9.509 8.828 0.681
27 3-Br 6,7-Di-OMe 4.252 725.29 10.602 9.184 1.418
28 3-CF3 6,7-Di-OMe 4.287 698.00 9.620 8.473 1.146
29 3-Br 6-NHMe 3.911 711.28 8.398 7.470 0.928
30* 3-Br 6-NMe2 3.894 712.47 7.076 7.445 −0.369
31 3-Br 6-NHCOOMe 4.114 749.06 7.921 9.400 −1.480
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indicating more robust and stable ligand-protein binding.
Discovery Studio was used for a detailed analysis of the docked
poses, exploring the hydrogen bonds and hydrophobic
interactions between the ligands and proteins.
2.7. Molecular Dynamics (MD) Simulations. MD

simulations were conducted utilizing GROMACS software,
specifically version 2019.3, to investigate the conformational
dynamics of the most favorable docking complexes with the
utilization of the CHARMM 27 force field.56 The protein
topology was constructed using the GROMACS pdb 2gmx
modules with the Chemistry at Harvard Macromolecular
Mechanics force field (CHARMM ff),57 and the ligand
topology was generated via the SwissParam server.58 The
docked structures were immersed in a simulation box with
dimensions of 9.6 nm on each side and solvated using the
three-point transferable intermolecular potential (TIP3P)
solvent.59 To ensure system neutrality, chloride (Cl−) and
sodium (Na+) ions were introduced when needed. The system
was then subjected to energy minimization using the steepest
descent algorithm, with a maximum force threshold of 1000
kJ/mol/nm. The pressure and temperature were then set to 1
bar and 300 K using the Nose−́Hoover thermostat and
isotropic Parrinello−Rahman barostat.60 Finally, a 100 ns
simulation was carried out for each docked complex. We
employed custom scripts derived from the results of MD
simulations to compute several metrics, such as RMSD
(utilizing “gmx rms”), root-mean-square fluctuation of residues
(with “gmx rmsf”), solvent-accessible surface area (SASA), the
radius of gyration (Rg), and the count of hydrogen bonds
(utilizing “gmx hbond”).
2.8. Binding Energy Calculation by MM-PBSA. To

calculate binding free energies of the screened complexes, the
molecular mechanics Poisson−Boltzmann surface area (MM-
PBSA) was used.61 The binding free energy (E binding) is
obtained by the following equations:

= +E E E E( )MM PBSA complex protein ligand (9)

Equation 9 is the total MM-PBSA energy of the protein−
ligand complex; Eprotein and Eligand are the isolated proteins’ and
ligands’ total free energies in solution, respectively.

= + +G E E EMM PBSA vdw Elec pol (10)

Equation 10 is the sum MM-PBSA of the following energies:
electrostatic (EElec), van der Waals (Evdw), polar (Epolar), and
nonpolar (EApolar).

3. RESULTS AND DISCUSSION
3.1. Data Set for Analysis. A QSAR analysis was

performed on 31 molecules, utilizing calculated descriptors,
the values of which are outlined in Table S2. The K-means
method was employed to categorize these molecules into two
groups: a training set comprising 26 molecules and a test set of
5 molecules. Through iterative processes using MLR, a reliable
model was formulated. This involved discarding descriptors
with high correlations and retaining those with low
correlations. The refined descriptors, obtained through the
MLR method, along with their predicted pIC50 values, are
presented in Table 1.
3.2. Physicochemical and Structural Interpretation of

QSAR Models. In our study, we have utilized a series of
quinazoline derivatives, each featuring modifications at specific
positions on the quinazoline ring system. These structural

variations include substitutions with different functional groups
such as fluorine, chlorine, bromine, and various alkyl and aryl
groups. These substitutions are strategically placed to explore
their electronic and steric impacts on binding affinity toward
the epidermal growth factor receptor (EGFR). The quinazo-
line derivatives were selected based on a range of
physicochemical properties that are known to influence drug
behavior, including lipophilicity (LogP), molecular weight,
polar surface area, hydrogen bond donors, and acceptors.
These properties are critical in determining the molecules’
pharmacokinetic profiles, such as ADMET. For instance, the
LogP values of these compounds help in understanding their
ability to permeate cell membranes, which is crucial for their
efficacy as intracellular inhibitors.
Our QSAR model incorporates several molecular descriptors

that are directly linked to the physicochemical attributes of the
quinazoline derivatives. Key descriptors include the following:

1. Hydrophobicity (LogP): correlates with the compounds’
cell membrane permeability.

2. Molecular weight and topological polar surface area
(TPSA): influence the oral bioavailability and ability to
cross BBBs.

