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Abstract: Rice (Oryza sativa) is one of the main staple crops worldwide but suffers from important
yield losses due to different abiotic and biotic stresses. Analysis of quantitative trait loci (QTL)
is a classical genetic method which enables the creation of more resistant cultivars but does not
yield information on the genes directly involved or responsible for the desired traits. Lectins
are known as proteins with diverse functions in plants. Some of them are abundant proteins
in seeds and are considered as storage/defense proteins while other lectins are known as
stress-inducible proteins, implicated in stress perception and signal transduction as part of plant
innate immunity. We investigated the distribution of lectin sequences in different QTL related to
stress tolerance/resistance, morphology, and physiology through mapping of the lectin sequences
and QTL regions on the chromosomes and subsequent statistical analysis. Furthermore, the domain
structure and evolutionary relationships of the lectins in O. sativa spp. indica and japonica were
investigated. Our results revealed that lectin sequences are statistically overrepresented in QTLs
for (a)biotic resistance/tolerance as well as in QTLs related to economically important traits such as
eating quality and sterility. These findings contribute to the characterization of the QTL sequences
and can provide valuable information to the breeders.
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1. Introduction

Rice (Oryza sativa) is one of the major cereal crops worldwide and is the main food source for
more than half of the human population around the world [1,2]. It is predicted that by 2050 the general
agricultural production should increase by 60% to cover the food requirements [3]. In particular,
the rice demand of Asia is expected to be 70% higher within 30 years [4]. At the same time, 50% to
90% of the rice production worldwide is annually destroyed or diminished due to drought, salt stress,
rice blast disease, etc., or a combination of these major stresses. Ongoing research aims to define the
genes/proteins that contribute to the resistance or tolerance of rice towards a broad spectrum of abiotic
and biotic stresses. The combined use of multiple genes conferring tolerance/resistance to one or a
couple of stress factors (so-called pyramiding of genes) is considered a promising approach for the
elaboration of resistant rice cultivars with high yields but at the same time is a very challenging task
for the breeders [5,6].
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With more than 120,000 varieties [7], rice is a cereal which grows in diverse environmental
conditions with respect to water supply, climate, etc. [3]. Rice cultivars are mainly grouped into
two subspecies, indica and japonica, which most likely originate from different ancestors and have
been domesticated independently in India and China, respectively [1]. The large diversity in the
growth conditions highly affects and assists the divergence between these two subspecies, leading
to differences in morphological characteristics as well as in seed quality and stress resistance [1,2,8],
with a higher diversity observed in the japonica subspecies [7]. In addition, several reports uncovered
differences at the transcriptome, proteome, and metabolome level of both subspecies [1,2].

The choice of rice cultivar grown by the farmer is usually based on yield and grain quality.
Unfortunately, these high-yielding cultivars can be more susceptible to diseases while other cultivars
combine resistance towards a couple of abiotic and biotic stresses but do not possess the desired seed
quality [3]. Stress tolerance, pathogen resistance and grain yield and quality are complex traits which
involve multiple genes located in different quantitative trait loci (QTLs). QTL analysis is complicated
by the fact that one QTL region can have pleiotropic effects on a wide range of traits, or consists of
multiple QTLs. In addition, QTLs are frequently subjected to epistatic interactions and their traits can
be significantly influenced by the environment [3,9].

Multiple research groups focus their work and efforts on the investigation of QTLs related with
different (a)biotic stresses but only a few publications address the combination of multiple stresses and
search for combined tolerance/resistance [3]. A large part of the QTL research data is gathered in two
databases which offer a QTL repository: Gramene (http://archive.gramene.org/qtl/) and Q-TARO
(QTL Annotation Rice Online, http://qtaro.abr.affrc.go.jp/) database. While Gramene comprises
QTL information for eight monocots and also integrates the data from Q-TARO [10]; Q-TARO is a
specialized rice database which has collected more than 1,000 QTLs. After analysis, the QTLs are
grouped into four major categories, namely morphological traits, physiological traits, resistance or
tolerance, and others [11].

Even though QTL analysis has been used widely in plant breeding for decades, the exact genes
that confer or contribute to a particular trait are rarely known, cloned, or characterized, especially
in complex traits such as drought tolerance [12]. Nevertheless, for genes related to grain number,
submergency or salinity tolerance, lodging resistance, and disease resistance there are some examples
where particular genes have been associated with specific traits [9]. Among these are two QTLs
where lectin genes have been shown to play an important role. The Jacalin-related lectin SaLT was
reported to be part of SalTol, a QTL important for salt stress tolerance [13]. The Galanthus nivalis
agglutinin (GNA)-related lectin Pi-d2 is one of the genes important for resistance against rice blast [14].
Additionally, lectin overrepresentation was reported in QTLs for nematode resistance [15].

Lectins are carbohydrate-binding proteins, they bind specifically and reversibly to sugars or more
complex carbohydrates but their carbohydrate binding domain does not possess any enzymatic activity.
The classification of plant lectins in different families is based on sequence relationships, rather than
on carbohydrate-binding properties. Indeed, all lectin motifs are characterized by specific sequences,
which after three-dimensional folding will yield a lectin or carbohydrate recognition domain with one
or more carbohydrate-binding sites. In principle, each lectin family groups all proteins possessing one
particular lectin domain based on sequence similarity. Different lectin motifs differ from each other
in their sequences but can show reactivity towards similar carbohydrate structures, indicating that
specificity is not linked to the occurrence of one particular lectin motif. Furthermore, the binding site
for multiple lectin motifs was shown to be extended, enabling not only the binding of monosaccharides
but allowing anchoring of elongated carbohydrate structures. Each lectin family contains at least one
or a few lectins that have been studied in detail for their carbohydrate-binding properties. These data
show that the specificity of some lectin domains is rather strict whereas other lectin domains can
interact with a diverse range of carbohydrate structures [16].

The large majority of the lectins studied consists of one or more lectin domains [16]. Genome
studies revealed that lectin motifs are frequently linked with other protein domains, such as protein
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kinases, glycosyl hydrolases, dirigent or F-box domains, resulting in multi-domain proteins [17].
Although several reports suggest an important role for lectins in plant defense and innate
immunity [17–20], the physiological importance of most lectins remains poorly characterized. Based
on their subcellular localization and expression levels, lectins can be divided into two large groups.
The first group contains abundant lectins that localize to the vacuole or to the extracellular compartment
whereas the second group encompasses lectins located in the cytosolic or nuclear compartment that
are expressed mainly after exposure of the plant to a particular stress stimulus. Based on the sequence
similarity between the lectin domains, the whole group of plant lectins can be organized in twelve lectin
families, in particular Agaricus bisporus agglutinin homologs, Amaranthins, Class V chitinase homologs
with lectin activity (CRA), Cyanovirin family, Euonymus europaeus agglutinin family (EUL-related
lectins), Galanthus nivalis agglutinin (GNA) family, Heveins, Jacalin-related lectins, Legume lectins,
LysM domain lectin family, Nictaba family, and RicinB family [16].

