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ABSTRACT

We present Rsubread, a Bioconductor software pack-
age that provides high-performance alignment and
read counting functions for RNA-seq reads. Rsub-
read is based on the successful Subread suite with
the added ease-of-use of the R programming envi-
ronment, creating a matrix of read counts directly as
an R object ready for downstream analysis. It inte-
grates read mapping and quantification in a single
package and has no software dependencies other
than R itself. We demonstrate Rsubread’s ability to
detect exon–exon junctions de novo and to quantify
expression at the level of either genes, exons or exon
junctions. The resulting read counts can be input
directly into a wide range of downstream statistical
analyses using other Bioconductor packages. Using
SEQC data and simulations, we compare Rsubread
to TopHat2, STAR and HTSeq as well as to counting
functions in the Bioconductor infrastructure pack-
ages. We consider the performance of these tools on
the combined quantification task starting from raw
sequence reads through to summary counts, and in
particular evaluate the performance of different com-
binations of alignment and counting algorithms. We
show that Rsubread is faster and uses less mem-
ory than competitor tools and produces read count
summaries that more accurately correlate with true
values.

INTRODUCTION

RNA sequencing (RNA-seq) is currently the method of
choice for performing genome-wide expression profiling.
One of the most popular strategies for measuring expres-
sion levels is to align RNA-seq reads to a reference genome

and to count the number of aligned reads that overlap each
annotated gene (1–3). Alternatively, reads might be counted
by exon or by exon–exon junction (4). Read mapping and
read counting thus constitute a common workflow by which
raw reads are summarized into a count matrix that can be
used for downstream analyses. These two steps often repre-
sent the most computationally expensive part of an RNA-
seq analysis, with mapping and counting both contributing
substantially to the total cost.

The last decade has seen rapid development of splice-
aware read alignment software. TopHat was the first suc-
cessful and popular RNA-seq aligner (5). Later aligners
such as STAR (6), Subread, Subjunc (7) and HISAT (8)
were dramatically faster while maintaining or improving on
accuracy. RNA-seq read counting algorithms have devel-
oped at almost the same pace, including BEDTools (9), fea-
tureCounts (1), htseq-count (3) and Rcount (10). Some of
these tools are under continuous development and this arti-
cle particularly highlights recent improvements in the Sub-
read algorithms.

R is one of the world’s most popular programming lan-
guages (11). The TIOBE Programming Community index
places it 14th overall at the time of writing and first amongst
languages designed specifically for statistical analysis (https:
//www.tiobe.com/tiobe-index). Building on R, Bioconduc-
tor is arguably the world’s most prominent software devel-
opment project in statistical bioinformatics (12). Biocon-
ductor contains many highly cited packages for the analysis
of RNA-seq read counts, including limma (13,14), edgeR
(15) and DESeq2 (16) for differential expression analyses
and DEXSeq (4) for analysis of differential splicing. Key
attractions of Bioconductor include the ease-of-use of the
R programming environment, the well organized package
management system, the wealth of statistical and annota-
tion resources, the interoperability of different packages and
the ability to document reproducible analysis pipelines.

All the Bioconductor RNA-seq data analysis packages
rely, however, on read alignment and summarization, which
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typically have to be performed outside of R. The aligners
and quantification tools mentioned above, for example, are
written in C, C++, Python or a mixture of those languages.
More than one programming language might be used even
within a single tool with, for example, Python scripts of-
ten found in read mapping tools otherwise written in C or
C++. This complicates the analysis pipeline, introducing
additional software dependencies and creating substantial
obstacles for non-expert uses.

QuasR is a Bioconductor package that attempts to fill the
gap, providing RNA-seq read alignment and read counting
in the form of R functions (17). QuasR is however an in-
terface to C programs from 2010 or earlier, specifically to
Bowtie version 1.1.1 (18), SpliceMap 3.3.5.2 (19) and Se-
qAn 1.1 (20). These older tools do not reflect the consid-
erable improvements in algorithms achieved during the last
8 years.

This article presents Rsubread, a Bioconductor package
that implements current high-performance RNA-seq read
alignment and read counting algorithms in the form of
R functions. The Rsubread algorithms build on the ‘seed-
and-vote’ mapping paradigm (7) and earlier featureCount
routines (1) with important new developments that sub-
stantially improve performance. The Rsubread user inter-
face provides added functionality and ease-of-use associ-
ated with the R Programming environment.

