
 International Journal of 

Molecular Sciences

Article

Differential Secretion of Angiopoietic Factors and
Expression of MicroRNA in Umbilical Cord Blood
from Healthy Appropriate-For-Gestational-Age
Preterm and Term Newborns—in Search of Biomarkers
of Angiogenesis-Related Processes in Preterm Birth

Dorota Gródecka-Szwajkiewicz 1,†, Zofia Ulańczyk 1,† , Edyta Zagrodnik 1,†,
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Abstract: Objectives: Premature birth, defined as less than 37 weeks gestation, affects approximately
12% of all live births around the world. Advances in neonatal care have resulted in the increased
survival of infants born prematurely. Although prematurity is a known risk factor for different
cardiovascular diseases, little is known about the pathophysiology of vasculature during premature
gestation and angiopoietic factors network during premature birth. Aims: The objective of this
study was to determine whether the profile of several pro-angiogenic and anti-angiogenic factors in
umbilical cord blood (UCB) is different in healthy appropriate-for-gestational-age preterm newborns
and normal term babies. The second aim of this study was to investigate the microRNA (miRNAs)
expression profile in UCB from preterm labor and to detect miRNAs potentially taking part in
control of angogenesis-related processes (Angio-MiRs). Methods: Using an immunobead Luminex
assay, we simultaneously measured the concentration of Angiogenin, Angiopoietin-1, FGF-acidic,
FGF-basic, PDGF-aa, PlGF, VEGF, VEGF-D, Endostatin, Thrombospondin-2, NGF, BDNF, GDNF,
and NT-4 in UCB samples collected from the preterm (n = 27) and term (n = 52) delivery. In addition,
the global microRNA expression in peripheral blood mononuclear cells (PBMCs) circulating in
such UCB samples was examined in this study using microarray MiRNA technique. Results: The
concentrations of five from eight measured pro-angiogenic factors (VEGF, Angiopoietin-1, PDGF-AA,
FGF-a, and FGF-b) were significantly lower in UCB from preterm newborns. On the contrary, two
angiostatic factors (Endostatin and Thrombospondin-2) were significantly up-regulated in preterm
UCB. Among analyzed neurotrophins in preterm newborns, the elevated UCB concentration was
found only in the case of GDNF, whereas BDNF was significantly reduced. Moreover, two angiopoietic
factors, VEGF-D and PlGF, and two neurotrophins, NT4 and NGF, did not differ in concentration in
preterm and term babies. We also discovered that among the significantly down-regulated miRNAs,
there were several classical Angio-MiRs (inter alia MiR-125, MiR-126, MiR-145, MiR-150, or MiR155),
which are involved in angiogenesis regulation in newborn after preterm delivery. Conclusions: This
is the first report of simultaneous measurements of several angiopoietic factors in UCB collected
from infants during preterm and term labor. Here, we observed that several pro-angiogenic factors
were at lower concentration in UCB collected from preterm newborns than term babies. In contrast,
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the two measured angiostatic factors, Endostatin and Thrombospondin-2, were significantly higher
in UCB from preterm babies. This can suggest that distinct pathophysiological contributions from
differentially expressed various angiopoietic factors may determine the clinical outcomes after preterm
birth. Especially, our angiogenesis-related molecules analysis indicates that preterm birth of healthy,
appropriate-for-gestational-age newborns is an “anti-angiogenic state” that may provide an increased
risk for improper development and function of cardiovascular system in the adulthood. This work
also contributes to a better understanding of the role of miRNAs potentially involved in angiogenesis
control in preterm newborns.

Keywords: appropriate-for-gestational-age preterm newborns; angiopoietic factors; umbilical cord
blood; peripheral blood; microRNA; angiogenesis; preterm gestation; prematurity; pro-angiogenic
factors; angiostatic factors

1. Introduction

Preterm birth rates range from 7% to 18% worldwide [1]. Despite considerable efforts, the incidence
of preterm birth is still rising. Especially, the population of infants born preterm has risen abruptly in
the last decades because contemporary perinatal care often reaches 95% of survival rate [1]. At the time
of preterm labor, many key organs are structurally and functionally immature. As a result, preterm
birth leads to functional adaptations in organs and systems of the newborn that facilitate its survival
but may simultaneously increase the vulnerability to multiple organ dysfunctions [2,3].

Multiple reports have defined a distinct cardiovascular phenotype of subjects born preterm,
including altered cardiovascular structure and function [4], reduced exercise capacity [5], as well as
increased risk of stroke and the development of other circulatory disorders [6]. Recently, preterm
birth has been announced as a novel risk factor for heart failure in young people [7], highlighting
the importance of experimental and human studies investigating the underlying pathophysiological
mechanisms responsible for such increased cardiovascular disease risk in this selected population.
Long-term health consequences of preterm birth are gradually being revealed and recent studies
of adolescents and young adults reported a higher blood pressure (BP), increased incidence of
arterial or pulmonary hypertension, and indices of vascular dysfunction, as well as significant cardiac
alterations [8]. Studies from around the world steadily show a dose–response relationship between
degree of prematurity and increase in BP. This finally results in a greater risk from stroke mortality
and morbidity from other vascular disorders [9,10]. Moreover, it was observed that in women born
as preterm, the further pregnancy complications are more common, with a 50% increase in the risk
of gestational hypertension, preeclampsia, and arterial hypertension [11]. Likewise, Kajantie et al.
reported that preterm women born before 34 weeks, compared to term, have around a 2-fold increase
in coronary heart disease as observed in a cohort study of people born in Helsinki [12]. The results
from these studies indicate that preterm birth, like poor fetal growth with birth at term, may also
program an increase in later cardiovascular risk. The mechanisms behind these malfunctions in
subjects born preterm are mostly unclear, but may in part be explained by interrupted cardiovascular
system development and maturation occurring during fetal growth and resulting in deficits in vascular
regulation in postnatal life.

On the other side, preterm birth is often associated with maternal and neonatal acute distress.
Thus, vulnerability of the preterm newborn to stressful intrauterine and extrauterine environmental
conditions suggests that preterm labor-related mechanisms may inseparably contribute to increased
blood pressure observed in individuals born preterm. Indeed, the reports exist that indicate a key role
for the level of maturity of vasculature, the kidneys’ development, and neuroendocrine system function,
including abnormalities in the renin-angiotensin system, in pathogenesis of vascular complications
and hypertension in subjects born preterm [13,14]. The diminution in the microvascular density
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and reduced capacity of capillary sprouting are major determinants of increased vascular resistance,
thus resulting in the progress of hypertension [15]. Mechanisms linking high BP with capillary
malfunction involve endothelial-derived oxidative stress [16], enhanced anti-angiogenic activation [17],
and premature vascular aging, resulting in its impaired proliferative and regenerative capacity.
These factors would directly impact on capillary sprouting through diminishing the stimulation
of pro-angiogenic factors by resident endothelial cells and of endothelial progenitor cells’ (EPCs)
recruitment to local neovascularization [18]. Our group has previously found higher early- and late-EPC
counts in umbilical cord blood (UCB) of premature infants compared with full-term neonates [19].
Furthermore, we also reported that elevated numbers of early endothelial progenitor cells in the
peripheral blood of preterm neonates were associated with retinal injury [20]. Machalinska et al.
has also found that in preterm neonates with hypoxic retinopathy, elevated VEGF and IGF-1 blood
levels correlated with retinal abnormalities, indicating that these trophic factors may be predictive
of abnormal neurodevelopmental outcomes, including retina [21]. Importantly, despite the fact that
preterm neonates have higher numbers of EPCs in UCB than full-term infants, these cells, especially the
EPC subtype with high proliferative and angiogenic properties, known as endothelial colony-forming
cells, were found to have dysfunctional angiostatic properties, when tested in vitro [22]. Vassallo et
al. revealed that the accelerated senescence of cord blood EPCs in premature neonates is driven by
decreased expression of SIRT1 protein [23]. Moreover, in the studies of Bertagnolli et al., the preterm
EPCs population was more vulnerable to exogenous factors, such as oxidative stress, compared to
full-term infants [24].