Several reports investigated the distribution and phylogeny of plant lectin motifs in the model
species Arabidopsis thaliana [21], the medicinal plant Morus notabilis (mulberry) [22], and crops such as
Glycine max (soybean) and Cucumis sativus (cucumber) [23,24] or performed a comparative analysis
between several species, also including rice [20,25]. All reports provide proof from literature and
in silico data for the involvement of lectins in sensing or responding to different (a)biotic stresses.
Nevertheless, the function of most lectin genes remains unclear.

In this project, the occurrence of lectin genes in rice QTLs related to resistance/tolerance against
biotic and abiotic stress as well as in QTLs associated with morphological and physiological traits was
investigated. Furthermore, the genomic and phylogenetic analysis as well as the domain structure
for different lectins in two rice subspecies are reported. This study contributes to the characterization
of QTL regions and generates knowledge on the physiological role of lectins in plants and their
importance for plant growth, development, and defense.

2. Results

2.1. Lectin and QTL Distribution in Rice Genomes

The rice genome has been sequenced from two independent sequencing projects, in particular,
the MSU Rice Genome Annotation Project (Michigan State University, http://rice.plantbiology.msu.
edu/) and the Rice Annotation Project Database (RAP-DB) (International Rice Genome Sequencing
Project, https://rapdb.dna.affrc.go.jp/http://rice.plantbiology.msu.edu/). A previous search for
lectin families in rice using the MSU annotation database identified nine lectin families in O. sativa
spp. japonica including homologs of the class V chitinases, Euonymus-related lectins, GNA-related
lectins, Heveins, Jacalin-related lectins, Legume lectins, LysM domain lectins, Nictaba-like lectins, and
RicinB lectins [20,26]. A comparative analysis between the MSU and RAP-DB annotation databases
led to significant differences in the number of lectin sequences ranging from 329 according to MSU to
291 sequences in RAP-DB. This difference in the number of identified lectin motifs is mainly due to a
reduction in the number of sequences encoding Nictaba-like lectins, GNA-related lectins, and Legume
lectins, see Supplementary Information, Table S1. Furthermore, none of the sequences containing
RicinB lectin domains could be retrieved from RAP-DB.

To investigate the distribution of the lectin genes throughout the rice (O. sativa spp. japonica)
genome sequences with lectin motifs were mapped onto the 12 rice chromosomes, see Figure 1.
Although lectin sequences are distributed over all chromosomes, the lectin density for each
chromosome is quite variable. Three chromosomes hold 45% of all the lectin sequences while
representing just 29.06% of the genome size. Specifically, chromosomes 4, 1, and 7 hold 20.9%,
12.6%, and 11.7% of all the lectin sequences, respectively, while these chromosomes account for 9.51%,
11.59%, and 7.96% of the genome size. Chromosomes 5, 12, and 3 carry the lowest number of lectin
sequences (4.3%, 5.2%, and 5.5%, respectively) while representing 25.16% of the genome size (8.03%,
7.38%, and 9.76%, respectively, see Supplementary Information, Table S2. Most lectin genes occur
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in condensed blocks, with 62.8% of the lectin sequences being present in tandem repeats. In total,
54 tandem duplication blocks have been identified throughout the genome containing 125 lectin genes.
In addition, 14 segmental duplications were mapped containing 33 lectin genes, see Supplementary
Information, Figure S1.Int. J. Mol. Sci. 2019, 20, 437 4 of 21 

 

 
Figure 1. Localization of lectin genes and quantitative trait loci (QTLs) for resistance/tolerance on rice 
chromosomes of O. sativa spp. japonica. Lectins are indicated by horizontal bars inside the 
chromosomes, and are shown in distinct colors. Tandem duplicated blocks are indicated by asterisks. 
QTLs are indicated by vertical bars next to the chromosomes, represented in different colors. 

A comparative analysis between the O. sativa subspecies japonica and indica revealed 
differences in the number of lectin sequences. Although for most lectin families the differences are 
minor, important differences in the number of lectin genes as well as in their domain organization 
were observed mainly for the GNA family, see Table 1 and Supplementary Information, Table S3. In 
addition, some unique protein domain combinations were retrieved only for one of the subspecies, 
for example, in the GNA, Jacalin-related lectin, Legume lectin, LysM and Nictaba families of rice 
subspecies indica, see Supplementary Information, Table S3. With the exception of CRA, all lectin 
families comprise not only single lectin domain sequences but also sequences where the lectin 
domains are tandemly repeated. The presence of two or three lectin domains is frequently observed 
in the families of the Jacalin, LysM, and EUL lectins and rarely in GNA, Legume lectin, and Hevein 
families. The combination of lectin motifs with a protein kinase domain is present in most rice lectin 
families, see Table 1. The F-box domain is also associated with more than one lectin family, in 
particular, Nictaba and LysM lectins. Equal numbers of lectin sequences of the Hevein and EUL 
lectins were retrieved for the subspecies japonica and indica, suggesting that these sequences are 
highly conserved in rice. Within the EUL family and the CRA family, all identified lectin sequences 
only contain lectin domains. The EUL lectins are composed of a single or two lectin domain 
sequences. It was reported before that tandem arrayed EUL domain sequences are typical for many 
monocotyledonous plants but not for dicotyledonous plants [26]. 
  

Figure 1. Localization of lectin genes and quantitative trait loci (QTLs) for resistance/tolerance on
rice chromosomes of O. sativa spp. japonica. Lectins are indicated by horizontal bars inside the
chromosomes, and are shown in distinct colors. Tandem duplicated blocks are indicated by asterisks.
QTLs are indicated by vertical bars next to the chromosomes, represented in different colors.