Rsubread integrates read mapping and quantification in
a single package and has no software dependencies other
than R itself. It has the ability to detect exon–exon junc-
tions de novo and to quantify expression at the level of either
genes, exons or exon junctions. Except for read alignment
itself, all Rsubread functions produce standard R data ob-
jects, allowing seamless integration with downstream analy-
sis packages. The resulting read counts can be input directly
into a wide range of downstream statistical analyses using
other Bioconductor packages. Rsubread allows RNA-seq
data analyses, from raw sequence reads to scientific results,
to be conducted entirely in R (21,22).

We take the opportunity in this article to compare Rsub-
read with the current versions of the popular non-R tools
TopHat2, STAR and HTSeq as well as to counting func-
tions in the Bioconductor infrastructure packages. Previ-
ous studies have almost always evaluated the performance
of read aligners or quantifiers separately (1,7,23,24), an ap-
proach that does not reflect all aspects of the user experi-
ence. Here, we instead consider the performance of the tools
on the combined quantification task starting from raw se-
quence reads through to summary counts. In particular this
allows us to evaluate the performance of different combina-
tions of alignment and counting algorithms. Using SEQC
data and simulations, tools are compared on their ability to
return read counts that correctly represent the expression
levels of genes and exons and on their ability to detect exon–
exon junctions. The accuracy of the read counts is assessed
by correlating with known expression values. We also mea-
sure the time taken and memory used to achieve the results.
We note that counting can take longer than alignment for
some tools.

This article reports the following results. First we describe
the Rsubread package workflow. We summarize the index
building, alignment and read counting functionalities of the

package in turn, with emphasis on recently added features.
Then Rsubread is compared with the most popular com-
peting tools for alignment and quantification. The compar-
isons are carried out successively at the gene level, then the
exon level and finally for detection of exon–exon junctions.
All comparisons report accuracy, time taken and memory
used. The results show that Rsubread outperforms other
tools on all three metrics. It is faster and uses less memory
than competitor tools and produces read count summaries
that more accurately correlate with true values.

MATERIALS AND METHODS

Software tools

This study compares Rsubread 1.30.9 with aligners STAR
2.6.0c and TopHat 2.1.1 and with quantifiers HTSeq 0.10.0,
IRanges 2.14.10, GenomicRanges 1.32.3 and DEXSeq
1.26.0. Rsubread, IRanges, GenomicRanges and DEXSeq
are R packages available from http://www.bioconductor.
org. Due to version number bumping with each Bio-
conductor release, Rsubread version 1.30.9 is the same
as Rsubread 1.32.0. STAR and TopHat2 are Unix
command-line tools written in C++ and Python available
from https://github.com/alexdobin/STAR and https://ccb.
jhu.edu/software/tophat respectively. HTSeq is a Python li-
brary available from https://pypi.org/project/HTSeq.

To make a fair comparison across different workflows,
aligners and quantifiers were run with similar settings as far
as possible. All aligners were instructed to output no more
than one alignment per read. STAR was run in 2-pass mode.
Rsubread and STAR were set to output name-sorted reads
for paired end data, but TopHat2 supports only location-
sorted reads. All aligners were permitted to use gene anno-
tation as an added resource to help detect exon–exon junc-
tions. All aligners were run with 10 threads. featureCounts
is the only quantifier that supports multithreading and was
run with 4 threads in the evaluation.

All timings and comparisons reported in this article were
undertaken on a CentOS 6 Linux server with 24 Intel Xeon
2.60 GHz CPU cores and 512GB of memory.

SEQC data

As an example of real RNA-seq data with known expres-
sion profiles, data generated by the SEQC Project (2) was
used. Two particular FASTQ files were used, one generated
from sequencing of Human Brain Reference RNA (HBRR)
and one from Universal Human Reference RNA (UHRR).
Each file contains 15 million 100 bp read-pairs and was gen-
erated from an Illumina HiSeq sequencer.

The SEQC Project includes expression values measured
by TaqMan RT-PCR for slightly over 1000 genes for both
HBRR and UHRR. 958 of these TaqMan validated genes
were found to have matched symbols with genes in the
RNA-seq data. The TaqMan RT-PCR expression values are
available from the seqc Bioconductor package.

