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Abstract

Detection and segmentation of macrophage cells in fluorescence microscopy images is a

challenging problem, mainly due to crowded cells, variation in shapes, and morphological

complexity. We present a new deep learning approach for cell detection and segmentation

that incorporates previously learned nucleus features. A novel fusion of feature pyramids for

nucleus detection and segmentation with feature pyramids for cell detection and segmenta-

tion is used to improve performance on a microscopic image dataset created by us and pro-

vided for public use, containing both nucleus and cell signals. Our experimental results

indicate that cell detection and segmentation performance significantly benefit from the

fusion of previously learned nucleus features. The proposed feature pyramid fusion archi-

tecture clearly outperforms a state-of-the-art Mask R-CNN approach for cell detection and

segmentation with relative mean average precision improvements of up to 23.88% and

23.17%, respectively.

Author summary

To analyze cell infection and changes in cell morphology in fluorescence microscopy

images, proper cell detection and segmentation are required. In automated fluorescence

microscopy image analysis, the separation of signals in close proximity is a challenging

problem. High cell densities or cluster formations increase the probability of such situa-

tions on the cellular level. Another limitation is the detection of morphologically complex

cells, such as macrophages or neurons. Their indefinite morphology causes identification

issues when looking for slight variations of fixed shapes. Compared to merely segmenting

cytoplasm, instance-based segmentation is a much harder task, since the assignment of a

cell instance identity to every pixel of the image is required. We present a new deep learn-

ing approach for cell detection and segmentation that efficiently utilizes the nucleus
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channel for improving segmentation and detection performance of cells by incorporating

previously learned nucleus features. This is achieved by a fusion of feature pyramids for

nucleus detection and segmentation. The performance is evaluated on a microscopic

image dataset, containing both nucleus and cell signals.

This is a PLOS Computational Biology Software paper.

Introduction

High-throughput cell biology incorporates methods such as microscopic image analysis, gene

expression microarrays, or genome-wide screening to address biological questions that are

otherwise unattainable using more conventional methods [1].

Nevertheless, fluorescence microscopy is often avoided in high-throughput experiments,

since the generated data is tedious to analyze by humans or too complex to analyze using avail-

able image processing tools. However, flourescence microscopy offers information about sub-

cellular localization, supports morphological analysis, and permits investigations on the single

cell level [2].

A limiting factor of automated fluorescence microscopy image analysis is the separation of

signals in close proximity, regardless of whether signals originate from neighboring cells or

single spots. High cell densities or cluster formation increase the probability of such situations

on the cellular level [3], while high background or low spatial resolution complicate the prob-

lem on the signal level. Another limitation is the detection of morphologically complex cells,

such as macrophages or neurons. Their indefinite morphology causes identification issues

when looking for slight variations of fixed shapes.

The fluorescence microscopy images considered in this paper originate from high-through-

put screening, with the aim of analyzing phenotypic changes and differences in bacterial infec-

tion rates of macrophages upon treatment. To analyze cell infection and changes in cell

morphology, proper cell detection and segmentation are required. Upon adhesion to a surface,

these cells tend to form clusters showing faint signal changes in areas with cell to cell contact.

These restrictions prevent appropriate analysis with conventional microscopy analysis

software.

Compared to merely segmenting cytoplasm, instance-based segmentation is a much harder

task, since the assignment of a cell instance identity to every pixel of an image is required. Fig 1

Fig 1. Image with ground truth segmentation. Nucleus signal (a), cytoplasm signal (b), and ground truth segmentation (c).

https://doi.org/10.1371/journal.pcbi.1008179.g001
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shows that the accurate separation and segmentation of clustered cells without any further

information is extremely difficult, if not impossible. Even for human experts, the correct sepa-

ration of individual cells is often only possible using nucleus information. Fig 1 indicates that

taking the nucleus signal into account alleviates the identification of individual cells

significantly.

In this paper, a deep learning approach to cell detection and segmentation based on a con-

volutional neural network (CNN) architecture is applied to fluorescence microscopy images

containing channels for nuclei and cells. The contributions of the paper are as follows:

• We provide a novel dataset of macrophage cells for public use, including ground truth

bounding boxes and segmentation masks for cell and nucleus instances.

• We utilize nucleus information in a deep learning approach for improved cell detection and

segmentation. The nucleus channel is used to improve the quality of cell detection and seg-

mentation. To the best of our knowledge, this is the first deep learning approach that uses

additional nucleus information to improve cell detection and segmentation.