A comparative analysis between the O. sativa subspecies japonica and indica revealed differences
in the number of lectin sequences. Although for most lectin families the differences are minor,
important differences in the number of lectin genes as well as in their domain organization were
observed mainly for the GNA family, see Table 1 and Supplementary Information, Table S3. In addition,
some unique protein domain combinations were retrieved only for one of the subspecies, for example,
in the GNA, Jacalin-related lectin, Legume lectin, LysM and Nictaba families of rice subspecies indica,
see Supplementary Information, Table S3. With the exception of CRA, all lectin families comprise not
only single lectin domain sequences but also sequences where the lectin domains are tandemly repeated.
The presence of two or three lectin domains is frequently observed in the families of the Jacalin, LysM,
and EUL lectins and rarely in GNA, Legume lectin, and Hevein families. The combination of lectin
motifs with a protein kinase domain is present in most rice lectin families, see Table 1. The F-box
domain is also associated with more than one lectin family, in particular, Nictaba and LysM lectins.
Equal numbers of lectin sequences of the Hevein and EUL lectins were retrieved for the subspecies
japonica and indica, suggesting that these sequences are highly conserved in rice. Within the EUL
family and the CRA family, all identified lectin sequences only contain lectin domains. The EUL lectins
are composed of a single or two lectin domain sequences. It was reported before that tandem arrayed
EUL domain sequences are typical for many monocotyledonous plants but not for dicotyledonous
plants [26].
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Table 1. Schematic representation of the shared domain architectures in O. sativa spp. japonica
and indica. The numbering and domain organization for japonica is based on Rice Annotation
Project Database (RAP-DB). * domain organization of the most representative combinations in the
Galanthus nivalis agglutinin (GNA) family, see Supplementary Information, Table S3. ** includes also
multiple repeat domain proteins. *** DUF (domain of unknown function) 3660 in spp. japonica,
DUF 3404 in spp. indica.

Lectin and Domain Architecture Schematic Representation Spp. Japonica Spp. Indica

CRA
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
detail since lectins have been associated with plant defense and the perception of pathogens or abiotic 
stress in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions 
annotated as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs 
related to abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly 
higher than those attributed to biotic stresses (10–43% for different lectin families, see Supplementary 
Information, Table S5). 

2.2.1. Abiotic Stress 

All sequences containing QTLs known to be associated with abiotic stress factors (salinity 
tolerance and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs 
for other abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes 
are the only lectin family present in QTL regions attributed to lodging resistance, see Supplementary 
Information, Table S6. 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome 
and their association with QTL regions to elucidate whether lectin sequences are widely and 
significantly present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were 
mapped onto the rice chromosomes, see Figure 1. A comparative analysis between the distribution 
of lectin genes and of QTLs on different chromosomes revealed that a large number of lectin 
sequences are located within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with 
lectin sequences belong to all four groups (morphological traits, physiological traits, 
tolerance/resistance and others). Lectin sequences from all lectin families (except the CRA family) are 
present in the four major categories of QTLs, see Supplementary Information, Table S4. 

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance 

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in 
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In this study, we performed an extensive analysis on the lectin distribution in the rice genome and
their association with QTL regions to elucidate whether lectin sequences are widely and significantly
present in QTL regions. Therefore, QTLs retrieved from the Q-TARO database were mapped onto
the rice chromosomes, see Figure 1. A comparative analysis between the distribution of lectin genes
and of QTLs on different chromosomes revealed that a large number of lectin sequences are located
within QTL regions, especially on chromosomes 1, 4, and 6. These QTLs with lectin sequences belong
to all four groups (morphological traits, physiological traits, tolerance/resistance and others). Lectin
sequences from all lectin families (except the CRA family) are present in the four major categories of
QTLs, see Supplementary Information, Table S4.

2.2. Lectin Sequences Are Widely Distributed in QTLs for Resistance or Tolerance

The presence of lectin sequences in QTLs attributed to resistance/tolerance was analyzed in detail
since lectins have been associated with plant defense and the perception of pathogens or abiotic stress
in multiple publications [17,19,27]. Many rice lectin sequences are located in QTL regions annotated
as being responsible for resistance/tolerance, the percentage of lectin sequences in QTLs related to
abiotic stresses (ranging from 40% to 100% for different lectin families) being markedly higher than
those attributed to biotic stresses (10–43% for different lectin families, see Supplementary Information,
Table S5).

2.2.1. Abiotic Stress

All sequences containing QTLs known to be associated with abiotic stress factors (salinity tolerance
and submergency tolerance) contain at least one lectin gene, and at least 50% of the QTLs for other
abiotic stress factors contain at least one lectin gene, see Figure 2. GNA-related lectin genes are the only
lectin family present in QTL regions attributed to lodging resistance, see Supplementary Information,
Table S6.Int. J. Mol. Sci. 2019, 20, 437 7 of 21 
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Salinity and drought are among the most devastating abiotic stresses for rice [5,6]; consequently,
lectin distribution in QTLs for these traits was investigated in detail. Chromosome 1 contains multiple
overlapping QTLs related to salinity whereas both chromosomes 1 and 3 include QTLs for drought,
see Figure 1 [11]. All 39 lectin sequences on chromosome 1 are present in at least one QTL, and 37
of them are in QTLs for abiotic stress, in particular, 33 lectin sequences appeared in QTL regions
for drought tolerance and in QTL regions associated with salinity tolerance, see Supplementary
Information, Table S6. Our analysis showed a significant overrepresentation of lectin sequences
only in the traits drought tolerance and soil stress tolerance but not in the trait for salinity tolerance,
see Figure 2 and Supplementary Information, Table S7.

SaLT (or Orysata, Os01g0348900), a Jacalin-related lectin that confers salinity tolerance [13] is
localized in a QTL for salt stress. Both SaLT and OsJAC1, another Jacalin-related lectin, appeared in
QTLs for drought on chromosome 1 and 12, respectively, in our study. Multiple lectin sequences are
present in more than one type of QTL, see Supplementary Information, Figure S2, the highest number
of lectin sequences (35) appearing simultaneously in QTLs for drought and soil stress.

2.2.2. Biotic Stress

Among the QTLs related with biotic stress, sheath blight resistance showed the highest percentage
of lectin sequences (80%), followed by blast resistance, insect resistance, and bacterial blight resistance,
all of them having lectin genes in less than 50% of the QTLs for these traits, see Figure 2. From all
these traits, only the QTLs for blast resistance showed a significant overrepresentation of lectin genes,
see Supplementary Information, Table S7. The most prevalent family in this trait is the GNA family
with seven genes, followed by the Jacalins (five genes with four of them containing a dirigent domain,
including OsJAC1) and LysM domains (four members). Although the presence of lectins in QTLs for
sheath blight resistance, insect resistance, and bacterial blight resistance was not statistically significant,
our analysis showed the presence of the lectins CeBiP and OsLYP4 (Os09g0452200) in QTLs for sheath
blight resistance and OsCERK in the QTL for insect resistance and bacterial blight resistance. OsCERK1
is also localized in a QTL related to roots, which is the location of the symbiotic interaction. These
data are consistent with the functional characterization of the gene. Our analysis showed that OsLYP4
appeared together with CeBiP in a QTL annotated as being important for the response to another
fungal pathogen (Rhizoctonia solani) causing sheath blight disease.