MicroRNAs (miRNA) are noncoding RNAs that control diverse biological processes, modulating
gene expression at the posttranscriptional level. Each miRNA can individually regulate up to several
hundred genes, and they may jointly regulate as much as 50–60% of the transcriptome, suggesting that
miRNAs may have pleiotropic effects in the human body [25]. The important functions of miRNAs have
been recognized in various biological processes associated with cardiovascular system homeostasis,
including angiogenesis and vasculogenesis or endothelial cell proliferation and metabolism [26].
Accumulating studies have suggested that a number of miRNAs are abnormally expressed and stably
exist in the blood or its cellular components (e.g., peripheral blood mononuclear cells (PBMCs)), making
them ideal circulating biomarkers for early detection in different clinical states. Indeed, our previous
analysis of miRNA expression profiling in vascular disorders, including retinal neovascularization,
showed a close correlation with clinical symptoms, suggesting that biological activity of circulating
PBMCs may reflect the actual state of microvasculature [27,28]. The role of miRNAs has been also
reported in the context of neonatal diagnostics and the first description of miRNA profiling in UCB
was reported in 2015 [29]. Recent studies have clearly shown that pathologies developing as a result of
ischemia or asphyxia may alter the specific miRNA levels in UCB, suggesting their potential role in the
early detection of such disorders [29,30]. PBMCs circulating in UCB might be a suitable alternative
and valuable source of molecular biomarkers for neonatal diagnostics, thanks to the noninvasive
and painless UCB collection at the time of child delivery. However, there are currently no reports
demonstrating the use of the level of microRNA expression from UCB as specific biomarkers for any
neonatal condition. Additionally, it still remains unclear which miRNAs could be associated with
physiological, as well as pathological, conditions of preterm gestation, and which miRNA should form
the panel of diagnostic markers for early detection of the cardiovascular system prematurity at birth.

Here, we sought to investigate the levels of several angiopoietic factors in umbilical cord blood
from neonates born prematurely, who were otherwise apparently healthy and free of cardiovascular
or respiratory diseases and other prematurity-related complications and compare them to term
newborns. In addition, using miRNA microarrays and bioinformatics software, we also examined
array-based miRNA profiles in UCB-derived PBMCs from the same set of children, comparing preterm
and term subjects to identify candidate miRNAs that may contribute to the pathomechanism of
this specific clinical condition of the neonates, such as preterm birth and prematurity of the whole
cardiovascular system.
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2. Results

2.1. Characteristics of the Study Groups

We enrolled 27 preterm and 52 term infants in this study. The sociodemographic and medical
characteristics of all the examined newborns are summarized in Table 1. The preterm and term neonates
differed in their physical measurements, arterial blood gas test results, and several blood laboratory
test results or consecutive Apgar scores during the labor.

Table 1. Characteristics of the study groups. In bold, p-value < 0.05 considered statistically significant.

Parameter Preterm Infants Term Infants p-Value

Number of subjects 27 52 -

Sex (M/F) 15/12 32/20 -

Length (cm) 46.04 ± 5.71 53.53 ± 3.45 <0.001

Weight (g) 2114.07 ± 648.72 3170.96 ± 520.68 <0.001

Head circumference (cm) 29.93 ± 2.70 34.08 ± 1.76 <0.001

Chest circumference (cm) 27.37 ± 3.31 32.59 ± 2.34 <0.001

Apgar score at 1 min 8.19 ± 1.78 9.31 ± 0.95 0.001

Apgar score at 3 min 8.59 ± 1.50 9.53 ± 0.78 <0.001

Apgar score at 5 min 8.85 ± 1.20 9.65 ± 0.63 <0.001

pH 7.32 ± 0.07 7.32 ± 0.05 0.85

pCO2 (mmHg) 46.14 ± 6.69 49.95 ± 8.05 0.02

pO2 (mmHg) 25.21 ± 12.64 19.36 ± 13.67 0.002

HCO3 (mmol/l) 23.64 ± 2.17 24.84 ± 2.26 0.003

BE (mval/l) −2.23 ± 1.62 −1.73 ± 1.97 0.49

WBC count (103/µL) 12.52 ± 5.13 19.77 ± 7.81 <0.001

RBC count (106/µL) 4.34 ± 0.48 4.85 ± 0.76 0.001

Haemoglobin (g/dL) 15.96 ± 1.74 16.80 ± 3.71 0.06

Haematocrit (%) 44.43 ± 4.72 47.89 ± 7.06 0.03

Platelets (103/µL) 268.33 ± 61.96 226.50 ± 67.90 0.01

Glucose 45.64 ± 21.32 81.12 ± 8.58 0.004

Maternal age (years) 32.13 ± 5.9 31.16 ± 5.4 0.433

2.2. Umbilical Cord Blood (UCB) Plasma Cytokines Levels

From fourteen factors tested, ten showed significantly different levels between preterm and term
neonates. We observed that Angiogenin, Endostatin, Thrombospondin-2, and GDNF levels were
significantly increased in preterm neonates compared to term infants (Figure 1). In contrast, mean
concentration of VEGF-A, PDGF-AA, Angiopoietin-1, FGFa, FGFb, and BDNF were significantly
decreased in preterm neonates, compared to term infants (Figure 1). Additionally, in the case of two
angiogenesis-related molecules, such as PlGF and VEGF-D, and two neurotrophic factors, i.e., NGF,
and NT-4, the concentration measured in UCB from preterm and term newborns was almost the same
with no statistical difference.
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Figure 1. Cytokines levels in Umbilical Cord Blood (UCB) from preterm and term infants (* p-value < 
0.05; ** p-value < 0.01; *** p-value < 0.001, Mann–Whitney test). 

2.3. MiRNA Transcripts Expression Profile 

In order to gain an expression profile of miRNAs that is specific to prematurity, the microarray 
was used to identify the differentially expressed miRNAs in peripheral blood-derived mononuclear 
cells circulating in UCB obtained from healthy, appropriate-for-gestational-age preterm newborns (n 
= 27) and full-term controls (n = 52). We applied a stringent filtering approach that compared healthy 
preterm newborns with term infants (absolute fold change > 2.0). There were a total of 143 aberrantly 
expressed miRNAs in preterm newborns compared to term infants that were identified by microRNA 
array analysis (Figure 2). The significantly differentially expressed miRNAs characterized by high 
fold change (FC) values ranged for upregulated miRNAs from 2.01 to 3.80 and for downregulated 
genes from -2.01 to -6.20. All the 33 miRNAs that were significantly upregulated in preterm newborns 
are listed in Table 2. The highest expression was observed in the case of miR-3135b transcript with a 
nearly 4-fold difference in the expression compared to term newborns. In an effort to better 
understand molecular function or biological process difference between miRNA profiles in preterm 
and term infants, we analyzed the Gene Ontology (GO) of miRNAs target genes. In the group of the 
significantly upregulated miRNAs, the GO analysis identified the involvement of these miRNAs in 
various biological processes such as cell cycle (miR-3620), response to hypoxia (miR-3620), DNA 
repair and recombination (miR-3620), glycerophospholipid biosynthesis (miR-3620), metabolism and 
metabolism of proteins (miR-3620), Angiopoietin-Like Protein 8 regulatory pathway (miR-3620), 
process of glucose metabolism (miR-8075), positive regulation of cardiac muscle cell apoptotic 
process (miR-320), regulation of cell migration involved in sprouting angiogenesis (miR-320), 
negative regulation of monooxygenase activity (miR-378), positive regulation of angiogenesis (miR-
378), regulation of cardiomyocyte hypertrophy (miR-130b), negative regulation of monooxygenase 
activity (miR-130b), and negative regulation of cholesterol efflux and lipoprotein transport (miR-
130b).  
  

Figure 1. Cytokines levels in Umbilical Cord Blood (UCB) from preterm and term infants (* p-value <

0.05; ** p-value < 0.01; *** p-value < 0.001, Mann–Whitney test).