Simulations

FASTQ files containing simulated paired-end reads were
generated using the same GRCh38/hg38 genome and gene
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annotation as for the SEQC data. Germline variants includ-
ing SNPs and short indels were introduced to the reference
genome at the rates of 0.0009 and 0.0001 respectively, be-
fore sequence reads were extracted from the genome. Base
substitution errors in sequencing were simulated according
to Phred scores at the corresponding positions in randomly
selected RNA-seq reads from an actual RNA-seq library
(GEO accession GSM1819901), ensuring that the error pro-
file of simulated reads is similar to that of real RNA-seq
reads.

FPKM values were generated from an exponential distri-
bution and randomly assigned to genes. The FPKM values
were then mapped back to genewise read counts according
to known gene lengths in order to achieve a library size of 15
million read pairs. Fragment lengths were randomly gener-
ated according to a normal distribution with mean 200 and
variance 30. Fragment lengths <110 or >300 were reset to
110 or 300 respectively. Given the fragment length, a pair of
100 bp sequences was randomly selected from exonic base
positions of a gene assuming that all exons for that gene are
equally expressed and sequentially spliced.

Annotation

All evaluations and simulations used Rsubread’s built-in
RefSeq gene annotation for human genome GRCh38/hg38
(build 38.2). This is identical to NCBI annotation except
that overlapping exons from the same gene are merged to
produce a non-overlapping set of exons for each gene. This
simplification reduces ambiguity and somewhat improves
the performance of all the read quantification tools. This
annotation contains 28 395 genes and 261 752 exons.

Access to data and code

Rsubread can be installed by typing install (‘Rsubread’) at
the R prompt, where install is a function in the BiocMan-
ager package. Complete data and code necessary to repro-
duce the figures and results presented in this article is avail-
able from http://bioinf.wehi.edu.au/Rsubread/.

RESULTS

The Rsubread workflow

The Rsubread pipeline for read mapping and quantification
consists of five R functions (Table 1). buildIndex builds an
index of the reference genome. This is a once-off operation
for each reference genome, as the same index file can be used
for multiple projects. Either align or subjunc is used to align
sequence reads to the reference genome and featureCounts
produces a matrix of counts. propmapped is optional and
produces a table of mapping statistics. All functions return
R objects. buildIndex, align and subjunc also write files to
disk.

All functions operate on an entire set of RNA samples at
once rather than one at a time. A typical user-workflow is to
start with an R dataframe associating the FastQ filenames
with genotypic or phenotypic variables representing exper-
imental conditions. The dataframe column containing the
filenames is passed to Rsubread and an annotated R ma-
trix of counts is returned, with samples in the original order,
after calls to align (or subjunc) and featureCounts.

Table 1. The main Rsubread functions for read alignment and
quantification

Function Description

buildIndex Create hash table of target genome
align Basic alignment with soft-clipping, for gene-level

analyses
subjunc Alignment with identification of exon–exon

junctions
propmapped Compute mapping statistics
featureCounts Compute count matrix for specified genomic

features

Other Rsubread functions are briefly discussed in the Discussion section.

A variety of new functionality has been added to the
Rsubread functions in recent Bioconductor releases. Par-
ticularly large speed improvements were achieved with the
Bioconductor 3.8 release in October 2018, corresponding to
Rsubread versions 1.30.9 and later.

Rsubread also installs with curated RefSeq gene annota-
tion for human and mouse and includes a 55-page User’s
Guide.

Building the index

buildIndex creates a hash table of the target genome from a
FASTA file. The index can be built at either single-base or
3-base resolution. Building the full index at single-base res-
olution takes slightly longer than the gapped index (about
40 minutes vs 15 minutes for the human or mouse genomes)
and produces a larger file (about 15Gb versus 5Gb), but al-
lows subsequent alignment to proceed more quickly. The
index needs to be built only once for each genome so single-
based resolution has been set as the default since Rsubread
version 1.30.4. Improvements to buildindex’s hashing algo-
rithms, using a more aggressive divide-and-conquer strat-
egy, reduced the time needed to build a full index more than
two-fold in October 2018. Building a gapped index might
still however be an efficient choice for smaller projects and
was the default in older versions of the software.