Jacalin-related lectins containing a dirigent domain are considered as important players in
plant innate immunity since the dirigent domain was reported to be involved in plant defense and
experimental data show its involvement in the response to Magnaporte grisea [28]. OsJAC1 was
identified in a QTL for rice blast disease together with the rest of the Jacalins containing a dirigent
domain which is in agreement with the literature; however, SaLT was not identified in any QTL related
to insect resistance, contrary to some reports [29]. Additionally, it has been reported that lectin genes
are statistically significantly overrepresented in six out of 11 QTLs associated with resistance towards
the root-knot nematode Meloidogyne graminicola [15], see Supplementary Information, Table S4.

The appearance of the same lectins in QTLs for abiotic, as well as biotic stress, was observed a
couple of times. For example, our analysis shows that 23 lectins which were represented in QTLs for
cold tolerance also appeared in QTLs for insect resistance. In the case of bacterial blight disease this
observation is even more striking because 12 of the 16 lectins present in these QTLs also appeared in
QTLs for cold tolerance and 15 genes were found in QTLs for drought tolerance, see Supplementary
Information, Figure S2. Partial co-appearance was observed also between lectins in QTLs for drought
tolerance and sheath blight resistance (nine lectins) and for lectins in QTLs for soil stress tolerance and
blast resistance (13 lectins).
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2.3. Lectins Are Widely Distributed in QTLs for Morphological and Physiological Traits

The stress response and the adaptation of a plant are intimately linked with the morphological
and physiological traits of the investigated plant species or even cultivar. A large number of lectin
sequences has been identified in QTLs for all six categories related to morphological traits (culm/leaf,
dwarf, panicle/flower, seeds, root and shoot/seedling), see Figure 3. Lectin sequences from all
the lectin families, except for the two smallest families CRA and EUL, are present in QTLs for
all six morphological traits, see Supplementary Information, Table S8. For all traits, at least 50%
of the QTLs contain lectin sequences, see Figure 3. Furthermore, lectin sequences are statistically
overrepresented in the QTLs related to categories culm/leaf, panicle/flower, seeds, and shoot/seedling,
see Supplementary Information, Table S7.
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A high percentage of lectin-containing QTLs (at least 50%) was observed in all categories of
physiological traits, especially in the category lethality (83%). The presence of lectin sequences is
statistically significant for the traits eating quality and sterility, see Figure 3. Lectin sequences of
different lectin families are present in QTLs associated with morphological and physiological traits
and their occurrence is proportional to the size of the lectin family (number of lectin sequences),
see Supplementary Information, Table S8.

The association between traits such as seeds and eating quality and panicle/flower and sterility is
a good indication of the importance of lectins in plant reproduction and the marketing or seed quality
and deserves further investigation at both a molecular and breeding level. An excellent example
which illustrates these connections is a gene encoding a LysM domain protein called OsEMSA1
(Os10g0524300). In our analyses, OsEMSA1 appeared in QTL for panicle, seeds, and sterility but not in
any other QTL for morphological/physiological traits or QTL for tolerance/resistance. A GNA gene
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called OsLSK1 (Os01g0669100) and its six homologs in the rice genome (Os01g0668400, Os01g0668600,
Os01g0668901, Os01g0670100, Os01g0670300, and Os01g0670600) appeared in a QTL for seeds,
and more specifically in a QTL responsible for grain yield, as well as in QTLs for drought tolerance
and salinity tolerance, which is in agreement with the literature [30]. A search in RAP-DB identified
two paralogs for OslecRK, a GNA containing lectin receptor-like kinase in subspecies indica which
plays a role in seed germination and plant immunity [31], in O. sativa japonica (Os06g0620200 and
Os08g0230800). Os06g0620200 appeared in QTLs for dwarfs, roots, panicles, seeds, sterility, and eating
quality and stress-related QTLs for drought tolerance and soil stress tolerance. Confirmation of the
involvement of the legume lectins in some morphological changes such as growth inhibition and leaf
senescence has been reported for OsSIT1 [32]. The gene was identified in QTLs for culm/leaf, dwarfs,
panicles/flowers, seeds, lethality and sterility.

2.4. Lectin Domain Structure and Phylogenetic Analysis in O. sativa spp.

A detailed analysis of the phylogenetic relationships was performed for the two subspecies of rice,
especially, the lectin families which appeared most frequently in our analysis and for which functionally
analyzed lectins have been reported in literature. Therefore, the analysis focused on GNA-related
lectins, Jacalin-related lectins, and lectins with LysM domains. First, the domain architecture of all
lectin sequences within these families was analyzed for O. sativa spp. japonica and indica. Second,
phylogenetic trees have been constructed for the lectin domain sequences retrieved from O. sativa
spp. japonica and indica. The phylogenetic trees shown in Figures 4–6 were made using all the lectin
domain sequences for each of the lectin families under study. The color of the branches reflects the
lectin domain combinations. Finally, we also obtained information with respect to duplication events
that occurred within each lectin family.

2.4.1. GNA

The GNA family is the largest lectin family in O. sativa. As shown in the Supplementary
Information, Table S3, sequences can consist of the GNA domain only, but more often the GNA
domain is linked to other protein domains with known function, such as the PAN (PAN/Apple
domain), protein kinase, S-locus receptor kinase, and S-locus glycoprotein domains. These domains
can be combined in different configurations resulting in sequences consisting of up to five known
protein domains. Some lectin sequences also contain a domain of unknown function (DUF), see Table 1,
and Supplementary Information, Table S3.

A comparative analysis between the lectin sequences from rice subspecies japonica and indica
revealed important differences in the numbers of lectin sequences retrieved from both genomes.
The O. sativa spp. japonica possesses 134 lectin sequences based on MSU while only 94 sequences
with lectin motifs were identified in the genome of O. sativa spp. indica [26]. Some lectin domain
architectures are unique for one subspecies. The most frequent domain combination GNA/S-locus
glycoprotein/PAN/protein kinase is identified in 76 sequences in japonica while only 33 sequences
are present in indica. On the other hand, the single GNA sequences as well as the sequences
combining GNA/S-locus glycoprotein/PAN are more prevalent in indica compared to japonica.
Another combination found only in japonica is a single GNA/S-locus glycoprotein/PAN/protein
kinase protein coupled to the Plant organelle RNA recognition domain. According to InterProScan,
this domain (IPR021099) is predicted to be localized in the chloroplasts and participates in intron
splicing, see Table 1 and Supplementary Information, Table S3.
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Phylogenetic analysis of the GNA lectin family in O. sativa japonica and indica shows some
grouping of the sequences based on the domain architecture, see Figure 4. In most sequences, the GNA
domain is linked to an S-locus glycoprotein(1–2)/PAN/protein kinase domain. All the sequences with
GNA/protein kinase (PK) domains cluster together in the phylogenetic tree. A similar observation can
be made for the DUF containing proteins from subspecies indica and japonica which cluster closely
together as well as GNA/S-locus glycoprotein/PAN/protein kinase/SRK (S-locus receptor kinase).
Some clades also cluster GNA domain sequences which are linked to different protein domains,
resulting in different domain organizations. For example, the two single GNA domain sequences in
japonica do not cluster together. While the one on chromosome 1 (LOC_Os01g72810.1) groups with
its homolog in subspecies indica, the other one on chromosome 9 (LOC_Os09g02410.1) groups with
GNA/S-locus glycoprotein/PAN/protein kinase and GNA/S-locus glycoprotein/PAN sequences.
No clustering was observed for the combinations of GNA/S-locus glycoprotein and GNA/ S-locus
glycoprotein/PAN, see Figure 4.