• We present a CNN architecture based on Mask R-CNN and a novel feature pyramid fusion

scheme. This CNN architecture shows superior performance in terms of mean average preci-

sion compared to early fusion of nucleus and cell signals. It clearly outperforms a state-of-

the-art Mask R-CNN [4] applied to cell detection and segmentation with relative mean aver-

age precision improvements of up to 23.88% and 23.17%, respectively.

Our approach is related to several instance segmentation approaches for fluorescence

microscopy images. Methods that do not rely on deep learning, such as graph cut algorithms

[5–9], usually struggle with morphologically complex objects. Similarly, other methods either

consider nuclei [5, 10, 11] or segment similarly sized and mostly round objects [12] or differ-

ent shapes [13, 14]. Most notably, all of these methods consider only a single signal, either cell

or nucleus. A method utilizing nucleus information together with the cell signal is described

by Held et al. [15] and Wenzel et al. [16]. Their segmentation algorithm uses a fast marching

level set [17], i.e., a classic computer vision method that does not rely on machine learning

methods. A more recent approach proposed by Al-Kofahi et al. [18] refines deep learning

based nucleus segmentation by a seeded watershed algorithm to segment cells.

Recent CNN-based segmentation algorithms can be roughly divided into two groups. Algo-

rithms in the first group perform full image segmentation and require additional post-process-

ing to be applicable to instance segmentation [19–21]. A well-known example in bio-medical

image segmentation is the U-Net [22] architecture. However, such methods fail in case of clus-

tered cells. Due to few misclassified pixels, neighboring cells are fused into a single cell, result-

ing in poor detection performance.

For this reason, we consider methods of the second group of CNN-based segmentation

algorithms to be more suitable for our data. These methods perform detection followed by seg-

mentation, i.e., detected bounding boxes are segmented rather than the whole image. For

example, van Valen et al. [23] use object detection and perform bounding box segmentation in

a subsequent step. Akram et al. [24] describe a CNN architecture using region of interest (RoI)

pooling for cell detection and instance-based segmentation. Recently, Mask R-CNN [4] based

on Faster R-CNN [25] with feature pyramids [26] achieved state-of-the-art results in natural

image object detection and segmentation. Hence, our nucleus and cell detection and segmen-

tation approach is based on Mask R-CNN. However, in contrast to recent work applying Mask

R-CNN to a number of segmentation problems in biomedical imaging including nucleus seg-

mentation [27–29], we extend the architecture to meet the requirements of data sets contain-

ing both cell and nucleus signals.
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Design and implementation

The fluorescence microscopy images used in our work are collected as part of high-throughput

screening to detect treatments that have an influence on the bacterium Legionella pneumophila
and modify the infection of human macrophages. Microscopic images do not only allow

assessment of bacterial replication, but also enable investigations of morphological changes.

Cell preparation and image acquisition

Monocytic THP-1 cells were obtained from ATCC, inoculated from a −80˚C culture and pas-

saged in RPMI-1640 medium with 10% fetal calf serum (Biochrom) at 37˚C and 5% CO2. The

used cell passage numbers were in the range of 5 to 14. Cells were seeded in 100 μl on 96 well

Sensoplate Plus plates (Greiner Bio-One) at a concentration of 1.45 × 104 cells per well. Differ-

entiation to macrophages was induced 24 h after seeding by adding 20 nM phorbol 12-myris-

tate 13-acetate (PMA; Sigma-Aldrich) for 24 h. After medium renewal, cells were infected with

GFP-expressing Legionella pneumophila strain Corby at a multiplicity of infection of 20 for 16

h. For infection, bacteria were plated on BCYE agar, incubated for 3 days at 37˚C and 5% CO2,

resuspended and added to macrophages [30]. After infection, the cells were washed, fixed with

4% paraformaldehyde for 15 min and permeabilized with 0.1% Triton X-100 for 10 min. Stain-

ing of cells was achieved with HCS CellMask Red (2 μg/ml; Thermo Fisher Scientific) and

Hoechst 33342 (2 μg/ml; Invitrogen) for 30 min.

The images were acquired using an automated Nikon Eclipse Ti-E fluorescence microscope

with a 20x lens (Nikon CFI Plan Apo VC 20X) and a Nikon Digital Sight DS-Qi1Mc camera.

Finally, the images were converted to TIFF format via the Fiji/ImageJ Bio-Formats plugin.

In total, several hundred thousands of 3-channel images with a size of 1280 × 1024 pixels

were collected.

Dataset of macrophage cells

For our benchmark dataset, 82 representative images were selected and augmented with

ground truth information by a biomedical researcher. In our work, only the nucleus and cell

channels are of interest.