Alignment

Alignment itself is performed by either the align or subjunc
functions. Both functions accept raw reads, in the form of
Fastq, SAM or BAM files, and output read alignments in
either SAM or BAM format. align and subjunc also write
VCF files containing detected indels and subjunc outputs
BED files of exon–exon junctions. At the R level, both func-
tions return an R data.frame containing the total number of
reads, the number of uniquely mapped reads, the number of
multi-mapping reads and other mapping statistics.

The align function is exceptionally flexible. It performs lo-
cal read alignment and reports the largest mappable region
for each read, with unmapped read bases being soft-clipped.
Its unique seed-and-vote design makes it suitable for RNA-
seq as well as for genomic DNA sequencing experiments. It
automatically detects insertions and deletions. align is rec-
ommended for gene-level expression analyses of RNA-seq
or for any type of DNA sequencing.

The subjunc function is similar to align but provides com-
prehensive detection of exon–exon junctions and reports
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full alignments of junction-spanning reads. subjunc is rec-
ommended for any RNA-seq analysis requiring intra-gene
resolution.

Both align and subjunc achieve high accuracy via a two-
pass process. The first pass is the seed-and-vote step, by
which a large number of 16mer subreads from each read
are mapped to the genome using the hash table. This step
detects indels and exon–exon junctions and determines the
major mapping location of the read. The second pass un-
dertakes a detailed local re-alignment of each read with the
aid of collected indels and junctions. Subread and Subjunc
were the first aligners to implement such a two-pass strategy
(7), although the use of indels in the second pass is new.

align and subjunc support reads from any of the ma-
jor Next Generation Sequencing (NGS) technologies. Users
can specify the amount of computer memory and the num-
ber of threads to be used, enabling the aligners to run ef-
ficiently on a variety of computer hardwares from super-
computers to personal computers.

The propmapped function calculates the proportion of
reads or fragments that are successfully mapped, a useful
quality assessment metric.

Improvements to the alignment algorithms

Recent modifications to the alignment algorithms have im-
proved performance in a variety of ways. Aligned reads are,
by default, written to disk without reordering so that paired
reads are in successive positions in the file, but reads can
now optionally be sorted by genomic location with little in-
crease in execution time. align and subjunc can now option-
ally use gene annotation in order to refine the search for
exon–exon junctions. The required annotation object can
be generated conveniently by using Bioconductor organism
packages created by the Bioconductor core team or, for hu-
man or mouse, Rsubread’s built-in annotation can be used.
align and subjunc can now detect multiple short indels even
within the same read. Both functions also handle long in-
dels up to 200 bp.

More candidate locations are now examined for multi-
mapping reads. Previously paired-end reads were restricted
to stipulated minimum and maximum possible fragment
lengths, but now align and subjunc can align read pairs arbi-
trarily far apart if the alignment is sufficiently good and no
more canonical alignment is available. A weighting strategy
is used to give preference to alignments within the expected
fragment length bounds. Gene fusions are now supported
by allowing different subreads from the same read to map
to different chromosomes.

In a major development, improved support for multi-
threaded input and output halved the execution time for
align and subjunc in the Bioconductor 3.8 release.

Counting reads

The featureCounts function counts the number of reads or
read-pairs that overlap any specified set of genomic features.
It can assign reads to any type of genomic region. Regions
may be specified as simple genomic intervals, such as pro-
moter regions, or can be collections of genomic intervals,
such as genes comprising multiple exons. Any set of ge-

nomic features can be specified in GTF, GFF or SAF for-
mat, either as a file or as an R data.frame. SAF is a Simpli-
fied Annotation Format with columns GeneID, Chr, Start,
End and Strand.

featureCounts produces a matrix of genewise counts suit-
able for input to gene expression analysis packages such as
limma (13), edgeR (15) or DESeq2 (16). Alternatively, a ma-
trix of exon-level counts can be produced suitable for differ-
ential exon usage analyses using limma, edgeR or DEXSeq
(4).

featureCounts outputs the genomic length and position of
each feature as well as the read count, making it straightfor-
ward to calculate summary measures such as RPKM (reads
per kilobase per million reads).

featureCounts includes a large number of powerful op-
tions that allow it to be optimized for different applica-
tions. Reads that overlap more than one feature can be ig-
nored, multi-counted or counted fractionally. Reads can be
extended before counting to allow for probable fragment
length. Minimum overlap or minimum quality score metrics
can be specified. Reads can be counted in a strand specific
or non-specific manner.