Tandem duplications have played an important role in the expansion of the GNA family in
O. sativa japonica. In total, 72% of the family members, or 97 genes in 24 duplication blocks,
are expanded through this process while the segmental duplications are responsible for 13% (18 genes),
see Supplementary Information, Table S2.

2.4.2. Jacalin-Related Lectins

The family of Jacalin-related lectins is the third largest lectin family in O. sativa, see Table 1 and
Supplementary Information, Table S5. The majority of the Jacalin-related lectin sequences consist
only of Jacalin domains. In addition, the lectin domain has been duplicated multiple times during
evolution giving rise to lectin sequences with two or three tandem repeats of the Jacalin domain.
Furthermore, the Jacalin domain has been associated to the NB-ARC (nucleotide binding domain
shared by Apaf-1, R Proteins, and CED-4), kinase, peptidase, and dirigent domains, resulting in
chimeric sequences consisting of multiple protein domains. The domain architectures with NAM
(No apical meristem-associated, C-terminal domain) domain, CTLH (C-terminal LisH motif) domain,
and GTPase domain were only found in subspecies indica whereas Jacalin sequences with a peptidase
domain have only been retrieved from the genome of subspecies japonica.

As shown in Figure 5, the Jacalin-related sequences in O. sativa spp. japonica and indica show some
clustering based on their domain organization and are grouped into seven clades in the phylogenetic
tree. The first clade comprises most of the multiple Jacalin domain sequences in japonica and the
CTLH/Jacalin gene in indica rice. Clades 2, 3, and 6 group lectin sequences with similar domain
organizations. Clade 2 combines the genes with a NB-ARC/single Jacalin domain structure, clade
3 includes proteins with single Jacalin domain in their sequence, and clade 6 consists entirely of
sequences with a Jacalin domain combined with a dirigent domain. NB-ARC is a motif spread
through pro- and eukaryotes and is involved in plant defense as a part of the R (resistance) genes [19].
The combination of a Jacalin domain and a dirigent domain is unique for monocots [27,28], and all
proteins with this domain architecture separate in clade 6 of the tree. Clade 4 groups mainly proteins
consisting of an NB-ARC domain linked to 3 Jacalin domains as well as proteins composed of a protein
kinase domain and 1 to 3 Jacalin domains. Clade 5 and 7 mainly comprise sequences encoding proteins
with a single domain structure with few exceptions.

About 47% of the expansion in the Jacalins in O. sativa japonica can be explained by tandem
duplications (14 sequences separated in six blocks). The Jacalin-related lectins are not influenced by
any segmental duplication events.
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the number of the lectin domain in sequences that contain multiple lectin domains.
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indicate the bootstrap values while the grey ones indicate the number of the clades. The numbers
separated by an underscore from the ID of the genes are referring to the number of the lectin domain in
multiple domain sequences.

2.4.3. LysM Domain

The LysM domain has undergone several duplication events over time. The majority of the
LysM sequences consists of a single LysM domain. Throughout evolution, the LysM domain has been
duplicated or has been associated with other protein domains such as the F-box domain or the protein
kinase domain.

As shown in Figure 6, the LysM domain sequences in O. sativa spp. japonica and indica
are grouped into 6 clades in the phylogenetic tree. Similar to the Jacalin-related lectin family,
some clustering based on the domain organization can be observed but the domain architecture
cannot fully explain the phylogenetic tree organization, see Figure 6. Most of the single LysM domain
proteins group together in clades 2, 3, and 6. Clades 1 and 3 consist mainly of LysM/protein kinase



Int. J. Mol. Sci. 2019, 20, 437 13 of 21

domain proteins. LysM/LysM and LysM/LysM/protein kinase sequences group together in clades 2
and 4, forming mixed groups. Intriguingly, the first and second LysM domains are grouped separately
in clades 2 and 4, respectively, indication multiple duplication events during evolution.
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Tandem duplications did not have a major impact on the expansion of the LysM lectin family in 
O. sativa japonica, since only 20% of the family members, or only four of the 20 genes, are involved 
in tandem duplications of the LysM family, see Supplementary Information, Table S3 and Figure S1. 
In contrast, segmental duplications had a large impact on the expansion of the family, since 35% of 
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Figure 6. Phylogenetic tree of LysM lectin family. Asterisks refer to a tandem duplication event.
Triangles represent a single lectin domain in a multiple domain structure. Black squares show segmental
duplication events whereas red squares show segmental duplication events where only one of the
duplicated segments contains a lectin gene. The black numbers indicate the bootstrap values while the
grey ones indicate the number of the clades. The numbers separated with underscore from the ID of
the genes are indicating the number of the lectin domain in multiple domain sequences.