2.3. MiRNA Transcripts Expression Profile

In order to gain an expression profile of miRNAs that is specific to prematurity, the microarray
was used to identify the differentially expressed miRNAs in peripheral blood-derived mononuclear
cells circulating in UCB obtained from healthy, appropriate-for-gestational-age preterm newborns
(n = 27) and full-term controls (n = 52). We applied a stringent filtering approach that compared healthy
preterm newborns with term infants (absolute fold change > 2.0). There were a total of 143 aberrantly
expressed miRNAs in preterm newborns compared to term infants that were identified by microRNA
array analysis (Figure 2). The significantly differentially expressed miRNAs characterized by high
fold change (FC) values ranged for upregulated miRNAs from 2.01 to 3.80 and for downregulated
genes from -2.01 to -6.20. All the 33 miRNAs that were significantly upregulated in preterm newborns
are listed in Table 2. The highest expression was observed in the case of miR-3135b transcript with a
nearly 4-fold difference in the expression compared to term newborns. In an effort to better understand
molecular function or biological process difference between miRNA profiles in preterm and term
infants, we analyzed the Gene Ontology (GO) of miRNAs target genes. In the group of the significantly
upregulated miRNAs, the GO analysis identified the involvement of these miRNAs in various biological
processes such as cell cycle (miR-3620), response to hypoxia (miR-3620), DNA repair and recombination
(miR-3620), glycerophospholipid biosynthesis (miR-3620), metabolism and metabolism of proteins
(miR-3620), Angiopoietin-Like Protein 8 regulatory pathway (miR-3620), process of glucose metabolism
(miR-8075), positive regulation of cardiac muscle cell apoptotic process (miR-320), regulation of cell
migration involved in sprouting angiogenesis (miR-320), negative regulation of monooxygenase activity
(miR-378), positive regulation of angiogenesis (miR-378), regulation of cardiomyocyte hypertrophy
(miR-130b), negative regulation of monooxygenase activity (miR-130b), and negative regulation of
cholesterol efflux and lipoprotein transport (miR-130b).
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Figure 2. The scatter plot of global miRNA expression in UCB from preterm neonates when compared 
to term ones. Red points show downregulated miRNAs (at least 2-fold change, p < 0.05), green points 
show upregulated miRNAs (at least 2-fold change, p < 0.05). The graphs also comprise the names of 
miRNAs with the largest change in expression. On the vertical axis (y-axis) are plotted data from 
preterm group in this study. On the horizontal axis (x-axis) are plotted data from termly delivered 
neonates, which serve as the control group in this study. 

On the other hand, in the group of the significantly downregulated 110 miRNA transcripts in 
preterm newborns, the GO analysis showed that the mostly down-regulated miR-941 transcript 
(approximately 6 folds) can participate in the regulation of mitogen-activated protein kinase (MAPK) 
protein signaling and hormonal signaling of insulin. The other highest downregulated miR-484 
transcript (around 5 folds) is involved in the cell cycle and mitosis regulation, organelle biogenesis, 
and maintenance, as well as signaling provided by GTPases and GPCR molecules. Additionally, 
highly downregulated miR-338-5p also plays a role in negative regulation of gene expression with 
gene silencing by miRNA and in the negative regulation of cell migration. The miR-363-3p is involved 
in Toll-like receptor signaling and actin cytoskeleton regulation. Among the significantly 
downregulated miRNAs in the preterm newborns, the specific “Angio-MiRs” were found, which 
have control over the angiopoietic factors. The miR-17-92 cluster regulates the process of positive 
regulation of vascular smooth muscle cell proliferation, positive regulation of pulmonary blood 
vessel remodeling, positive regulation of cardiac muscle hypertrophy in response to stress and 
negative regulation of systemic arterial blood pressure, as well as cellular response to hypoxia and 
positive regulation of hydrogen peroxide-mediated programmed cell death. miR-93 is involved in 
DNA damage response. miR-125 controls the process of positive regulation of endothelial cell 
apoptotic process, positive regulation of sprouting angiogenesis, and negative regulation of 
glomerular mesangial cell proliferation, as well as negative regulation of angiogenesis. miR-126 
controls positive regulation of blood vessel endothelial cell migration, positive regulation of MAPK 
cascade, positive regulation of ERK1 and ERK2 cascade, positive regulation of Notch signaling 
pathway, cellular response to hypoxia, negative regulation of endothelial cell apoptotic process, 
positive regulation of vascular endothelial cell proliferation, positive regulation of vasculature 
development, and positive regulation of blood vessel endothelial cell proliferation involved in 
sprouting angiogenesis. miR-145 regulates vascular smooth muscle cell differentiation, aorta smooth 
muscle tissue morphogenesis, positive regulation of cardiac vascular smooth muscle cell 
differentiation, negative regulation of cardiac muscle cell apoptotic process, and myofibroblast 
differentiation with angiotensin-activated signaling pathway and negative regulation of 
angiogenesis. miR-150 controls positive regulation of endothelial cell differentiation, positive 

Figure 2. The scatter plot of global miRNA expression in UCB from preterm neonates when compared
to term ones. Red points show downregulated miRNAs (at least 2-fold change, p < 0.05), green points
show upregulated miRNAs (at least 2-fold change, p < 0.05). The graphs also comprise the names
of miRNAs with the largest change in expression. On the vertical axis (y-axis) are plotted data from
preterm group in this study. On the horizontal axis (x-axis) are plotted data from termly delivered
neonates, which serve as the control group in this study.

Table 2. The profile of cellular miRNA up-regulated in preterm newborns in comparison with control
full-term neonates (the fold difference).

No. miRNA Name miRNA Type Absolute Fold Change

1 hsa-miR-3135b miRNA 3.80

2 hsa-miR-4440 miRNA 3.26

3 hsa-miR-3620-5p miRNA 2.99

4 hsa-miR-8075 miRNA 2.94

5 hsa-miR-4505 miRNA 2.93

6 hsa-miR-6732-5p miRNA 2.89

7 hsa-miR-4507 miRNA 2.86

8 hsa-miR-6779-5p miRNA 2.85

9 hsa-miR-4497 miRNA 2.76

10 hsa-mir-6776 stem-loop 2.59

11 hsa-miR-1587 miRNA 2.57

12 hsa-mir-320e stem-loop 2.54

13 hsa-miR-4492 miRNA 2.41

14 hsa-miR-3149 miRNA 2.40

15 hsa-miR-3195 miRNA 2.39

16 hsa-miR-6803-5p miRNA 2.36

17 hsa-miR-595 miRNA 2.35

18 hsa-miR-4508 miRNA 2.32
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Table 2. Cont.