3. Electronic properties: such as the highest occupied
molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) energies, which impact the
reactivity of the compounds with the EGFR kinase
domain.

In our analysis, we discuss how the structural modifications
of the quinazoline ring affect their interaction with the ATP-
binding site of EGFR. For example, the presence of electron-
donating or electron-withdrawing groups at specific positions
on the ring influences the electronic distribution within the
molecule, which in turn can enhance or reduce binding affinity
through alterations in molecular dipole moments and potential
electronic interactions with the kinase domain.
3.3. PCA. Twenty-six descriptors were calculated for PCA,

as detailed in Table S3. Descriptors (independent variables)
with correlation coefficients greater than 0.90 were omitted.
Significant correlations were noted among various descriptors,
including the following:

• ELUMO, correlated with μ (r = 0.98), S (r = 0.92), and X
(r = 0.98), resulting in the exclusion of ELUMO.

• μ, correlated with X (r = 1) and ω (r = 0.93), leading to
the removal of μ.

• EHOMO, correlated with ω (r = 0.99) and X (r = 0.93),
causing the elimination of EHOMO.

The PCA correlation tables are available in Table S3.
Following the removal of highly correlated descriptors, linear
regression was executed to develop a QSAR model.
3.4. MLR. MLRs are predominantly utilized in 2D-QSAR

analysis due to their straightforwardness, representativeness,
and traceability. This approach relies on three critical
parameters: the coefficient of determination (R2), Fisher's
ratio (F), and RMSE. The analysis was conducted using the
XLSTAT 2019 software.62 The derived QSAR model for the
training class is depicted by eq 11, and the associated
normalized descriptor coefficients are illustrated in Figure S1.

= + × + ×E BPpIC50 29.175 3.753 3.08810gap
02

(11)

The outcomes of the MLR model were assessed in
comparison with Golbraikh and Tropsha’s parameters.63
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Table 2 illustrates that the MLR model consistently aligns with
the benchmarks set by Golbraikh and Tropsha, showcasing its
dependability. The suggested model exhibits strong predictive
accuracy for novel compounds.
In our QSAR analysis, we found that the boiling point serves

as a significant descriptor correlated with the biological activity
of quinazoline derivatives. Boiling point, reflecting the thermal
stability and molecular size of a compound, may indicate a
greater propensity for strong interactions at biological binding
sites. Compounds with higher boiling points could demon-
strate stronger intermolecular interactions, leading to enhanced
biological activity against EGFR receptors.
Our analysis indicates that the structural properties of

quinazoline derivatives are crucial in determining their
biological activity. For instance, compounds featuring nitrogen
or fluorine groups at specific positions on the quinazoline ring
exhibit a higher affinity for binding. This suggests that such
functional groups may form key interactions with the active
sites of EGFR, thereby enhancing inhibitory effectiveness.
Moreover, detailing how these structural modifications
contribute to activity could include a discussion on electron-
donating or withdrawing effects and their impact on molecular
stability and binding affinity. By examining the most active
compounds against less active ones, it becomes evident which

structural elements are vital for enhanced efficacy, enabling us
to propose targeted modifications for future compound design.
The experimentally determined and theoretical pIC50 values

displayed in Figure 1 exhibit a strong correlation. The QSAR
model obtained is based on two descriptors: energy gap and
boiling point. According to the coefficient normalization
diagram (Figure S1), in the QSAR model, EGap emerges as
the most significant coefficient, where an increase in its value
correlates with enhanced activity of the compound.
The variance inflation factor (VIF) is calculated using the

formula VIF= 1/(1 − R2), where R represents the multiple
correlation coefficient of an independent variable relative to all
other descriptors in the model. A VIF greater than 10 indicates
instability in the model,64 necessitating its exclusion, while a
VIF between 1 and 9 is considered acceptable. Table 3 reveals
that the VIF values of all two descriptors are below 10. This
suggests an absence of collinearity among the chosen
descriptors, affirming the model’s stability.
3.5. Y-Randomization. A randomization test was

performed on the anticancer activity values (pIC50) to
validate the developed QSAR model and ensure there were
no random correlations.65 In this process, the pIC50 values
were randomly distributed a hundred times while keeping the
two descriptors constant. The results of this test are compiled