Tandem duplications did not have a major impact on the expansion of the LysM lectin family in
O. sativa japonica, since only 20% of the family members, or only four of the 20 genes, are involved
in tandem duplications of the LysM family, see Supplementary Information, Table S3 and Figure S1.
In contrast, segmental duplications had a large impact on the expansion of the family, since 35% of the
family members expanded through these segmental duplications.
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3. Discussion

Despite the fact that rice is the most investigated crop and multiple resources for research are
available, only 1.6% of the rice loci are functionally characterized, in contrast to Arabidopsis where 20%
of the gene loci have been attributed to a particular function [33]. Although the study of QTLs is a
classical method in plant genetics and breeding, there are only a few investigations which link QTLs
with the occurrence of specific genes and plant phylogeny. To the best of our knowledge, only one
paper investigated the expression profiles and QTL distribution of the Receptor-Like Cytoplasmic
Kinase Family in rice [34] but this study only reports the number of the abiotic stress traits in which
these proteins were found, without any statistical analysis. Despite the large backlog in rice QTL
research and the challenges associated with the characterization of rice QTLs, several lectins have been
functionally characterized and their sequences are known to be located in QTL regions. A first example
is the mannose-binding lectin from the Jacalin family called SaLT, known as a salt stress and abscisic
acid (ABA) responsive protein. A SNP in the lectin sequence results in an amino acid substitution
(K24E) that changes the surface charge distribution and most probably influences the protein–protein
interactions for this lectin. The haplotype with E24 exhibits a lower Na+ concentration in the shoots and
this presumably contributes to its higher salt tolerance [13]. A second functionally characterized rice
gene is referred to as Pi-d2 (Os06g0494100) and encodes a GNA-related lectin that confers resistance
to rice blast disease. The indica variety Digu, which carries a single substitution 441I, is resistant to
M. grisea while the varieties with 441M are susceptible to this fungus [14]. The lectin genes for both
SalT and Pi-d2 are located in QTLs offering increased salt tolerance or rice blast resistance, respectively,
suggesting that the lectin gene might contribute to the stress resistance and/or tolerance attributed to
the QTL.

The current study investigated the presence of lectin sequences in QTL regions in the crop and
model species O. sativa. Our analysis revealed that lectin sequences are unevenly distributed in
QTLs with the highest number of lectin genes on chromosomes 1, 4, and 6. According to Q-TARO,
the QTL distribution is unequal over all the 12 rice chromosomes and occurs especially in regions
with high gene density. Yonemaru et al. [11] reported that chromosome 1 is the richest in identified
QTLs (190), followed by chromosomes 6 and 3 (149 and 146 QTLs, respectively). Six large QTL clusters,
each containing more than 15 QTLs, are present on the chromosomes 1, 6, and 3 but some of them also
locate to chromosomes 4 and 9 [11].

The putative link between the appearance of lectin sequences in QTLs and different traits for the
morphology, physiology, and tolerance/resistance were investigated in detail and statistical analysis
was applied. The data provided proof of the overrepresentation of lectin genes in some QTLs associated
with important morphological, physiological, and tolerance/resistance traits. Rice is more susceptible
to salt stress than other cereals. Since salinity can cause more than 50% yield losses, it is considered as
one of the major limitations to grow this crop [5], together with drought which can provoke 53% to
92% yield losses [6]. There are a few examples of lectins involved in salinity tolerance/susceptibility.
The best-characterized rice lectins related with salt stress are SaLT, that confers salt tolerance [13],
and SIT1 (Os02g0640500) and SIT2 (Os04g0531400), two lectin receptor kinases with a legume lectin
domain that has been associated with salt sensitivity. Suppression of SIT1 was found to improve the
survival rate under salt stress but impairs plant productivity [32]. Whereas SaLT appeared in our
analysis in a QTL for salt stress, none of the SIT genes were identified in a QTL region according to
the data in Q-TARO. This observation confirms the possibility for the potential presence of additional
QTL(s) that have not yet been published or have not been included in the database.

Drought is a trait which influences a broad range of other traits related not only with stress
responses but also with grain yield, plant height, germination, fertility, etc. [3]. For example, it is
known that the Jacalin-related lectins SaLT and OsJAC1 are responsive to drought stress as well as
to cold, salicylic acid, jasmonic acid, and ABA (abscisic acid) stress [27]. The existence of a crosstalk
between drought, salt, and cold stress at the level of plant hormones (such as ABA) and transcription
factors has been reported in the literature before [35] and is also reflected in the total number of
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lectins identified simultaneously in more than one type of QTL, see Supplementary Information,
Figure S2. The physical coverage between QTL regions with correlated traits is also observed in other
genomes such as the bovine genome, for example, and supports the idea concerning the non-random
distribution of genes and clustering of linked genes closer to each other [36]. The presence of lectin
sequences in QTLs for both soil stress tolerance and drought tolerance is also expected since a large
part of the soil stress includes heavy metal stress (Cd2+, Al3+, etc.) or nutrient deficiency. Based on
transcriptomic data, Oono et al. [37] concluded that a concentration of 50 µM Cd2+ causes acute toxicity
to rice seedlings and that cadmium stress shares some common signalization with drought stress.
This was also in agreement with the observed phenotypic effect on the treated plants which was similar
to the effect of drought stress [37].

Even though the number of the lectin genes identified in QTLs for biotic stress is lower than
for abiotic stress, some lectins have been reported as key players in the perception and the defense
against these pathogens. This is especially true for members of the LysM family as well as Pi-d2 (GNA
family). The fact that the Pi-d2 sequence did not appear in any QTL for biotic stress resistance in
our analyses does not exclude a role in pathogen defense since the conferred resistance is reported
for a specific rice variety [14]. OsCERK1 and OsCeBiP are well known as chitin receptors working
as homo- and heterodimers [38]. Recently, it was reported that OsCERK1 also recognizes bacterial
peptidoglycan (PGN) and lipopolysaccharide (LPS) [39] and plays a crucial role in the formation of
arbuscular mycorrhiza [40]. Other members of the LysM family referred to as OsLYP4 and OsLYP6
(Os06g0208800) also have a dual function in recognizing chitin and PGN, consequently influencing the
response to Xanthomonas oryzae (rice bacterial blight) and Magnaporthe oryzae (rice blast disease) [41].

OsJAC1 is one of the Jacalin sequences that contains a dirigent domain, a combination typical
only for monocots [27,28]. The dirigent domain was reported to be involved in plant defense since
it plays an important role in the synthesis of lignins and lignans, and can discriminate between the
optical isomers [28]. Furthermore, the dirigent domain appears to be important for the carbohydrate
recognition of the Jacalins, at least in maize and sorghum. The deletion of this domain abolishes
the ability of the investigated proteins to bind galactose/lactose (β–aggregating factor) in maize or
N-acetylgalactosamine in the sorghum homolog [42]. Several publications reported that OsJAC1
is linked to biotic stress responses. After treatment with M. grisea, gene expression shows a fast
response reaching a maximum at 12 h after treatment. The transcript levels of the Jacalin-related lectin
SaLT show an increase at 12 hpi with M. grisea and reach a maximum expression level at 24 hpi [27].
Jacalin-related lectins are also associated with enhanced insect tolerance. Overexpression of SaLT in
tobacco confers resistance to the aphids Myzus persicae Sulzer and Acyrthosiphon pisum, and the beet
armyworm Spodoptera exigua Hübner [29].