Counting reads for genes, exons and junctions

A common use of featureCounts is to count reads by gene,
and this forms the basis of most gene expression analyses.
In this mode, each exon is considered by Rsubread to be
a ‘feature’ and each gene is a ‘meta-feature’ comprising a
collection of exons. To count reads at the gene level, each
read is counted once for a gene if it overlaps one or more of
the exons that make up that gene.

Another common procedure is to count reads by exon, a
practice that permits alternative exon usage or alternative
splicing to be investigated. In this mode, a read is typically
counted once for every exon that it overlaps. Of particular
importance is the mapping and counting of reads that span
two or more exons in the same gene, i.e., that span one or
more exon-junctions. Junction-spanning reads typically ac-
count for ∼20–30% of reads in an RNA-seq dataset.

featureCounts also provides a third option. In this new
approach, subjunc is first used to detect all exon-junctions
in an RNA sample. Then featureCounts is used to count
(i) the number of reads spanning each junction and (ii) the
number of reads entirely internal to each exon. This junc-
tion+internal approach provides complete information and
has the advantage of counting each read exactly once.

Gene-level counting can be performed using alignments
from either align or subjunc, but align is recommended be-
cause it provides the most mapped reads. For exon-level
counting, subjunc aligner should be used for read mapping
as it comprehensively detects exon-junctions and performs
a complete alignment for each read.

New functionality for the counting algorithms

As with alignment, recent modifications to featureCounts
have either improved performance or increased function-
ality. Earlier versions of featureCounts required the input
BAM files to be name-sorted, i.e. for paired reads to im-
mediately follow one another in the file, but featureCounts
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now works with any ordering. This avoids any unnecessary
overheads when processing BAM files produced by STAR
or TopHat, for which location-sorting is the default. feature-
Counts now handles reads of arbitrary length, allowing it to
count reads from long-read sequencers such as those from
Oxford Nanopore Technologies.

The original behavior of featureCounts was to count any
read that overlaps a feature, even by a single nucleotide.
That behavior is still the default, but featureCounts now
offers unrivaled flexibility in terms of being able to spec-
ify how a read should overlap with a feature before it is
counted. Users can specify that reads should overlap a fea-
ture by a minimum number of bases, or alternatively over-
lap a minimum percentage of the feature. Reads can be re-
duced to a single base so that users can count, for exam-
ple, the number of read-start positions than overlap a set of
genomic features. Alternatively reads can be extended in a
directional manner to represent the putative DNA or RNA
fragment from which the read originated. Reads can even be
shifted by a specified number of bases in a 3’ or 5’ direction
before counting is done. Other new functionality includes
the junction+internal counting described above.

Built-in annotation

Rsubread comes with annotation for human and mouse
genes already installed, so that GTF or SAF files do not
need to be specified for these species. The built-in annota-
tion follows NCBI RefSeq gene annotation with the sim-
plification that overlapping exons from the same gene are
merged. This simplification reduces annotation ambiguity
and proves beneficial for most RNA-seq expression anal-
yses. Built-in annotation is provided for the mm9, mm10,
hg19 and hg38 genome builds. Rsubread’s built-in hg38 an-
notation was used for the simulations and comparisons re-
ported in this article.

Quantification at the gene-level: speed and memory

We now compare the Rsubread gene-level workflow, which
consists of align and featureCounts, to other workflows that
generate read counts for genes. Rsubread is compared to
aligners TopHat2 (25) and STAR (26) combined with quan-
tification tools htseq-count (3), summarizeOverlaps and fea-
tureCounts. Google Scholar searches suggest that these are
currently the most popular tools for generating gene-level
counts. htseq-count is part of the HTSeq Python library.
summarizeOverlaps is a function in the Bioconductor pack-
age GenomicRanges.

First we assessed the running time of the read aligners on
the SEQC UHRR sample (Figure 1). align was faster when
run with the full genome index (align-F) as opposed to the
gapped index (align-G), with both options being faster than
STAR or TopHat2. align-F was more than three times as
fast as STAR and 25 times as fast as TopHat2.

TopHat2 and align-G had the smallest memory foot-
prints for the same operation (supplementary Figure S1).
align-F used twice as much memory and STAR over four
times as much.