No. miRNA Name miRNA Type Absolute Fold Change

19 hsa-mir-8075 stem-loop 2.23

20 hsa-miR-3148 miRNA 2.21

21 hsa-miR-130b-3p miRNA 2.15

22 hsa-miR-602 miRNA 2.14

23 hsa-mir-365a stem-loop 2.13

24 ENSG00000238388 snoRNA 2.10

25 hsa-mir-6722 stem-loop 2.08

26 hsa-miR-7977 miRNA 2.04

27 hsa-miR-1184 miRNA 2.03

28 hsa-miR-378a-3p miRNA 2.02

29 hsa-miR-1910-5p miRNA 2.02

30 hsa-miR-6791-5p miRNA 2.01

31 hsa-miR-6132 miRNA 2.01

32 hsa-miR-4462 miRNA 2.01

33 hsa-miR-4530 miRNA 2.01

On the other hand, in the group of the significantly downregulated 110 miRNA transcripts
in preterm newborns, the GO analysis showed that the mostly down-regulated miR-941 transcript
(approximately 6 folds) can participate in the regulation of mitogen-activated protein kinase (MAPK)
protein signaling and hormonal signaling of insulin. The other highest downregulated miR-484
transcript (around 5 folds) is involved in the cell cycle and mitosis regulation, organelle biogenesis,
and maintenance, as well as signaling provided by GTPases and GPCR molecules. Additionally,
highly downregulated miR-338-5p also plays a role in negative regulation of gene expression with
gene silencing by miRNA and in the negative regulation of cell migration. The miR-363-3p is
involved in Toll-like receptor signaling and actin cytoskeleton regulation. Among the significantly
downregulated miRNAs in the preterm newborns, the specific “Angio-MiRs” were found, which
have control over the angiopoietic factors. The miR-17-92 cluster regulates the process of positive
regulation of vascular smooth muscle cell proliferation, positive regulation of pulmonary blood vessel
remodeling, positive regulation of cardiac muscle hypertrophy in response to stress and negative
regulation of systemic arterial blood pressure, as well as cellular response to hypoxia and positive
regulation of hydrogen peroxide-mediated programmed cell death. miR-93 is involved in DNA damage
response. miR-125 controls the process of positive regulation of endothelial cell apoptotic process,
positive regulation of sprouting angiogenesis, and negative regulation of glomerular mesangial cell
proliferation, as well as negative regulation of angiogenesis. miR-126 controls positive regulation of
blood vessel endothelial cell migration, positive regulation of MAPK cascade, positive regulation of
ERK1 and ERK2 cascade, positive regulation of Notch signaling pathway, cellular response to hypoxia,
negative regulation of endothelial cell apoptotic process, positive regulation of vascular endothelial
cell proliferation, positive regulation of vasculature development, and positive regulation of blood
vessel endothelial cell proliferation involved in sprouting angiogenesis. miR-145 regulates vascular
smooth muscle cell differentiation, aorta smooth muscle tissue morphogenesis, positive regulation
of cardiac vascular smooth muscle cell differentiation, negative regulation of cardiac muscle cell
apoptotic process, and myofibroblast differentiation with angiotensin-activated signaling pathway
and negative regulation of angiogenesis. miR-150 controls positive regulation of endothelial cell
differentiation, positive regulation of cell migration involved in sprouting angiogenesis, positive
regulation of mesodermal cell differentiation. miR-155 controls negative regulation of vascular wound
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healing, negative regulation of cell migration involved in sprouting angiogenesis, positive regulation
of cardiac muscle hypertrophy in response to stress, negative regulation of blood vessel endothelial
cell proliferation involved in sprouting angiogenesis, negative regulation of leukocyte adhesion to
vascular endothelial cell, regulation of apoptotic cell clearance, positive regulation of reactive oxygen
species biosynthetic process. The miR-210 is involved in regulation of cellular response to hypoxia,
hypoxia-inducible factor-1 alpha signaling pathway and positive regulation of apoptotic signaling
pathway, as well as in the positive regulation of angiogenesis and tube formation, positive regulation
of cell migration and positive regulation of blood vessel endothelial cell migration, and negative
regulation of vascular associated smooth muscle cell apoptotic process.

To determine which biological processes can be differentially regulated by microRNAs globally in
newborns from preterm labor, we performed the additional analysis of the enrichment in the relevant
ontological groups from the Gene Ontology-Biological Process (GO BP) direct database. Thus, miRNA
targets were assigned to (GO BP) database. A whole set of differentially expressed microRNA transcripts
consisting of 143 miRNAs (33 up- and 110 down-regulated) was subjected to functional annotation
and clusterization using the database for annotation, visualization, and integrated discovery (DAVID)
bioinformatics tools. The result of this analysis is displayed as a bubble plot (Figure 3), which shows only
ontological groups fulfilling the following criteria: adjusted p-values below 0.05 and minimal number
of genes per group =5. According to GO analysis in PBMCs circulating in UCB from preterm newborns,
there are nearly one hundred significantly differently expressed miRNA-target pairs playing an
important role in the regulation of signaling pathways and endothelial cells activities, inter alia: “VEGF
signaling pathway (04370)”, “Neurotrophin signaling pathway (04722)”, “MAPK signaling pathway
(04010)”, “PI3K-AKT signaling pathway (04151)”, “HIF-1 signaling pathway (04066)”, “Sphingolipid
signaling pathway (04071)”, “Chemokine signaling pathway (04066)”, “Leucocyte transendothelial
migration (04670)”, “Adherens junction (04520),” or “Endocytosis (04144)”.

Next, in the subsequent analysis to check the relationship between miRNAs and genes regulated
by them that are specifically involved in the processes, such as proliferation/apoptosis and angiogenesis
regulation, we revealed that in PBMNs from UCB of newborns after preterm labor, these genes
were controlled by the range of significantly up-regulated miRNAs (Figure 4A): CDC42 (miR-6132),
MAPK1 (miR-130b-3p, miR-378a-3p), MAPKAPK3 (miR-4492, miR-4530), NRAS (miR-3135b, miR-4530,
miR-6735-5p, let-7b-5p, let-7c-5p), PIK3CB (miR-130b-3p), PIK3R1 (miR-1184, miR-3149, miR-4497),
PIK3R5 (miR-3135b, miR-1587, miR-4492), PLCG1 (miR-4505), PPP3CA (miR-3148), PRKCA (miR-6132,
miR-3148, miR-4492, miR-4505), PXN (miR-3135b, miR-4505, miR-4492), RAC1 (miR-3148, miR-320e),
and RAF1 (miR-1587). It was found that these genes are engaged in several processes taking place during
cardiovascular system development (sprouting angiogenesis and vascular endothelial growth factor
receptor signaling pathway: CDC42, PIK3CB; positive regulation of cardiac muscle cell proliferation
and cardiac neural crest cell development involved in heart development: MAPK1; positive regulation
of blood vessel endothelial cell migration: PLCG1; heart development: RAF1), MAPK cascade
regulation (activation of MAPK and MAPKK activity and regulation of stress-activated MAPK cascade:
MAPK1, MAPKAPK3, NRAS, PIK3CB, RAF1), neoangiogenesis (positive regulation of endothelial cell
proliferation: NRAS, PIK3CB; positive regulation of angiogenesis and positive regulation of endothelial
cell apoptotic process: PLCG1; vascular endothelial growth factor receptor signaling pathway: PXN,
RAC1), wound healing (angiogenesis involved in wound healing and platelet aggregation and activation:
PIK3CB, RAF1; response to wounding: PIK3CB, RAC1), intrauterine organism development (in utero
embryonic development: PLCG1; anatomical structure morphogenesis: RAC1), and cardiac and
vascular function (positive regulation of cardiac muscle hypertrophy and cardiac muscle hypertrophy
in response to stress: PPP3CA; regulation of nitric oxide biosynthetic process: RAC1).
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Figure 3. Bubble plot of overrepresented gene sets in DAVID Gene Ontology-Biological Process (GO
BP) annotations database obtained from comparisons in miRNA transcript expression profiles between
preterm vs. term newborns. The graph displays only the Gene Ontology (GO) groups above the
established cut-off criteria (p with correction < 0.05, a minimal number of genes per group > 10).
The color of each bubble, according to the legend, reflects the number of differentially expressed genes,
assigned to the GO BP terms. Interestingly, analysis of biological processes regulated by differentially
expressed miRNAs target genes revealed processes of characteristic for the regulation of angiogenesis
and activity of endothelial cells.
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Similarly, we observed that many of the miRNAs, which are highly upregulated in UCB from
preterm newborns, were cross-linked with genes belonging to the Neurotrophins signaling pathway,
thus displaying the negative regulation of this pathway (Figure 4B). The overexpressed miRNAs
specifically regulate the expression of following genes: BRAF (involved in cellular response to nerve
growth factor stimulus and positive regulation of axonogenesis), PTPN11 (BDNF signaling pathway
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and neurotrophin TRK receptor signaling pathway), PSEN1 (regulation of neurite outgrowth and
neuron development, neuron apoptotic process and negative regulation of neuron apoptotic process
and transmission, as well as in synaptic vesicles replenishment in a process of presynaptic facilitation),
PLCG1 (BDNF signaling pathway and neurotrophin TRKA receptor binding), RELA (regulation of
Schwann cell differentiation), TP53 (development of neurotrophin family signaling, regulation of
neuron apoptotic process, and regulation of neuroblast proliferation), GRB2 (Neurotrophin TRKA
receptor binding), RAC1 (neuron migration and motor neuron axon guidance), RAF1 (Neurotrophin
TRK receptor signaling pathway), CRK (neuron migration, cerebellar neuron development and
neurotrophins signaling pathway). Our finding also demonstrated the involvement of several miRNAs
involved in a neurotrophin signaling pathway controlling neural growth and proliferation through
potential regulation of MAP kinase cascade activity (MAPK1, MAPK3, MAP3K3, BRAF, PTPN11, NRAS,
RAF1, and CRK). Therefore, we found an extensive regulatory network between miRNAs, which are
highly expressed in PBMN cells in UCB and their corresponding genes.