These 82 2-channel images were randomly split into a training set, containing 64 images,

and a test set, containing 18 images. While the training set contains 2044 cells and 2081 nuclei,

the test set contains 508 cells and 514 nuclei. The discrepancy between the number of cell and

nuclei instances is due to border cells that are not completely visible in the images. Further-

more, some of the cells are in their mitotic phase, i.e., multiple nuclei may occur in a single

cell.

Manually generating ground truth labels for segmentation tasks is very time-consuming.

Therefore, we generated the ground truth segmentation masks for cell and nuclei instances in

a two-step process. In the first step, classical computer vision algorithms were applied to pro-

duce an initial segmentation using a threshold-based approach and contour processing func-

tions from the OpenCV library [31] to find cell and nuclei instances. Furthermore, the

structures of these instances were analyzed, and cells with more than one nucleus were sepa-

rated similar to a Voronoi segmentation where each pixel of a cell is assigned to the nearest

nucleus. In the second step, these segmentations were manually refined using an image pro-

cessing tool designed for scientific multidimensional images called Fiji/ImageJ [32]. Most of

our manual corrections were necessary at cell to cell borders.

To segment macrophage cells, we follow an instance-based segmentation approach by

introducing a new neural network architecture based on Mask R-CNN. It combines nucleus

and cell features in a pyramid fusion scheme. The Mask R-CNN [4] architecture is an
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extension of a Faster R-CNN [25] that predicts bounding boxes with class probabilities and

additional instance-based segmentation masks.

Like Faster R-CNN, Mask R-CNN is a two-stage method. In the first stage, a Region Pro-

posal Network (RPN) is used to find object proposals (regions of interest, RoI). Therefore, can-

didate bounding boxes together with objectness scores are predicted. In the second stage,

features are extracted for these candidate bounding boxes using a RoI Align layer that com-

putes fixed-size feature maps through bilinear interpolation. Based on these feature maps, the

candidate bounding boxes are refined, classified and segmented using regression, classifica-

tion, and segmentation heads, respectively. The features of the two stages are shared in a back-

bone architecture for runtime improvements. The CNN backbone architecture is typically

pre-trained on an image classification task. The overall neural network is fine-tuned and

trained end-to-end using the multi-task loss L = Lbox + Lcls + Lmask, where Lbox is the bounding

box regression loss, Lcls is the classification loss, and Lmask is the mask loss (i.e., per pixel sig-

moid with binary loss), respectively.

To improve detection and segmentation performance within small object regions, Mask

R-CNN relies on a Feature Pyramid Network (FPN) [26], a top-down architecture with lateral

connections to the backbone layers for building high-level semantic feature maps at all scales.

Feature maps for regression, classification, and segmentation of candidate bounding boxes are

extracted from the pyramid level according to bounding box sizes. Larger bounding boxes are

assigned to higher levels of the pyramid and smaller boxes to lower levels, respectively. In Fig

2, the underlying Mask R-CNN architecture is highlighted in green.

The remainder of this section is organized as follows. We first describe the used backbone

CNN. Then, the new network architecture using a pyramid fusion scheme to integrate nucleus

features for cell detection and segmentation is presented.

Furthermore, a weighted segmentation loss is introduced to focus the training process on

difficult to segment pixels at the cell borders. Finally, we describe the post-processing steps to

further improve the detection and segmentation results.

Fig 2. Feature pyramid fusion of nucleus features. Pre-trained nucleus features (violet) are fused with features of the

feature pyramid in the cell detection and segmentation model (green) by either concatenation or addition.

https://doi.org/10.1371/journal.pcbi.1008179.g002
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Reduced ResNet-50 backbone

Residual Neural Networks (ResNet) [33] achieve state-of-the-art performance in natural image

classification and object detection tasks. Due to the limited number of object classes (i.e., cells

or nuclei), the reduced background noise of fluorescence microscopy images compared to nat-

ural images, and the runtime requirements caused by the high-throughput experiments, a

reduced ResNet-50 is used as the backbone architecture for our segmentation network. To

speed up training, the number of filters as well as the number of building blocks in the ResNet

architecture was halved, which results in about ten times less parameters compared to the orig-

inal ResNet-50. Table 1 shows the reduced ResNet-50 architecture in detail. This architecture

was trained for image classification. A pre-trained network for RGB images is not suitable

here, since the inputs are 1-channel images for nuclei and cells, respectively. Thus, we con-

verted the ImageNet [34] dataset to grayscale. Based on the 1-channel ImageNet dataset, the

backbone model was trained for 120 epochs using batch normalization [35].