Next we ran the quantification tools to assign the mapped
UHRR reads to RefSeq human genes. This showed feature-

Figure 1. Run times of read aligners. Each aligner used ten threads to map
15 million 100 bp read-pairs from the SEQC UHRR sample to the hu-
man reference genome GRCh38. Rsubread::align is faster than STAR or
TopHat2 regardless of whether the full index (align-F) or a gapped index
(align-G) is used.

Figure 2. Running time of different quantification tools. Labels under each
bar indicate the quantification method and the aligner (in parenthesis) that
produced the mapped reads used for counting. Mapped reads were as-
signed to NCBI RefSeq human genes. featureCounts is the only tool that
supports multi-threaded read counting and it was run with four threads.

Counts to be 16–175 times faster than the other tools (Fig-
ure 2). featureCounts was equally as fast regardless of the
alignment used. summarizeOverlaps and htseq-count were
slower when working on the TopHat2 alignment than the
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Table 2. Gene-level accuracy comparison. The table gives Pearson correla-
tions between true log2-expression levels and log2-FPKM values produced
by each workflow. The align-F + featureCounts workflow gives the best
correlation in each case

Workflow UHRR HBRR Simulation

align-F + featureCounts 0.851 0.870 0.955
align-G + featureCounts 0.850 0.869 0.955
STAR + featureCounts 0.848 0.867 0.901
STAR + htseq-count 0.845 0.864 0.877
STAR + summarizeOverlaps 0.845 0.864 0.877
TopHat2 + htseq-count 0.843 0.863 0.921
TopHat2 + summarizeOverlaps 0.843 0.863 0.921

Columns ‘UHRR’ and ‘HBRR’ are for the SEQC UHRR and SEQC
HBRR samples respectively. For the SEQC columns, the log2-expression
values of 958 genes measured by TaqMan RT-PCR are taken as true val-
ues. Column ‘Simulation’ shows simulation results for 28 395 genes. For
all columns, an offset of 1 was added to raw gene counts to avoid taking
logarithms of zeros.

STAR alignment. In this evaluation, align and STAR out-
put name-sorted aligned reads whereas TopHat2 output
location-sorted reads.

featureCounts used easily the least memory for the quan-
tification step (supplementary Figure S2). htseq-count used
only slightly more memory than featureCounts when read
pairs were name-sorted, but it used >40 times more memory
when the read pairs were location-sorted. summarizeOver-
laps had high memory usage for both name-sorted and
location-sorted reads because it loads all the reads into
memory at once.

In summary, Rsubread outperformed the STAR-based
workflows in both speed and memory use. While TopHat2
has a slightly smaller memory footprint than Rsubread for
alignment, it was far too slow to be competitive.

Quantification at the gene-level: accuracy

Next we compared workflows for accuracy in quantify-
ing gene expression levels. First we ran the workflows on
the UHRR and HBRR samples from the SEQC Project.
Read counts generated from each workflow were then com-
pared to the expression levels of 958 genes as measured
by TaqMan RT-PCR, a high-throughput quantitative PCR
technique. RNA-seq counts were converted to log2-FPKM
(fragments per kilobases per million) values and TaqMan
RT-PCR data were also converted to log2 scale.

Rsubread workflows are found to yield the highest cor-
relation with TaqMan RT-PCR data for both UHRR and
HBRR samples (Table 2). All workflows produce higher
correlation for HBRR sample than for UHRR sample,
which is expected because the UHRR sample is made up
from multiple cancer cell lines.

Next we compared the workflows on simulated data. All
the workflows were run on a simulated FASTQ file of 15 mil-
lion read pairs. Read counts were converted to log2-FPKM
and compared to the known log2-FPKM values from which
the simulated sequence reads were generated. The Rsubread
workflows are again found to achieve the best correlation
with the true expression values (Table 2). Both Rsubread
workflows yield correlation >0.95, much higher than those
for other workflows.

In general, align was more accurate than STAR and
featureCounts was more accurate than either htseq-count
or summarizeOverlaps. summarizeOverlaps uses the same
counting strategy as that developed by htseq-count and
therefore gives the same results.

Quantification at the exon level: speed and memory

Next we compared workflows to obtain exon-level read
counts. Rsubread workflows for exon-level analysis com-
prise the subjunc program, which was run with a full
genome index (subjunc-F) or a gapped index (subjunc-G),
and the featureCounts programs. Rsubread was compared
to TopHat2 + dexseq count, TopHat2 + countOverlaps,
STAR + dexseq count, STAR + countOverlaps and STAR
+ featureCounts. dexseq count.py is a Python script that
comes with the DEXSeq package for counting RNA-seq
reads by exon. countOverlaps is a function in IRanges pack-
age. For all pipelines, reads spanning multiple exons were
counted for all the relevant exons.