2.4. RNA Gene Expression Profile

Finally, because the DAVID BP bioinformatics tool revealed the significant changes of expression
of miRNA transcripts strongly related, among others, to regulation of angiogenesis as well as
proliferation/apoptosis in newborns from preterm labor, in the next step we performed an analysis of
the enrichment in the relevant ontological groups from the DAVID GO BP direct mRNA gene database.
A whole set of differentially expressed genes (DEGs) consisting of 4031 genes (250 up- and 3781
down-regulated) was subjected to functional annotation and clusterization, using again the DAVID
software. As a result of this specific analysis, the expression of mRNA encoding genes belonging to the
following ontological groups were found: (i) Vascular endothelial growth factor receptor signaling
pathway (GO: 0048010), (ii) Regulation of establishment of endothelial barrier (GO: 1903140), and (iii)
Ephrin receptor signaling pathway (GO: 0048013). Of note, the latter one encompasses the signaling of
Ephrin receptors, a family of receptor tyrosine kinases, which are crucial for vascular endothelial cell
migration and adhesion during angiogenesis and neovascularization, thus playing an important role
in vascular and neuronal development, as well as functioning as activators of the MAP kinase cascade.
Due to the ambiguous nature of the Gene Ontology structure, single genes can often be assigned
to many ontological terms. Therefore, the relationship between genes and GO terms were mapped
with Circos plots with visualization of logFC values and gene symbols (Figure 5). The strongest
down-regulated genes from the examined ontological groups included inter alia: MMP9—Matrix
Metallopeptidase 9 (involved in neovascularization as a key regulator of angiogenesis), PAK2—P21
(RAC1) Activated Kinase 2 (involved in Angiopoietin-TIE2 Signaling and MAPK signaling pathway),
PXN—Paxillin (involved in Angiopoietin receptor Tie2-mediated Signaling and VEGF—VEGF-R2
Signaling), PRKD2—Protein Kinase D2 (plays a regulatory role in angiogenesis by phosphorylating
the downstream effectors resulting in VEGF secretion), and several MAP kinases (MAPK13, MAPK14,
MAPKAPK2, MAPKAPK3) involved in many cellular processes, including gene expression regulation
and cell proliferation, together with angiogenesis and neovascularization.
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Figure 5. Detailed analysis of three enriched gene ontological groups involved in angiogenesis
regulation in preterm newborns. Circos plots with interdependence between selected GO terms and
their genes. Symbols of differentially expressed genes (DEGs) are presented on the left side of the graph
with their fold change values, mapped by color scale (red = lower expression). Moreover, the color
intensity of the rectangle next to the marked gene name reflects the order of magnitude of the change in
gene expression. Gene involvement in the GO terms was determined by colored connecting lines.

3. Discussion

There are only a few previous studies aimed at identifying cord blood biomarkers of angiogenesis
and the vascular compartment in preterm newborns. Here, for the first time, our group has
performed the complex analysis of several angiopoietic factors and other trophic factors that drive
vasculature development and endothelial homeostasis in newborns with a low gestational age that
were born prematurely. We found that several pro-angiogenic factors, including Angiopoietin-1, VEGF,
FGF-acidic, FGF-basic, PDGF-AA, and BDNF, were significantly decreased in the UCB of premature
infants. In contrast, the UCB concentration of crucial angiostatic molecules, such as Endostatin,
and Thrombospondin-2, was significantly increased in this group. Additionally, two other factors
which support angiogenesis, i.e., Angiogenin and GDNF, were significantly upregulated in UCB of
preterms. These findings contribute to our growing understanding of the role of fetal angiogenesis and
endothelial homeostasis in the pathophysiology of premature birth and prematurity itself.
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Angiogenesis, together with vascular growth (vasculogenesis) during fetal life, is dependent on
endothelial cells, numerous growth factors, and cytokines, of which angiopoietic factors seem to be very
important [31]. Vascular growth is driven by vascular endothelial cells, forming stable connections and
cellular rearrangements during sprouting, anastomoses, lumen formation, and functional remodeling
of the vascular network [32]. The biological state of vascular endothelial cells is an important regulatory
factor for the homeostasis and quality of vasculature development in preterm newborns. Intrauterine
growth of the vascular bed during gestation is regulated by a number of trophic factors, particularly
VEGF, which is an endothelial cell-specific regulator of vascular permeability and angiogenesis, which
facilitates sprouting and proliferation of endothelial cells [33]. In endothelial cells, VEGF induces
expression of cell-adhesion molecules and the release of other trophic factors and cytokines [34].
The pro-angiogenic Angiogenin promotes endothelial cell activities, including migration, proliferation,
and tube formation by interacting with endothelial cells [35]. Several fibroblast growth factors
induce migration of endothelial cells and reorganization of the tube structure [36]. Placental growth
factor, a related homolog of VEGF, also induces angiogenesis [37]. Likewise, platelet-derived growth
factor modulates endothelial proliferation and angiogenesis via its receptor on endothelial cells [38].
In addition, the local oxygen environment plays an important role in development and control of
organ vasculature. The angiopoietic growth factors have been implicated in various vascular diseases,
including atherosclerosis, but little is known about their expression and role in angiogenesis regulation
and vascular development in premature fetuses and the postnatal life of preterm newborns.

Literature data indicate that angiogenin (ANG) is a pro-angiogenic factor essential for cell
proliferation and angiogenesis induced by other angiogenic factors [35]. In particular, it has been
reported that nuclear translocation of ANG is a critical step for angiogenesis induced by other growth
factors including VEGF, FGF, or EGF [39]. ANG was also shown to trigger nitric oxide synthase (NOS)
activity in human umbilical vein endothelial cells (HUVECs), inducing increased vascular permeability
and vasodilatation [40]. Previously, it was reported that fetal circulating ANG levels did not differ
between pregnancies with small-for-gestational-age fetuses and appropriate-for-gestational-age fetuses,
thus it might indicate that only pathophysiological processes during preterm gestation could affect
ANG production and its levels in peripheral blood, but not the body size of the fetus [41]. Another
study reported that serum ANG levels were higher in pregnancies complicated by hypertension than
in normal, healthy pregnancies [42]. Here, we showed that from several pro-angiogenic factors tested
in this study, only ANG appeared to be significantly increased in UCB from preterm newborns. Our
observation of higher levels of ANG in preterm newborns may indicate its potential role in vascular
development during preterm gestation.