Feature pyramid fusion

Fig 3 shows architectures for instance-based cell segmentation using different ways of integrat-

ing nucleus information. The architecture in Fig 3a does not include any nucleus information

at all. It basically is a Mask R-CNN trained on cell masks for single-class object detection. Simi-

lar to an early fusion scheme, the nucleus image is added as an additional channel to the cell

image and fed directly into the Mask R-CNN (Fig 3b). However, this architecture cannot uti-

lize available ground truth information for the nucleus channel during the training process.

Nuclei usually have similar shapes and sizes, and in most cases they are clearly separable

from each other compared to the appearance of macrophage cells. Therefore, we designed our

cell segmentation model in two stages. In the first stage, we train a model for nucleus segmen-

tation to obtain useful nucleus features for the cell segmentation task (Fig 2, violet). This Mask

R-CNN architecture using feature pyramids based on the reduced ResNet-50 backbone is

trained for nucleus segmentation.

Table 1. Reduced ResNet-50 architecture.

layer name output size blocks

conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56 3 × 3 max pool, stride 2

1� 1; 32

3� 3; 32

1� 1; 128

2

6
6
4

3

7
7
5� 2

conv3_x 28 × 28 1� 1; 64

3� 3; 64

1� 1; 256

2

6
6
4

3

7
7
5� 2

conv4_x 14 × 14 1� 1; 128

3� 3; 128

1� 1; 512

2

6
6
4

3

7
7
5� 3

conv5_x 7 × 7 1� 1; 256

3� 3; 256

1� 1; 1024

2

6
6
4

3

7
7
5� 2

1 × 1 avg. pool, fc, softmax

https://doi.org/10.1371/journal.pcbi.1008179.t001
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In the second stage, the learned FPN features of the nucleus segmentation task are incorpo-

rated into the cell segmentation architecture using feature pyramid fusion (FPF). From each

feature pyramid level, we obtain a stack of activations that is merged into the cell segmentation

architecture at the corresponding scale. This means that at each stage of the feature pyramid

the pre-trained features of the cell nuclei are available and can be used during training in addi-

tion to the feature maps for cell segmentation (Fig 2, green). Except for the fused feature pyra-

mids, the backbone architecture for cell segmentation is the same ResNet-50 as for nucleus

segmentation.

We also evaluated two merging operations for residual and lateral connections: concatena-

tion and addition. The merged nucleus parameters are fixed during training on cell segmenta-

tion, which allows us to combine both models at inference time for concurrently predicting

nucleus and cell segmentation masks. The final cell segmentation model has two inputs: the

nucleus image and the cytoplasm image. The model architecture was implemented in Tensor-

flow [36] and is based on a Mask R-CNN implementation [37].

Weighted segmentation loss

Since it is more difficult to segment pixels at the cell borders especially within cell clusters, we

applied a weighting scheme for the mask loss to focus the model on the edges of cells. The

weighting is similar to the weighting used by Ronneberger et al. [22]. By putting more weight

to the edges, the model is supposed to learn predicting cell contours more accurately, which

requires exact and consistent segmentation masks. We computed a Gaussian blurred weight

matrix based on the contours of the cells in the full-image segmentation mask. The Gaussian

blur function for pixels x, y is defined as Gðx; yÞ ¼ 1

2ps2 e
�
x2þy2

2s2 with the horizontal distance x
and vertical distance y from the origin. We used a 25 × 25 kernel and standard deviation σ = 5.

Using the weight matrix, pixels near border pixels are weighted up to two times higher than

regular pixels, i.e., pixels inside cells. Fig 4(d) shows a visualization of the crop from the weight

matrix based on contours computed on Fig 4(b). The crop corresponds to the instance mask

Fig 3. Including nucleus information for cell segmentation. (a) without nucleus information, (b) with additional

input for the nucleus channel, and (c) with fused nucleus features.

https://doi.org/10.1371/journal.pcbi.1008179.g003
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in Fig 4(c). It is used for weighting the mask loss for a box proposal processed in the mask

branch.

Post-processing

To further improve the performance of cell detection and segmentation, the following post-

processing steps are performed. First, contour processing methods from the OpenCV library

are used to detect nucleus regions that are overlapped by more than one cell. In this case, the

corresponding cell segmentation masks are merged. Second, a threshold-based segmentation

method is applied to find cell regions not covered by the instance-based segmentation masks

due to rarely occurring false positives or misaligned bounding boxes. Therefore, the predicted

segmentation masks are subtracted from the threshold-based segmentation, morphological

operations and contour processing are applied to detect regions, and regions that are smaller

than a predefined threshold are discarded. The remaining regions are handled as follows:

• The region is added to a cell if it can be connected to the corresponding cell instance.