All workflows were run on the SEQC UHRR data. The
results were qualitatively similar to those observed at the
gene-level. subjunc-F was faster than subjunc-G and both
were faster than STAR and TopHat2 (supplementary Fig-
ure S3). subjunc-F was more than twice as fast as STAR and
20 times as fast as TopHat2.

For read counting, featureCounts is more than an order
of magnitude faster than countOverlaps or dexseq count,
regardless of which aligner output was used (supplementary
Figure S4). Dexseq count was the slowest counting tool.

subjunc uses much less memory than STAR (supplemen-
tary Figure S5) and featureCounts uses less memory than
dexseq count or countOverlaps (supplementary Figure S6).
As for the gene-level results, TopHat2 used slightly less
memory than subjunc-G but at too high a price in terms of
running time.

In summary, subjunc-F and featureCounts constitute the
fastest workflow for exon-level analysis of RNA-seq data.
featureCounts uses the least memory of any quantification
tool and subjunc uses less memory than STAR.

Quantification at the exon level: accuracy

We used the same simulated data as for the gene-level com-
parison to assess the accuracy of the exon-level workflows.
Overlapping exons found between genes were removed from
analysis to avoid counting ambiguity. Exons from genes ap-
pearing in more than one chromosome, or appearing in
both strands of the same chromosome, were also removed
because dexseq count cannot process such exons. 5000 ex-
ons were excluded from this analysis in total (out of 261 752
exons). Read counts from remaining exons were then con-
verted to log2-FRKMs for comparison.

As was seen in the gene-level comparison, the two
Rsubread workflows both outperformed the other work-
flows (Table 3). subjunc and TopHat2 were more accu-
rate than STAR. featureCounts was more accurate than
countOverlaps and countOverlaps was more accurate than
dexseq count. The accuracy of the workflows was af-
fected by both read mapping and counting. The STAR +
dexseq count workflow had the worst correlation of the
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Table 3. Exon-level accuracy comparison. The table shows the Pearson
correlation between the true log2-FPKM expression values of exons and
log2-FPKM values produced by each workflow. The Rsubread workflows
give the best correlation with the true values

Workflow Correlation

subjunc-F + featureCounts 0.982
subjunc-G + featureCounts 0.982
STAR + featureCounts 0.950
STAR + dexseq count 0.927
STAR + countOverlaps 0.950
TopHat2 + dexseq count 0.942
TopHat2 + countOverlaps 0.980

An offset of 1 was added to raw exon counts to avoid taking logarithms of
zero values.

workflows. Replacing dexseq count with featureCounts im-
proved the accuracy, but it remained lower than that for the
two pure Rsubread workflows.

Detection and quantification of exon–exon junctions

Exon-exon junctions can be discovered directly by the cor-
rect mapping of junction-spanning reads (junction reads).
Most RNA-seq aligners report the locations of exon splice
sites (donor and receptor sites). The number of reads
supporting the splice sites detected are often reported as
well, providing a quantitive measurement for the junctions
events. Analysis of discovered junctions and their abun-
dance is an important step in the discovery of alternative
splicing events. Junction data can be further combined with
exon-level and gene-level expression data in order to detect
differentially spliced genes.

Nevertheless, junction reads can be difficult to map cor-
rectly because they may span an intron tens of thousands
of bases long and indeed might span more than one intron.
Here we assess the performance of the aligners for mapping
junction reads and calling junctions. We used the same sim-
ulated data as above. There are 233 021 exon–exon junctions
in the simulated data and 25% of the simulation reads are
junction reads.

subjunc-F and subjunc-G had better overall performance
than STAR or TopHat2 as measured by the F1 summary of
precision and recall (Table 4). In particular, subjunc-F and
subjunc-G outperformed STAR and TopHat2 in mapping
of junction reads by a clear margin. STAR was slightly less
sensitive than the other aligners in mapping junctions reads
or detecting junctions.