On the contrary, we observed decreased levels of several pro-angiogenic factors in UCB from
preterm babies. VEGF is expressed in villous and extravillous trophoblasts and its expression level
alters with adverse pregnancy outcomes [43]. It has been observed that pregnancies with placenta
that demonstrated severe vascular under-perfusion were strongly associated with lower levels of
proangiogenic factors in UCB, such as VEGF and its soluble receptor sVEGFR-2 [44]. It was found that
resident placental endothelial cells from pregnancies characterized by fetal growth restriction resulting
in preterm delivery, demonstrated decreased angiogenesis with impaired signaling in different VEGF
pathways, including activation of the VEGF–NO signaling [45]. Importantly, previously published
data indicated that VEGF levels were significantly lower in UCB from premature fetuses than in term
fetuses [46]. Moreover, the concentration of numerous pro-angiogenic factors was diminished not
only in UCB but also in the peripheral blood collected from pregnant women, who delivered preterm
neonates. For example, plasma concentration of PlGF and sVEGFR-2 were lower in pregnant women
even at 5 weeks prior to the diagnosis of spontaneous preterm delivery [47]. In this notion, we analyzed
a large number of pro-angiogenic molecules in UCB samples from preterm newborns and confirmed
the general profile of UCB with decreased concentration of several pro-angiogenic factors in neonates
born prematurely. The reduction of systemic FGF-basic observed in our study is particularly interesting,
since this factor has been shown to act in cooperation with VEGF to accelerate vascularization.
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The role of Angiopoietin-1 in fetal cardiovascular development is not well understood. Low
levels circulating at preterm birth may represent a primary defect in production by the dysfunctional
endothelium and circulating endothelial progenitor cells, impaired upstream regulators, or competition
with Angiopoietin-2 for the common receptor Tie-2 in peripheral premature vasculature [48]. Existing
data suggest that both Angiopoietin-1 and VEGF act in a very complementary and coordinated fashion,
with former molecules to promote vessel branching and remodeling, as well as to promote maturation
and stabilization of vessels [49]. Critical to the function of Angiopoietin-1 appears to be its ability to
optimize interactions of endothelium with surrounding supporting cells and matrix, thus stabilizing
and maintaining vessels [45]. The defects in mice lacking Angiopoietin-1 suggest that this protein
is critical for normal remodeling, maturation, and stabilization of the developing vasculature [50].
Additionally, the microscopic examination of vessels in animals lacking Angiopoietin-1 showed that
endothelial cells failed to interact and adhere properly and vessels failed to follow normal remodeling
and were at risk for subsequent regression. Another major defect in mice lacking Angiopoietin-1
involves abnormal heart development with several deformities in heart structure, including heart
chambers trabeculation and endocardium quality [50]. Here, our findings demonstrated that these
angiopoietic factors that biologically cooperate together, VEGF-A and Angiopoietin-1, were also both
affected by premature birth, as they were significantly decreased in UCB samples from preterm infants
population and could exert abnormal humoral effects on cardiovascular system. Although the decrease
in the levels of pro-angiogenic factors in our study might be a result of ongoing angiogenesis-related
processes in the developing peripheral organs, with quick turnover of selected angiogenesis-stimulating
factors, however, we cannot exclude that the cause of those disturbances could be the prematurity of
endothelial cells in microvasculature and that they are the main producers of angiogenic growth factors
in the growing organism. This requires further in-depth studies and correlation with Angiopoietin-2
levels that permits the fetal blood vessels to undergo remodeling during gestation through branching
and non-branching angiogenesis [51].

During pregnancy, the interactions between oxygen partial pressure, different vascular cell types,
and the regulation of cellular responses, such as angiopoietic factors (e.g., VEGF and PlGF, and their
receptors), lead to proper control of angiogenesis. Postulated changes in the vasculature development
in infants born prematurely may also be estimated by analysis of the ratio of two specific angiogenic
proteins, i.e., VEGF/PlGF ratio. PlGF appears to augment the angiogenic effect of VEGF. It was found
that specific type of angiogenesis with increased branching that permits for better oxygen and nutrients
distribution into peripheral tissues is likely a result of a greater VEGF/PlGF ratio with elevated VEGF
concentrations in relation to PlGF [52]. In contrast, angiogenic imbalance characterized by decreased
VEGF/PlGF ratio may have a causative role in impaired vascularization, especially in placenta, prior to
the development of preeclampsia [53]. The analysis of the VEGF/PlGF ratio in our cohorts of preterm
and term newborns confirms the imbalance between these two angiogenic factors in the former group.
These findings might demonstrate the adverse influence of lower circulating VEGF found in preterm
newborns on vasculature control and endothelial homeostasis in these subjects. Likewise, with regard
to VEGF/PlGF values in UCB samples from preterm newborns, combining clinical data with oxidative
blood status and vascular/angiopoietic biomarkers such as VEGF/PlGF, might potentially be a good
ratio index for clinical use for predicting the influence of preterm birth on final outcomes related to
prematurity. However, the real impact of VEGF/PlGF ratio requires further large scale studies [54].

Several proteins with anti-angiogenic properties are associated with adverse neonatal outcomes.
Some of them have been implicated in the pathophysiology of anti-angiogenic states of pregnancy,
including preterm labor [50], small-for-gestational age [55], fetal death [56], twin to twin transfusion
syndrome [57], or preeclampsia [58]. This state is a result of the imbalance in the production of
angiogenic factors, such as VEGF, and different anti-angiogenic factors. It is likely that the elevation in
concentration of potent anti-angiogenic factors in infants with preterm labor is not a signal to initiate
such labor, but rather reflects longitudinal general perturbations in preterm gestation [47]. In this
notion, we have detected increased concentration of two independent and potent angiostatic factors,
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i.e., Endostatin and Trombospondin-2 in UCB from preterm infants compared to term newborns.
Consistent with our findings, Janer et al. detected a high concentration of Endostatin in UCB
from very low birth weight infants [59]. Interestingly, Lewandowski et al. has observed enhanced
anti-angiogenic state even in young adults who were born as preterm babies, characterized by increased
endoglin and soluble sVEGFR-1, which both are the potent anti-angiogenic factors [17]. Besides,
in the in vivo model, the intraamniotic administration of anti-angiogenic sVEGFR-1 to animals in
preterm gestation could decrease pulmonary vessel density, suppress activation of VEGF receptor-2,
and increase apoptosis in endothelial cells in the newborn lungs, suggesting that an elevation of
anti-angiogenic factors in the preterm gestation may result in impaired vascular growth and reduction
of the pulmonary alveolar numbers. Collectively, the results of previous studies coupled with our
findings indicate that it is possible that the increased production of potent anti-angiogenic factors may
be associated with subsequent development of apoptosis and malfunction in different components
of the growing vasculature, especially in endothelial cells. These cells naturally secrete plenty of
angiogenesis-regulatory molecules, and probably the diminished population of such cells with reduced
functionality in preterm gestation could be one of the causes of impaired concentration of several
angiopoietic factors examined in our study in UCB from preterm neonates.

Neurotrophins (NTs) promote survival and reduce apoptosis in many cell populations and their
action is not limited to nervous tissue, as their role in angiogenesis has also been proposed [60].
Abrupt removal of the maternal passage and their placental sources can cause the reduction in NTs
levels at birth. Because NTs might also play important roles as regenerative factors in cardiovascular
system [61] and promote angiogenesis, we decided to compare changes in expression levels of selected
classic neurotrophins, including BDNF, GDNF, NGF, and NT-4 in UCB from preterm and term babies.
The data presented here demonstrated that preterm birth affects the expression of several neurotrophic
factors in UCB. We have shown that the secretion of BDNF was significantly decreased in UCB after
preterm labor. BDNF is essential for neuronal development and thus it can be treated as marker
of neuronal maturation. Decreased BDNF levels in preterm newborns may be a manifestation of
immaturity of neuronal cell population throughout the whole body [62]. Low levels of BDNF in UCB
may also indicate a higher risk of neurodevelopmental complications in postnatal life [63]. Similar
effects of preterm birth on NTs levels were previously observed by other groups. Matoba et al. reported
that BDNF and NT-3 levels were significantly decreased in UCB from preterm birth [64]. BDNF and
NT-3 are also involved in the regulation of angiogenesis. Recent studies suggest that the levels of
BDNF and other NTs are regulated by docosahexaenoic acid (DHA) which is an important omega-3
fatty acid. Oxidative stress developing in the pregnancy complicated with preterm birth may lower
the levels of DHA, thus leading to the observed changes in the levels of BDNF [65]. In this notion,
decreased expression of BDNF in the preterm gestation might lead to abnormal fetal growth that may
increase the risk of cardiovascular diseases and metabolic abnormalities in the postnatal life of children
born preterm.