Table 2. Comparison of Model Parameters (MLR) with Golbraikh and Tropsha Criteria

parameter expression model score threshold comment

fitting criteria

R2 =R
Y Y

Y Y
1

( )

( )
2 obs pred

2

pred obs
2 0.745 >0.6 passed

R2
adj =R

N R P
N P

( 1)
1adj

2
2

0.723 >0.6 passed

MSE =
Y Y

N
MSE

( )obs pred 0.061 a low value passed

Ftest = ×F
Y Y

Y Y
N p

p

( )

( )
1

test
pred pred

2

obs pred
2 33.601 a high value passed

internal validation

Q2
CV =Q

Y Y

Y Y
1

( )

( )CV
2 obs pred

2

pred obs
2 0.669 >0.5 passed

RRand average of the 100 RRand(i) 0.253 <R passed
R2

Rand average of the 100 RRand2 (i) 0.080 <R2 passed
QCVLOORand

2 average of the 100 QCVLOO(Rand)
2 (i) −0.176 <Q2

CV passed

cR2
p = *cR R R R( (average )p

2 2
Rand

2 0.712 >0.5 passed

external validation

R2
test =R

Y Y

Y Y
1

( )

( )test
2 pred(test) obs(test)

2

obs(test) pred(train)
2 0.941 >0.6 passed

R2
m(test)

| |R R
2

m
2

m
2

0.722 >0.5 passed

ΔRtest
2 |Rm2 − Rm′2| 0.012 <0.2 passed

ΔR0(test)
2 |R02 − R0′2| 0.006 <0.3 passed

R R
R

2
0
2

2
R R

R

2
0
2

2 0.054 <0.1 passed

R R
R

2
0

2

2
R R

R

2
0

2

2 0.060 <0.1 passed

k =k
Y Y

Y
obs pred

pred
2 0.987 0.85 ≤ k ≤ 1.15 passed

k′ =k
Y Y

Y
obs pred

obs
2 1.009 0.85 ≤ k′ ≤ 1.15 passed
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in Table S4. Given that the obtained value of cR2p is 0.712
(greater than 0.5), it is concluded that no randomized test
could match the original model. This affirms the robustness of
the developed QSAR models and confirms the absence of any
random correlation.
3.6. Application Domain. The Williams plot is generated

by plotting standardized residual values along the Y-axis against
leverage values on the X-axis, as illustrated in Figure 2. With
the training set comprising two descriptors and 31 compounds,
and the limits for normalized residuals defined as r ± 3, the
critical leverage value (h*) is determined to be [3(2 + 1)]/31=
0.29. The objective of defining the applicability domain (AD)
is to identify compounds that deviate from the AD of the
constructed QSAR model. Compounds that surpass the critical
leverage value (h*) of 0.29 are deemed unacceptable due to
the inaccurate prediction of their activity. Using MATLAB
V2021a software,66 the AD was delineated based on the
Williams plot in this study. According to the critical leverage

values (h* >0.29), no compounds were found to be outside the
AD of the developed model.
3.7. Design of New Compounds. The proposed model

demonstrates that by modifying the descriptors present in the
QSAR model, the prediction of activity can be enhanced. The
descriptors from the finalized model facilitate data interpreta-
tion, allowing for a clearer understanding of the relationship
between descriptor values and the structural characteristics of
the examined compounds.
In pursuit of discovering new compounds, specific structural

modifications were made to the compounds under study. The
influence of descriptors on biological activity, coupled with the
structural features of the most active compounds, guided the
suggestion of several new entities. ChemOffice software was
employed for sketching and optimizing the structures of these
proposed compounds, while ChemOffice and Gaussian
software were utilized to ascertain the relevant descriptors.
Table S5 consolidates the structures of the proposed

compounds and their corresponding predicted pIC50 values.
An inference drawn from Table S5 is that an increase in EGap
and boiling point values enhances the anticancer activity of the
compounds in the data set. Armed with this knowledge,
modifications were carried out around the quinazoline ring of
the template (compound 27).
During this stage, 18 compounds were conceptualized and

their leverage values were computed to identify any outliers.