DISCUSSION

Read mapping and quantification are computationally-
intensive operations that lay the foundation for most analy-
ses of NGS data. The time-consuming and resource-hungry
nature of these operations is a major bottleneck for larger
projects. Meanwhile, R is an easy-to-learn scripting lan-
guage that is widely used for statistical analyses of NGS
data once the processing of the raw reads is completed.
Rsubread provides functions for read mapping and quan-
tification within the R programming environment, allowing
an entire NGS analysis, from reads to results, to be com-
pleted in a single R session. Rsubread can work with Bio-

conductor packages limma, edgeR and DESeq2 to com-
plete an entire RNA-seq analysis in R from read mapping
through to the discovery of genes that exhibit significant ex-
pression changes (21,22). It has proved a valuable resource
for NGS analyses in biomedical research (27).

The use of a pure R environment means that users do
not need to install additional software tools, learn user-
interfaces or assimilate documentation outside of the R en-
vironment. The R functions provide careful checking for in-
put parameters and user-friendly error messages. At a more
advanced level, an entire analysis workflow can be docu-
mented using reproducible research packages such as knitr
or Sweave (28).

Rsubread consists of over 60 000 lines of source code, but
the user interface is concise and easy to navigate (Table 1).
Each of the Rsubread functions offers optional arguments,
but these are accessed only as needed and in most cases the
default arguments perform well. All functions and options
are documented via the R help system and are summarized
in the Rsubread User’s Guide.

As well as ease-of-use, this study has shown that Rsub-
read outperforms the most popular competing alignment
and quantification tools regardless of programming lan-
guage. Rsubread was found to be faster, to use less mem-
ory and to provide more accurate expression quantification
than competitor tools. The speed difference was substantial,
with Rsubread more than three times as fast as its nearest
competitor for gene-level alignment and an order of mag-
niture faster for quantification. Rsubread was consistently
the best performer on all metrics considered except that
TopHat2 used slightly less memory for alignment. TopHat2
however was an order of magnitude slower and hence is not
considered competitive overall. The improved accuracy of
the Rsubread workflows should translate into more accu-
rate downstream analyses such as discovery of differentially
expressed genes.

The performance of the Rsubread aligners ultimately de-
rives from the efficiency of the seed-and-vote mapping strat-
egy implemented in Subread (7). Seed-and-vote tiles each
sequence reads with a large number of short seeds, each of
which can be mapped to the genome using an extremely ef-
ficient hashing operation. This enables align and subjunc to
very quickly detect all possible candidate mapping locations
for a read. The top candidate locations with a high number
of votes received from the seeds can be quickly followed up.
Gaps between mapped seeds are filled by using a banded
Smith–Waterman dynamic programming procedure. Local
alignment proceeds very quickly because the gaps are small
and gap length is pre-determined by the flanking seeds. For
the mapping of paired-end reads, the end with most votes
serves as the anchor read and the other end is re-mapped by
taking into account the expected distance between the two
ends. Rsubread builds on this fundamental framework to
provide general purpose RNA-seq functionality. The pack-
age is under continuous development and substantial per-
formance improvements continue to be achieved.

Although the main focus of this study is on the analysis
of RNA-seq data, Rsubread can be used also for the analy-
sis of other types of sequencing data such as histone ChIP-
seq and ATAC-seq. The align function can be used for read
mapping and featureCounts can be used to produce read
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Table 4. Aligner performance in mapping junction reads and reporting exon–exon junctions. Results are based on simulated data

Junctions Junction reads

Workflow Recall Prec F1 Recall Prec F1

subjunc-F 99.80 99.53 99.66 95.51 98.18 96.82
subjunc-G 99.82 99.43 99.63 95.50 98.16 96.81
STAR 98.48 99.87 99.17 89.87 98.06 93.78
TopHat2 99.12 99.91 99.51 90.15 98.57 94.17

Column ‘Recall’ gives the percentage of correctly called junctions (or junction reads) out of all junctions (or junction reads) generated in the simulated
dataset. Column ‘Precision’ gives the percentage of correctly called junctions (or junction reads) out of all reported junctions (or junction reads). Column
‘F1’ gives the F1 score that is the harmonic mean of precision and recall.

counts for promoter regions, gene bodies, windows or re-
gions to provide a measurement of peak abundance (29,30).

The Rsubread package includes other functions be-
yond the scope of this article including sublong (for long
read mapping), exactSNP (SNP identification), atgcCon-
tent (compute nucleotide frequencies), detectionCall, and
promoterRegions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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