The appearance of the same lectins simultaneously in QTLs for abiotic as well as biotic stresses
could be indicative for the pleiotropic effect or crosstalk in the signal transduction and regulatory
pathways. A dual role for one sequence/protein is also suggested in the literature because of the
observed large overlap between molecular responses towards heavy metals as CdSO4 (abiotic stress)
and incompatible necrotrophs (biotic stress), for example, and the cross-talk and shared molecules in
ROS (reactive oxygen species) and MAP (mitogen-activated protein kinase) kinase signaling [43].

In recent years, there has also been evidence for the involvement of particular lectins in plant
development, morphology, and physiology and in some cases, possible pleiotropic effects between
the dual roles of lectins in defense and development processes have been suggested. The statistically
significant appearance of lectin genes in QTLs for seeds is no surprise since many classical lectins have
been reported as being abundant seed storage proteins [16]. Few genes have been investigated and
functionally characterized for their importance in rice development. Recent research revealed that
OsEMSA1 is involved in the development of the embryo sac in rice. The gene is reported to be expressed
in most rice organs: root, stem, leaves, panicles, and ovaries and its reduced expression causes
abnormalities in the formation of the female gametophyte and pollination and consequently, impairs
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the development of seeds. RNAi plants possess significantly lower levels of IAA and gibberellins
throughout all plant organs in the heading stage in comparison to wild-type plants [44].

Studies by Zou et al. and Cheng et al. [30,31] showed that lectin receptor-like kinases belonging
to the GNA family are also associated with rice morphology and physiology. OsLSK1 is a lectin
receptor-like kinase which possesses an extracellular GNA lectin domain, a PAN domain, an S-locus
domain, and an intracellular protein kinase domain, and has six homologs in the rice genome which
can form hetero- or homodimers. Based on its expression analysis, it is hypothesized that this gene is
important in node development. Transcript levels are upregulated after treatment with gibberellins
and brassinosteroids while treatments with polyethylene glycol and salt cause fast downregulation
of gene expression. The truncated form lacking the kinase domain leads to a significant increase in
the number of primary branches in the panicles, in the number of grains per branch, and in plant
height. The appearance of all OsLSK1 sequences in QTLs for seeds, drought tolerance, and salinity
tolerance is in agreement with these data. Knockdown of the transcript levels of another receptor-like
kinase, OslecRK, leads to reduced seed germination and impaired immunity towards a broad spectrum
of pathogens, such as M. grisea, Xanthomonas oryzae, and the insect brown planthopper (Nilaparvata
lugens), to downregulation of some defense-related genes, and to a reduction in α-amylase enzymes
during germination. These effects can be explained partially from the identified interaction between
the kinase domain and actin-depolymerizing factors but most probably the gene acts through other
interactors as well [31].

The already mentioned, OsSIT1, which influences salt tolerance/susceptibility through the
ethylene signaling pathway, is linked to some morphological changes such as growth inhibition
and leaf senescence when it is overexpressed. Delayed maturation and impaired productivity were
observed in knockdown lines not only in rice but also in Arabidopsis [32], which is in agreement with the
present study and the presence of the lectin gene in QTL regions associated with the traits culm/leaf,
dwarfs, panicles/flowers, seeds, lethality, and sterility.

Some Jacalin-related lectins are associated with developmental functions in addition to their
involvement in stress responses. Overexpression of OsJAC1 reduces the cell length which in turn
results in shorter internodes, shorter coleoptiles, and a dwarf phenotype [45]. Additional confirmation
of the involvement of the Jacalins in plant development comes from the AtJAC1 gene from Arabidopsis,
which is one of the negative regulators of flowering time, and from VER2 in wheat, which is a positive
regulator of flowering after vernalization [46].

In addition to the in-depth analysis of lectin sequences in QTL regions, a detailed study was
performed on the presence and the evolution of lectin sequences in two subspecies of O. sativa.
Comparative analyses revealed some unique domain combinations as well as quantitative differences
between the subspecies indica and japonica, mainly for the lectin motifs in the largest lectin families
(GNA, Legume lectin, Jacalin, and LysM). Most lectin motifs are linked to other protein domains with
known function. GNA and Legume lectins appeared predominantly in combination with protein
kinase domains. Taking into account the localization of many of these sequences in the cell wall, these
proteins probably play an important role in the perception of extracellular signals and are the first
players in signaling cascades as part of plant immune response. Such functions have already been
reported for Pi-d2, OsSIT1, and OsLSK1 [14,31,32]. Although the focus of this study was mainly on
the differences between the subspecies japonica and indica, it is also worth mentioning that Hevein
and EUL sequences are highly conserved between both subspecies, suggesting an ancient origin and
important physiological role of these lectins.

The presence of a large collection of lectin motifs distributed over QTL regions raises questions
on the carbohydrate-binding activity and how protein–carbohydrate interactions contribute to the
biological significance of the lectin domains. Different lectin domains can recognize very diverse mono-
and oligosaccharides. For instance, the hevein and the LysM domain both recognize and bind chitin
and chito-oligosaccharides. Lectins from the GNA family are mainly mannose-specific but also interact
with mannosylated N-glycan structures. Within the Jacalin family, two subclasses of lectins with
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specificity towards mannose and galactose have been reported. The legume lectin motif can interact
with very diverse carbohydrate structures since the shape of the carbohydrate binding site will change
due to different positioning of a flexible loop. These data illustrate that it is impossible to predict
the carbohydrate binding properties based on sequence information. Ultimately the carbohydrate
binding specificity for each lectin should be analyzed experimentally. In recent years, it has become
clear that most lectin sequences are composed of multiple protein domains and can be considered
chimeric lectins in which a lectin domain is linked to one or more protein domains, indicating that
the biological activity of these proteins will depend on the activity and possible interplay of multiple
protein domains. Future experiments will need to investigate the physiological importance of the
lectin domains in rice.

In conclusion, at present, little is known with respect to the physiological role of lectin sequences.
Our statistical analyses showed that lectin sequences are overrepresented in several QTLs, suggesting
that the lectins sequences could play a role in the trait(s) attributed to the QTLs. Since one gene can
have pleiotropic effects, more in-depth studies are needed to provide more insights regarding the
physiological role of the lectins, possible pleiotropic effects, and how to integrate and use these data in
practice. Furthermore, the possibility that lectins are involved in or are important for many more traits
cannot be ruled out since this research was based on a database that is probably incomplete, simply
because not all QTLs are known at present. Our data contribute to the knowledge of lectin functionality
and the importance of lectins for plant growth and development. By combining QTL analyses and
genome analyses, we could link some genetic information with physiological and biochemical studies,
aiming for a better functional understanding of plant lectins.