In contrast, our study demonstrates that the secretion of another important neurotrophic factor,
GDNF, was significantly increased in UCB under stress-related conditions during the preterm labor.
Similar to our results, Rajkumar et al. observed that cord blood GDNF levels were significantly higher
in preterm newborns compared to term newborns [66]. GDNF is a potent neurotrophin that protects
the central and peripheral nervous system against degeneration. Previous experimental studies have
shown the protective effect of GDNF in enteric neuronal survival, which seems to cooperate with
classical NTs in the pathological and physiological states of gut development [67]. Here, increased
levels of GDNF during preterm birth may represent a compensatory mechanism to protect preterm
newborns in the course of reduced production of other classical NTs and other trophic factors, such
as VEGF. Interestingly, there are existing crosstalks between GDNF or its putative receptors with the
Semaphorins/VEGF family [68]. Thus, GDNF may play an important role in vascular development
during preterm gestation.
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Exploring the effects of preterm birth on microRNAs expression in UCB, the microarray analysis
carried out in our laboratory showed that preterm gestation led to differential expression of 143
miRNAs, which were either significantly down- or up-regulated. Further bioinformatic analysis
revealed that up-regulated 33 miRNA sequences may be also engaged in several biological processes,
which may regulate growth, survival, and differentiation of endothelial and other vascular-related cells.
Endothelial function is partially manifested by the permeability and migration. Indeed, the highly
upregulated miRNA miR-4505 from our study is associated with control of the transcription of heat
shock protein family members, also those primarily expressed in endothelial cells to participate in
vascular network formation and cell migration. It was reported that the expression level of miR-4505
increases after LPS stimulation in endothelial cells from umbilical cord and this mechanism may
involve NF-κB activation. As a result, miR-4505 induces high permeability and reduces migration
of endothelial cells [69], demonstrating that miR-4505 may aggravate endothelial impairment in the
vasculature of preterm newborns. It might be speculated that increased expression of miR-4505
is one of the intrinsic feedback mechanisms involved in endothelial injury during acute stress in
course of preterm birth. In our study, another upregulated miRNA involved in the regulation of
cellular functions, including cell proliferation and apoptosis, was miR-4530. It has been revealed
that overexpression of miR-4530 can suppress cell proliferation and enhance apoptosis in human
umbilical vein endothelial cells (HUVECs) via the ERK/MAPK and PI3K/AKT signaling pathways [70].
Furthermore, it was reported that miR-4530 was upregulated in the blood of patients with diabetic
retinopathy [71]. Recent analysis published by Chen et al. showed that miR-4530 might be involved in
the development and progression of unexplained recurrent spontaneous abortions [72]. It was also
established that miR-4530 plausibly contributes to the promotion of angiogenesis with endothelial
cells, maintaining the pro-angiogenic function in tumor formation [73]. There is a report indicating
that overexpressed miR-7977 could induce disturbances in the expression of several trophic factors in
BM stromal cells that are essential for self-renewal of HSCs, including Angiopoietin-1, which usually
induces functional and mature vascular formation [74]. In the present study, we observed in our
cohort of preterm newborns, the significant up-regulation of miR-7977 in UCB that might result in
a decreased angiogenesis-supporting capacity of BM CD34+ cells in preterm gestation through the
reduction of angiopoietic factor levels in blood, such as Angiopoietin-1. In the other study, Chen et al.
have demonstrated in in vitro experiments that miR-7977 expression might be an important modulator
involved in the molecular mechanisms of cell cycle, proliferation, and apoptosis [75]. Hence, miR-7977
could play an important role in the disturbance of fetal angiogenesis. This suggests that deregulation
in miRNA expression may be crucial in the pathogenesis of prematurity-related angiopoietic factors
misbalance (angiogenic vs. angiostatic) via regulation of selected miRNA biogenesis. Although the
precise function of the overexpressed miRNAs in the preterm fetal organism remains unknown, these
miRNAs seem to be good candidates for further assessment, as diagnostic biomarkers preceding the
clinical onset of pathologic states in the postnatal life that are nowadays related to the prematurity.

We further performed functional bioinformatics analyses with regard to significantly
down-regulated miRNAs in UCB from preterm infants. Although for some of these miRNAs
the relationship to angiogenesis-regulating functions was mostly unknown, among them there
were also extensively studied molecules called “Angio-MiRs”, such as miR-125, miR-126, miR-145,
miR-150, and miR-155, which demonstrated their participation in various biological processes related
to physiological and pathological functions in the cardiovascular system, including cardiovascular
system development, different vascular endothelial growth factor receptor signaling pathways,
mitogen-activated protein kinase (MAPK) signaling cascade, calcium ion signaling, endothelial cell
receptor interactions, angiopoietic factors production, cytokine expression and vascular inflammation,
etc. [76]. Among these, inflammation, cell adhesion, T-cell proliferation, calcium transfer, and apoptosis
are closely related to the pathological process of endothelial inflammation and atherogenesis [77].
In this notion, vascular-related miR-125a and miR-126 have been shown to be key, pleiotropic promotors
of endothelial health and vasomotor function. Furthermore, altered circulating levels of both miRNAs
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have been shown to be indicative of elevated vascular inflammation and endothelial dysfunction and
predictive of cardiovascular morbidity and mortality [78]. For example, miR-126 has shown in different
studies the greatest dependency on platelets and is strongly correlated with plasma levels of P-selectin,
platelet factor 4, and platelet basic protein [79]. MiR-126 affects also ADAM9 protein, which regulates
the motility of cells via interactions with integrins as well as releases a number of molecules with
important roles in angiogenesis, such as KDR and VCAM-1. Significantly, down-regulation of miR-126
could reduce the platelet aggregation in the mice model [80]. Conversely, miR-145 and miR-150 limit
immune cell activation, cytokine production, and vascular inflammation [80,81]. Our observation of
lower expression levels of the above-mentioned angiogenesis-specific subset of miRNAs, which have
been identified as crucial regulators of vascular biology and endothelial cell function, may indicate
their potential angiogenesis-regulating role in premature gestation coupled with angiopoietic proteins
imbalance in UCB found in this study. In this notion, the recent bioinformatics analyses have shown that
miR-941, which appeared to be the most down-regulated microRNA in preterm newborns in our study,
may be associated with metabolism, inflammation, cell proliferation, and other biological processes
through regulation of components involved in insulin signaling, MAPK signaling cascade, and other
pathways related pathophysiologically to coronary heart disease and atherosclerosis [82]. However, no
research has yet been reported on the role of miR-941 in angiogenesis in course of preterm gestation.
What is more, down-regulation of several “Angio-miRs” could be observed in different types of vascular
disorders in adult patients. For example, our recent analyses showed that in the blood of patients with
age-related retinal degeneration, which is characterized by abnormal vascularization and subsequent
macular dysfunction, several significantly down-regulated miRNAs were detected, such as miR-17,
miR-21-3p, miR-150, and miR-155, and they were associated with lower blood levels of FGF-basic
molecule with potential angiogenesis-regulating function [27,28]. Similar results were obtained from
computational analysis of miRNA expression in UCB from prematurely-born infants in this study.
This could be interpreted as an indirect evidence for the involvement of selected “Angio-miRs” in
microvasculature function in adults and in its development during the physiologic gestation.

In summary, one of the most striking findings in this study was the downregulation in UCB from
preterm infants of several miRNAs related to the angiogenic microenvironment that is comprised of
many cell types, such as endothelial cells, macrophages, smooth muscle cells, fibroblasts, pericytes,
adipocytes, and their trophic products (growth factors, cytokines, chemokines, and extracellular
matrix). The bioinformatics functional predictions showed in our study that several differentially
expressed miRNAs in the cohort of preterm newborns could be related to the pathological processes
in the cardiovascular system, implicating the potential development of different vascular-related
diseases in the postnatal life. These observations especially support the suggestion that several up- and
down-regulated miRNAs detected by our group in UCB may participate in the cardiovascular-related
stress, which could contribute in part to the etiology of preterm birth during the physiologic gestation.
Detailed bioinformatics analyses of these miRNAs should be additionally performed and the molecular
mechanisms, by which these miRNAs participate in the pathogenesis and onset of preterm birth, must
be further explored.