Figure 1. Relationship between observed and predicted activities.

Table 3. Variance Inflation Factors (VIF) of Descriptors in
the QSAR Model

descriptors EGap boiling point

tolerancea 0.897 0.897
VIF 1.115 1.115

aVIF is the inverse of tolerance.
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Equation 11 was used for determining the pIC50 values, and
Table S5 displays the structures, pIC50 values, and leverage
values of the compounds.
3.8. Lipinski Rules. Lipinski’s “Rule of Five,″ introduced in

1997, serves as a fundamental framework for evaluating the
drug-likeness or pharmacokinetic characteristics of chemical
substances.67 It holds significant importance within the
pharmaceutical sector, assisting in the determination of a
compound’s viability as an orally active pharmaceutical.68

Lipinski’s Rule involves the following parameters:

• Molecular weight (MW): should be less than 500 g/mol.
• Number of hbond donors (NHD): should not exceed 5,

commonly involving OH and NH groups.

• Number of hbond acceptors (NHA): should not exceed
10, typically involving O and N atoms.

• Lipophilicity (LogP): the LogP value should be less than
5.

• Number rotatable bonds (NRot): should be less than 10.

We utilized the SwissADME server (http://www.
SwissADME.ch/)69 to evaluate several pharmacokinetic
parameters, such as molecular weight, LogP partition
coefficients, hydrogen donors and acceptors, rotatable bonds,
and adherence to Lipinski’s rules. The findings, outlined in
Table 4, assist in exploring the pharmacokinetic characteristics
of new drugs.

Figure 2. Williams plot analysis: standardized residuals versus leverage in the MLR model (h* = 0.288 and residual limits = ± 3).

Table 4. Chemical and Physical Attributes of the 18 Ligands

ligand molecular weight rotatable bonds H-bond acceptors H-bond donors LogP Lipinski violations

Pred1 390.23 5 6 1 3.28341 0
Pred2 378.20 4 6 1 3.54219 0
Pred3 394.65 4 5 1 4.00291 0
Pred5 420.26 6 7 1 2.92745 0
Pred6 436.31 5 5 1 5.32086 1
Pred7 375.23 4 6 2 2.56403 0
Pred8 390.24 4 7 3 1.33122 0
Pred9 388.26 6 5 1 4.23672 0
Pred10 374.24 5 5 1 3.80883 0
Pred12 422.28 5 5 1 4.96677 0
Pred14 350.22 2 3 1 5.10124 1
Pred15 394.27 4 4 1 5.09045 1
Pred16 436.31 5 5 1 5.32086 1
Pred17 482.38 5 4 1 4.61675 0
Pred18 450.34 6 5 1 5.74875 1
Pred19 462.39 5 4 1 5.28979 1
Pred20 498.38 6 5 1 4.90669 0
Pred21 434.29 3 5 1 4.38704 0
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3.9. In Silico Pharmacokinetics ADMET Properties. In
pharmacokinetics, the ADMET properties of a substance are
paramount. These properties are analyzed using the pkCSM
online tool47 (Table 5). Water solubility is categorized based
on its log (mol/L) values, ranging from “insoluble” to “very
soluble” (insoluble ≤10 < poorly soluble ≤6 < moderately
soluble ≤4 < soluble ≤2 < very soluble <0 < very soluble).41

All studied compounds exhibited high solubility in water. For
intestinal absorbance, values above 90% signify excellent
absorbance. Most selected compounds exhibited values
exceeding this threshold.
Caco-2 permeability is a prevalent metric for predicting the

absorption of orally administered drugs.70 A compound is
deemed highly permeable if its Caco-2 value exceeds 0.90.71

Nearly all selected compounds, except Pred8, met this
criterion.
BBB permeability is crucial, determining whether a

compound can impact the brain.72 A value above 0.3 is
considered favorable for BBB permeability.48 Among the
compounds studied, only compounds Pred2 and Pred15
demonstrated satisfactory BBB permeability. For a compound
to penetrate the CNS, its LogPS value should exceed −2.73