4. Materials and Methods

4.1. Identification of Putative Lectin Genes in the Genome of O. sativa spp. Indica and Japonica

The identification of putative lectin genes in the rice genome was previously described by De
Schutter et al. [26]. In short, protein sequences of reference members for the different lectin families
were used in BLAST searches against the O. sativa spp. japonica genome. The lectin sequences were
screened for the presence of conserved protein domains to confirm the lectin domain and determine
the domain organization. Only sequences with the conserved lectin domains were retained in the
analysis. The protein sequences retrieved from the O. sativa spp. japonica were used to identify
orthologs in the genome of O. sativa spp. indica using BLAST searches [26]. The MSU IDs for all
identified lectin sequences were converted to RAP-DB IDs using the RAP-DB ID convertor tool
(https://rapdb.dna.affrc.go.jp/tools/converter).

4.2. Analysis of Segmental and Tandem Duplications in O. sativa spp. Japonica

Gene expansion through segmental and tandem duplications was analyzed for the japonica
sequences [26]. Tandem duplications were defined as two genes belonging to the same family and
located on the same chromosome with a maximum of 10 intervening genes. Segmental duplications
were identified using the Plant Genome Duplication Database (PGDD, http://chibba.agtec.uga.edu/
duplication) [47]. The dataset was filtered to discard duplicated genes with a Ks (synonymous
substitution) value higher than 1.0. The remaining data were searched for lectin genes.

4.3. Mapping of the Lectin Genes on the Rice Chromosomes and in QTL Regions

The lectin genes from O. sativa japonica were mapped on the chromosomes using the MapChart
software (v2.32, https://www.wur.nl/en/show/Mapchart.htm) [48]. The information about the QTL
positions was downloaded from Q-TARO database (http://qtaro.abr.affrc.go.jp/) and mapped with
the same tool using RAP-DB gene annotations since Q-TARO is based on this database. Overlaps
of genomic loci between QTL and lectin genes were determined for every combination of lectin
families and QTL group using the intersect function of the bedtools utilities (v2.27.1, https://bedtools.
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readthedocs.io/en/latest/) [49]. The information on QTLs linked to nematode Meloidogyne graminicola
resistance was retrieved from Dimkpa et al. [15] since this information is not included in Q-TARO.

4.4. Statistical Analysis

Every trait was analyzed for the presence of redundant QTL. All overlapping QTL were merged
into a non-redundant single QTL and all redundant QTL were excluded from further analysis [36].
The identification of the expressed genes which are located in the non-redundant QTL was performed
using the RAP-DB batch retrieval tool (https://rapdb.dna.affrc.go.jp/tools/dump). An additional
step involving the filtering of the redundant transcripts was applied to provide the total number of the
unique gene IDs. During our analysis, QTLs which do not contain any lectin or another type of gene
were identified and excluded from all subsequent computations.

The significant overrepresentation of lectin genes was determined with the use of a Wald test
in which the null hypothesis states an absence of lectin overrepresentation, i.e., lectins are not
preferentially located on the QTL. The z-score was calculated as the proportion of lectin genes in
the genome (pg) subtracted from the QTL proportion of lectin genes for a specific trait (ptrait), divided
by the standard error on ptrait. The latter can be computed from the hypergeometric distribution due to
the fact that lectin genes occur once in the genome. Hence,

z =
ptrait − pg

SE(ptrait)

where

var(ptrait) =
var(x)

n2

and

var(x) =
(nsr

N2

)
×

(
N − n
N − 1

)
n—number of the genes in QTL; s—number of the lectins in the genome; r—number of the

non-lectin genes in the genome; N—total sample (all genes in the genome); x—number of lectin genes
(in the trait).

We considered N as being all protein coding sequences in the genome of O. sativa spp. japonica
according IRGSP-1.0 published in 2016 (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/
Oryza_sativa_Japonica_Group/101/#FeatureCountsStats) with the total number of genes in QTL (N)
equal to 27,912 and the total number of the lectin genes in the genome (s) equal to 291 (according
to RAP-DB).

A Bonferroni correction was applied that considered multiple testing. A p-value was considered
as significant if p < 0.001, where the significance level, α, for a single two-sided test was defined as
0.025 and was divided by the number of performed tests, i.e., 25.

4.5. Phylogenetic Analysis

Maximum-likelihood phylogenetic trees were generated using the lectin domain sequences
identified for different lectin families according to the MSU annotation project, as described by [20].
For sequences consisting of multiple lectin domains, each lectin domain was treated as a separate
entry in the analysis. The domain sequences were aligned in MEGA7 (https://www.megasoftware.
net/) with MUSCLE using default settings [50]. Consecutive trimming of the aligned sequences
was performed using the automated1 option of trimAl v. 3 (http://trimal.cgenomics.org/) [51].
Phylogenetic trees were built with RAxML v. 8.2.4 based on the trimmed alignments [52]. RAxML
used the GTRGAMMA model with an automated determination of the best amino acid substitution
model. Bootstrap iterations were generated to assess the robustness of the tree and the number of
bootstraps was decided automatically by RAxML up to a maximum of 1000. Phylogenetic trees were
visualized and annotated with FigTree v. 1.4.2 software (http://tree.bio.ed.ac.uk/software/figtree/).
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Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/1422-0067/20/
2/437/s1. Table S1. List of all lectins in O. sativa spp. japonica with different annotations in MSU and RAP-DB.
Table S2. Percentage of the lectin genes on the chromosomes (Sheet 1), total number and percentage of lectins
(per family) resulting from tandem (Sheet 2) and segmental (Sheet 3) duplications for O. sativa spp. japonica.
Table S3. Overview of all identified domain combinations containing lectin motifs in O. sativa spp. japonica
(according to MSU and RAP-DB) and spp. indica. Numbers between brackets indicate the number of repeats.
Table S4. Distribution of the different lectin families in QTL traits according to Q-TARO. Results for nematode
resistance are according to Dimkpa et al. [15]. Every excel sheet represents one lectin family. Table S5. Overview
of lectin sequences identified in O. sativa spp. japonica: chromosome location, distribution in QTL regions in
general, as well as in QTLs related to abiotic and biotic stresses. Table S6. Overview of total number of QTLs
related with resistance or tolerance traits (according to Q-TARO), number and percentage of QTLs containing
lectins and distribution per lectin family. Table S7. Statistical analysis and p-values of the lectin distribution in
QTL traits for all four categories. Table S8. Overview of the total number of QTLs related with morphological
traits and physiological traits (according to Q-TARO), number and percentage of the QTLs containing lectins
and distribution per lectin family. Figure S1. Segmental duplications in the genome of O. sativa spp. japonica.
Figure S2. Venn diagram representing the appearance of the same lectins in more than one type of QTL.
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