4. Conclusions

Our data elucidates a unique profile of several angiopoietic factors in UCB of preterm neonates.
These results may suggest that the analyzed circulating angiopoietic factors found to be abnormally
secreted to the newborn’s UCB may contribute to the angiogenesis-related pathological processes
observed in clinical practice with children and adults born prematurely. Moreover, our data
demonstrated significant changes in the levels of 143 transcripts of miRNA in PBMCs circulating
in UCB from preterm newborns, suggesting that these miRNAs are potentially involved in the
pathogenesis of preterm birth. However, this study has several limitations. It is not known how
these changed expression levels might relate to the actual expression levels within tissues, particularly
in the cardiovascular system, including vessels and myocardium. Examination of the peripheral
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tissues would help to better understand the mechanism of the altered expression and its biological
effects. Future research should detect the potential downstream targets of miRNAs detected here to
evaluate whether they play an active role in the pathophysiology of preterm gestation. Moreover,
expanding the use of these aberrant miRNAs profiles as potential biomarkers to the field of neonatology
might shed a light on the early prediction of preterm infants with poor cardiovascular outcomes.
Likewise, further studies are also needed to assess how angiopoietic factor levels vary over time,
and whether the imbalance in angiogenic and angiostatic factors contributes to the development
of different prematurity-related vascular diseases. Future studies are also warranted to determine
the mechanistic links between antenatal angiopoietic factors with disease pathogenesis and how
these factors impact cardiovascular outcomes that are essential for further advances that may lead to
establishing primary prevention of the late abnormal vascular sequelae of prematurity.

5. Methods

5.1. Characteristics of the Study Group

We enrolled 27 preterm infants born at less than 37 weeks gestational age (GA) (33.0 ± 2.5) and
52 term infants born at >37 weeks GA (38.4 ± 1.0) in the Department of Obstetrics and Gynecology
of the Pomeranian Medical University in Szczecin, Poland. All recruited subjects were born by
caesarean delivery and were appropriate-for-gestational-age. Exclusion criteria were: multiple
gestation births, major congenital malformations, or known chromosomal abnormalities, cyanotic
heart defects, intracranial hemorrhage, states of chronic intra-uterine hypoxia (defined as foetal growth
restriction or pathologies of placental perfusion), inherited metabolic disorders, congenital infections
and severe infectious diseases, maternal history of tobacco and alcohol abuse, severe anemia, with
hemoglobin < 120 g/L, and missing parental consent. Only infants who survived to hospital discharge
were included. Each child’s sex, GA, birth weight, Apgar score, and clinical course were documented.
We adhered to the tenets of the Declaration of Helsinki, and approval was obtained from the Local
Research Ethics Committee on 25th January of 2010. Parents provided written informed consent for
their children.

5.2. Umbilical Cord Blood Collection

Autologous umbilical cord blood (UCB) was collected at birth in accordance with NetCord-FACT
international standards for cord blood collection [83]. Collections were performed in utero into a
collection bag system with citrate-phosphate-dextrose anticoagulant solution [84]. UCB samples were
then centrifuged in a tabletop refrigerated centrifuge (2000 rpm, 4 ◦C, 10 min), and the plasma was
removed from the cell pellet and stored at −20 ◦C to −80 ◦C until assayed. In the cell pellet, the red
blood cells were lysed using BD Pharm Lyse lysing buffer (BD Biosciences, San Jose, CA, United States)
for 15 min at room temperature to isolate peripheral blood mononuclear cells (PBMCs).

5.3. Luminex Assay

Simultaneous measurement of 14 biomarkers, including Angiogenin (ANG), Angiopoietin-1,
Endostatin, Fibroblast growth factors (FGF): FGF-acidic, FGF-basic, Platelet-derived growth factor
(PDGF-AA), Placental growth factor (PlGF), Vascular endothelial growth factor (VEGF), VEGF-D,
Thrombospondin-2, BDNF, GDNF, NGF, and NT-4 was performed. Their concentrations were measured
in UCB plasma by multiplex fluorescent bead-based immunoassays (Luminex Corporation, Austin, TX,
USA) using commercial R&D Systems Human Angiogenesis A Premixed Mag Luminex Performance
Assay (R&D Systems, Minneapolis, MN, USA). 100 µL of blank standards and samples were added to
the plate together with a microparticle cocktail and incubated in the dark for 2 h at room temperature
on horizontal orbital microplate shaker set at 800rpm. After this step, the wells were washed with
100 µL of wash buffer three times by using a hand-held magnet. A biotin-antibody cocktail (50 µL) was
added to the plate and incubated with agitation at room temperature for 60 min in the dark. After
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washing, 50 µL of Streptavidin–PE was added to each well and incubated in the dark for 30 min on a
plate shaker. Finally, after washing, the microspheres in each well were resuspended in 100 µL wash
buffer and shaken for 2 min at room temperature. The plate was read and analyzed on the Luminex
200 analyzer and examined proteins concentrations were determined from seven different standard
curves showing median fluorescence intensity vs. protein concentration.

5.4. RNA and MiRNA Isolation

Total RNA enriched in miRNAs was isolated from umbilical cord blood cells (1 × 106) collected
from appropriate-for-gestational-age preterm and term newborns using the mirVana™miRNA Isolation
Kit (Thermo Fisher, Waltham, MA, USA) following the manufacturer’s instructions. Concentration
and quality of the obtained RNA were assessed by Epoch spectrophotometer (Biotek, Winooski, VT,
USA). For subsequent miRNA and whole transcriptome microarray analysis, total RNA enriched in
miRNAs isolated from UCB cells samples were pooled to generate one sample per group.

5.5. Affymetrix GeneChip miRNA Microarray

The procedure using previously described methods [85,86] started with a poly(A) tailing reaction
followed by ligation of the biotinylated signal molecule to the target RNA. The next step was sample
hybridization onto an Affymetrix miRNA 4.1 Array Strip (Affymetrix). The last step was streptavidin-PE
addition and array scanning with Affymetrix GeneAtlas system (Affymetrix).

5.6. Affymetrix GeneChip Whole Transcriptome Microarray

A sense-strand cDNA generated from the total RNA using an Ambion WT Expression Kit (Thermo
Fisher Scientific, Waltham, MA, USA) was fragmented and labelled using the GeneChip WT Terminal
Labelling Kit (Affymetrix, Santa Clara, CA, USA) and next hybridized onto an Affymetrix Human
Gene 2.1 ST Array Strip. The hybridization and subsequent fluidics and scanning steps were carried
out with an Affymetrix GeneAtlas System, with designated software.

5.7. Microarrays Data Analysis

Analysis of miRNA and whole transcriptome microarray data was performed using BioConductor
software based on the statistical R programming language. The Robust Multiarray Average (RMA)
normalization algorithm implemented in the “Affy” library was used for normalization, background
correction, and calculation of the expression levels of all of the examined genes and miRNAs.

For miRNA microarray, normalized data were combined with “pd.mirna.4.1” description file,
containing, among others, names, types, and sequences of miRNAs. Differential expression was
determined by applying the linear models for microarray data implemented in the “limma” library.
Normalized miRNA expression datasets were visualized on scatter plots with relation to determined
cut-off criteria (fold change higher than |2|). A list of experimentally validated miRNA target genes was
downloaded from miRTarBase—a database of mRNA-target interactions. Only targets for differentially
expressed miRNA were subtracted from the whole human miRNA-target dataset. A target gene
list from each of the comparisons was subjected to functional annotation and clusterization using
the DAVID (database for annotation, visualization, and integrated discovery). Target symbols of
differentially expressed miRNA were uploaded to DAVID by the “RDAVIDWebService” BioConductor
library, where targets were assigned to relevant Gene Ontology (GO) terms.

For whole transcriptome microarray, the normalized data set was merged with an annotated
data frame object from the BioConductor “oligo” package, leading to a complete gene data table.
The selection criteria for significantly changed gene expression were based on the expression fold
difference higher than |2|. Functional annotation clustering of differentially expressed genes was
performed using DAVID database and is shown as a bubble plot. The cut-off criteria for generation of
bubble plot were as follows: p-value < 0.5, adjusted method = Benjamini, and minimal number of
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genes per group = 5. Groups of genes fulfilling the mentioned criteria are presented in a graph, in
which the bubble size indicates the number of genes represented in the corresponding annotation.

5.8. Statistical Analysis

Since the distribution of the quantitative variables was significantly different from the normal
distribution in most cases, the nonparametric Mann–Whitney test was used to compare values between
groups. p < 0.05 was considered statistically significant.
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