The cytochrome P450 isoenzymes, specifically CYP2D6 and
CYP3A4,74 are instrumental in drug metabolism. All tested
compounds were identified as substrates of CYP3A4, but no
compound becomes a substrate of CYP2D6, and a majority
were inhibitors of CYP1A2, CYP2C19, and CYP2C9. In terms
of drug clearance, a lower value indicates an extended drug
half-life.75 All compounds presented low clearance values,
suggesting prolonged half-lives. Toxicity was assessed using the
AMES Toxicity Test and the Skin Sensitization Test. A
majority of compounds were deemed nontoxic, with
exceptions such as Pred5, Pred12, Pred14, Pred16, Pred18,
and Pred19.
In conclusion, compounds Pred15, Pred17, Pred20, and

Pred21 are recommended as potential anticancer inhibitors
due to their favorable ADMET properties, including effective
absorption, distribution, metabolism, reduced clearance, and
lack of toxic attributes.
3.10. Molecular Studies. This study involves a docking

process aimed at identifying the optimal position of the ligand,
quinazoline derivatives as tyrosine kinase (EGFR), within the
receptor-binding site (1M17). The latter has been obtained
from the PDB databank with a resolution of 2.60 Å.54 Before
being utilized by AutoDock, the complex is dissociated from its
ligand, thereby freeing the active site. This is followed by the
removal of water molecules, and the prepared files are
subsequently saved in the pdbqt format.
AutoDock facilitates a quicker energy evaluation of the

system by employing a three-dimensional grid, which
extensively covers the active site of the 1M17 protein. This
allows for unrestricted rotation of the ligand within the site. In
this study, the center of the grid box is established at
coordinates X = 22.014, Y = 0.253, and Z = 52.794, with
dimensions of 40 × 40 × 40 A3, ensuring that the box is
centered around the active site and that its dimensions align
proportionally with the size of the studied ligands.
After generating the protein and ligand files, the docking

process is initiated using the Genetic Algorithm (GA) with
standard settings. The results can be visualized through the
Discovery Studio 2021 Client software. The most favorable
docking outcome is identified by the lowest energy
conformation, which in this case is −10.4 kcal/mol.

Visual analysis is crucial for assessing the software’s accuracy.
Figure 3 illustrates that the ligand model produced by

AutoDock is precisely positioned in the active site of 1M17,
displaying a spatial conformation that is very similar to, or even
indistinguishable from, the one experimentally determined
through crystallography, as recorded in the PDB. The
cocrystallized ligand in the receptor was utilized as the
reference drug.54 The best obtained poses were examined by
visualizing the most stable complex created using Discovery
Studio.
Informed by ADMET analyses, molecular docking was

subsequently conducted specifically on the designed molecules
Pred15, Pred17, Pred20, and Pred21. These interactions are
visually represented and analyzed using Discovery Studio 2021
software, as shown in Figure 4. Optimal results, corresponding
to the minimal energies, have been identified for compounds
Pred15 (−9.3 kcal/mol), Pred17 (−10.4 kcal/mol), Pred20
(−10.2 kcal/mol), and Pred21 (−10.2 kcal/mol).
Using Discovery Studio 2021 software, we visualized the

interactions between the cocrystallized ligand and protein
1M17 (refer to Figure 4). The ligand formed two conventional
hydrogen bonds with Cys 773 and one carbon hydrogen bond
with Phe 771. It also established one pi−cation bond with Lys
721, one pi−sigma bond with Leu 820, and one pi−sulfur
bond with Met 742. Hydrophobic interactions were also
observed with several residues, including Lys 721, Leu 764, Val
702, Ala 719, Leu 820, and Cys 773.
Based on Figure 4 and Table S6. Compound Pred15

interacted through various bonds: one carbon hydrogen bond
with Gln 767, two pi−anion bonds with Asp 831, and two pi−
sigma bonds with Val 702. It also formed one pi−pi stacked
bond with Phe 699 and exhibited hydrophobic interactions
with residues such as Ala 719, Lys 721, Leu 764, Arg 817, Met
769, and Leu 820.
Compound Pred17 established one conventional hydrogen

bond with Met 769 and two carbon hydrogen bonds with Gln
767 and Asp 831. It also formed three pi−sigma bonds with
Leu 694, Val 702, and Leu 820, and one pi−sulfur bond with
Met 742. Furthermore, hydrophobic interactions were noticed
with residues including Leu 694, Lys 704, Leu 768, Ala 719,
Leu 820, Val 702, and Lys 721.
Compound Pred20 exhibited one conventional hydrogen

bond with Met 769, two carbon hydrogen bonds with Gln 767
and Asp 831, and three pi−sigma bonds with Leu 694, Val 702,

Figure 3. Redocking configuration displaying an RMSD of 1.223 Å
(native ligand in green, docked ligand in blue).
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and Leu 820. Additionally, hydrophobic interactions were
noted with residues such as Leu 694, Leu 768, Ala 719, Leu
820, Lys 721, and Val 702.
Compound Pred21 displayed various interactions: one

carbon hydrogen bond with Asp 831, one pi−cation bond
with Lys 721, one pi−anion bond with Glu 738, two pi−sigma
bonds with Leu 694 and Leu 820, and one pi−sulfur bond with
Met 742. Hydrophobic interactions were also observed with
residues such as Val 702, Lys 721, Leu 694, Phe 699, Ala 719,
and Leu 820.
3.11. Molecular Dynamics Simulation. Throughout this

research, a molecular dynamics simulation (MDS) was
performed over 100 ns to explore the binding mechanism,
structural dynamics, and flexibility exhibited by EGFR when
engaged with the three leading hits (Pred17, Pred20, and
Pred21). Critical parameters such as RMSD, root mean square
fluctuation (RMSF), and radius of gyration (Rg) were derived
from the trajectory data of the 100 ns dynamics.76

RMSD Calculation. The stability of a biomolecular system is
typically evaluated using its RMSD. Within computer-aided

drug design, systems with lower RMSD values are usually
considered more stable whereas systems with higher RMSD
values are seen as less stable.77 The examination of the RMSD
plot shown in Figure 5A reveals that all protein−ligand
complexes demonstrate decreased variability in their spectrum,
indicating a minimal disturbance in their conformational
behavior during the simulation. The average RMSD values
for Pred17, Pred20, Pred21, and erlotinib (with their
receptors) are 1.13, 0.95, 1.02, and 1.03 nm, respectively.
This result shows that Pred17, Pred20, and Pred21 are most
like the standard drug erlotinib and may be the most stable
drug candidates among the promising inhibitors.
Interestingly, these findings align with the docking

simulation, which revealed that these compounds had the
best binding affinities (see Figure 5).

RMSF Calculation. To investigate the flexibility of specific
residues that might have influenced the system’s overall
variations, the RMSF of the complex was determined.78 All
proteins’ backbone RMSFs were estimated using the
GROMACS “gmx rmsf” command line. For biomolecular

Figure 4. Two-dimensional representations of binding interactions in five complex compounds.
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systems, larger RMSF values indicate less residual stability,
similar to the RMSD measure, whereas lower values indicate
more stability.79,80 Figure 5B displays the results showing that
all the proposed compounds have an RMSF pattern that is
quite close to the standard medicine. The average RMSF
values for Pred17, Pred20 and Pred21, and Erlotinib are 0.16,
0.15, 0.16, and 0.18 nm, respectively. Once again, these
proposed compounds with the lowest average RMSF values
stands out as the most effective inhibitor.

Radius of Gyration Analysis. To monitor variations in
compactness and overall dimensions of the structures
throughout the MD simulation, the Rg values of the
protein−ligand complexes were evaluated. A consistent Rg
value typically signifies a stable, folded structure, whereas
fluctuations in the Rg value during the simulation indicate an
unfolding of the structure.81 Figure 5C presents the Rg spectra
of the complexes, showcasing the similarity between the most
promising proposed compounds and erlotinib throughout the
entire simulation. This similarity is consistent with the findings
from previous analyses, including docking, RMSD, and RMSF.
While other compounds also exhibit comparable patterns in
their graphs, Pred20 and Pred21 demonstrate the closest

resemblance. The average Rg values for Pred17, Pred20,
Pred21, and Erlotinib are 2.06, 2.04, 2.02, and 2.03 nm,
respectively. Notably, the Pred20−EGFR complex displays
lower Rg values compared to all other small-molecule
compounds, suggesting that it is the most compact
biomolecular system.

H-Bond Analysis. In a water environment, hydrogen bonds
and their respective strengths are critical in the interaction
between proteins and ligands, particularly in scenarios where
the mechanism of action involves hydrolysis, in which water
plays an important role in chemical breakdown.82 The process
of hydrogen bond formation involves the interaction of two
electronegative atoms, one from a hydrogen bond acceptor and
one from a hydrogen bond donor.83

In this study, the intermolecular hydrogen bonds formed
between EGFR and the compounds (Pred17, Pred20 and
Pred21, and Erlotinib) were investigated. The results are
presented in Figure 5D. Based on our observations, Pred20,
Pred21, and Erlotinib exhibit the most pronounced and
extensive spectrum of hydrogen bonds among all simulated
entities. These compounds have an average of 0.83, 1.48, and
1.03 hydrogen bonds, respectively. However, when compared

Figure 5. Results of the molecular dynamics study. (A) Time evolution of the backbone of three best hits inhibitors and the standard (Erlotinib).
(B) RMSF spectra of three promising inhibitors and the standard (Erlotinib). (C) Comparative radius of gyration values for the target protein with
three best hits inhibitors and the standard (Erlotinib). (D) Comparative hydrogen bonds for the target protein with the reference drug (Erlotinib)
and three best hits.

Table 6. MM-PBSA Calculations of Binding Free Energy for All the Complexes

complex
binding energy

(kJ/mol)
SASA energy
(kJ/mol)

polar solvation energy
(kJ/mol)

electrostatic energy
(kJ/mol)

van der Waals energy
(kJ/mol)

EGFR−Pred17 −101.007 ± 15.086 −16.719 ± 1.923 90.162 ± 25.842 −30.487 ± 8.109 −143.963 ± 17.430
EGFR−Pred20 −99.311 ± 19.158 −16.947 ± 2.246 90.765 ± 32.120 −25.374 ± 11.675 −147.755 ± 22.875
EGFR−Pred21 −99.467 ± 22.352 −17.985 ± 1.858 110.260 ± 26.860 −27.457 ± 12.246 −164.285 ± 21.439
EGFR−Erlotinib −76.570 ± 16.232 −20.616 ± 1.238 167.175 ± 22.949 −39.915 ± 12.776 −183.214 ± 12.605
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to Pred17, it is evident that this compound forms fewer
intermolecular hydrogen bonds with their receptors, averaging
only 0.53 hydrogen bond, respectively. It is worth noting that
the previous analysis, which utilized RMSD and RMSF metrics,
identified Pred20 as the most effective compound. Interest-
ingly, the results from the hydrogen bonding analysis further
validate and reinforce this conclusion.
3.12. MM-PBSA Binding Free Energy. The MM-PBSA

approach was employed to calculate the binding free energy
(ΔE) between the EGFR−Erlotinib, EGFR−Pred17, EGFR−
Pred20, and EGFR−Pred21 complexes using the MmPbStat.py
script for whole trajectories.61,65 The cumulative energies
resulting from nonpolar, polar, and nonbonded interactions,
including electrostatic interactions and van der Waals forces,
were computed for each complex and are presented in Table 6.
The molecules Erlotinib, Pred17, Pred20, and Pred21 all
exhibit binding to EGFR with free energies of −76.570,
−101.007, −99.311, and −99.467 kJ/mol, respectively. This
provides evidence for the accuracy and reliability of the MDS
model employed in this investigation. The binding energy of
the four of these systems was influenced by the nonpolar
solvation free energy (Enon polar), electrostatic energy (Eele),
and van der Waals energy (Evdw). However, the polar energy
(E polar) was unfavorable, highlighting the importance of the
intermolecular van der Waals contribution. The observation of
a significant interaction between the ligand and the hydro-
phobic binding pocket is in line with the findings from the
docking studies and MD simulation interactions.

4. CONCLUSIONS
This study presents a QSAR analysis of 31 quinazoline
derivatives and their effectiveness against EGFR in lung cancer
cell lines. The developed models, RLM, are both internally and
externally validated, demonstrating good predictive capabilities
and significant statistical validity. The descriptors EGap and
boiling point were found to correlate significantly with the
inhibitory activity, where higher values are associated with
increased effectiveness of the quinazoline derivatives as EGFR
inhibitors. Furthermore, ADMET predictions, molecular
docking, and dynamics analyses were conducted for four
newly designed molecules based on structural modifications of
the most active synthesized molecule. The results revealed that
three compounds, identified as Pred17, Pred20, and Pred21,
adhere to all ADMET criteria and exhibit notable interactions
with the protein (PDB code: 1M17). MD simulations were
performed on these designed compounds, indicating their
promise as prospective candidates for continued investigation
in drug development targeted at lung cancer.
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