• The region is discarded if it is connected to multiple cell instances.

• Otherwise, a new cell instance is generated.

Third, nucleus regions that are not completely covered by cell regions are used to either

enlarge the overlapping cell region or to create a new cell with the same shape as the nucleus.

However, in order to ensure a fair comparison, no post-processing was carried out in the

experiments when compared to other methods.

Results

In this section, the performance of the three network architectures shown in Fig 3 is investi-

gated. We additionally compare the performance to the performance of U-Net in order to eval-

uate how well segmentation without detection (U-Net) performs compared to detection and

segmentation with Mask R-CNN architectures. To train the U-Net architecture, we tuned the

weighting of the gaps between neighboring cells (or nuclei, respectively) to achieve better

results on the corresponding datasets than with the settings used in the original paper [22].

Other training parameters such as learning rate and number of epochs were also optimized to

achieve the best results. Since the U-Net model does not return bounding boxes, the contours

of cells were used to obtain bounding boxes. In favor of U-Net, contours within contours and

very small bounding boxes were ignored in our evaluation. Additionally, we compare the per-

formance to Stardist [12], which achieves state-of-the-art results for nucleus segmentation.

First, the Mask R-CNN architecture in Fig 3a is investigated. Without any information

about nuclei, its performance is expected to be lower than for the other architectures.

Fig 4. Weights for instances. For each box proposal, crops are resized to 28 × 28 pixels. Crop from the input image

(a), full-image segmentation mask (b), cell mask (c) and weight matrix (d).

https://doi.org/10.1371/journal.pcbi.1008179.g004
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Second, to verify that incorporating nucleus information is indeed beneficial, Mask R-CNN

is extended to accept an additional input channel (Fig 3b). This is a straightforward way of

incorporating nucleus information. However, it does not utilize available ground truth seg-

mentation masks for nuclei.

Third, the proposed feature pyramid fusion architecture shown in Fig 3c is evaluated,

where pyramid features of a pre-trained nucleus model are combined with cell features using

the pyramid fusion scheme. Within this fusion scheme, two merging operations are evaluated:

concatenation and addition. Recent work on learning CNN architectures suggests that addi-

tion operations are more beneficial in many cases than concatenation operations [38]. Further-

more, the feature pyramid fusion architectures are evaluated in combination with the

weighted segmentation loss described above.

The layers of the backbone architecture were initialized with pre-trained weights from an

image classification task using the ImageNet dataset. In all experiments, the same pre-trained

weights were used for FPF. For the architecture in Fig 3b with two input channels, the pre-

trained weights of the first convolutional layer were duplicated and halved to not disturb

dependencies to weights of subsequent layers.

In all experiments with FPF, the same training schedule was applied, with a learning rate of

0.001, a momentum of 0.9, and a weight decay factor of 0.0001. The training schedule is as fol-

lows: on top of the pre-trained backbone segmentation, regression and classification heads are

trained for 100,000 iterations. Next, all layers deeper than conv4 in the backbone are trained

for another 250,000 iterations. Finally, the whole network is trained for 500,000 iterations with

a reduced learning rate of 10−4. Both regression losses and the mask loss are weighted by a fac-

tor of 2.

All segmentation models, except the configuration with two input channels, were trained

on 512 × 512 1-channel input images. Within the training process, data augmentation was

applied to the training images, which increases the number of training images to 497, 355 of

size 512 × 512 for each channel, containing 3, 557, 425 nuclei in 4, 288, 104 cells. The variants

of the FPF architecture use the same model for nucleus features. It was trained with the same

previously described training schedule for cell segmentation models.

All models were evaluated on the test dataset described above. Additionally, to verify that

FPF performs better particularly for clustered cells, we created a subset of the test dataset. This

subset contains all cell clusters occurring in the test images, but no isolated cells. The resulting

78 images have 256 × 256 pixels. Each image contains at least one cluster of two or more cells.

In total, the dataset contains 255 cells with 258 nuclei.

Evaluation metrics

All experiments were evaluated in terms of average precision (AP) for detection and segmenta-

tion. AP summarizes the shape of the precision/recall curve. It is defined as the mean precision

at a set of equally spaced recall levels. AP is computed for different Intersection over Union

(IoU) thresholds. IoU between sets of pixels A and B is computed as

IoUðA;BÞ ¼
A \ B
A [ B

ð1Þ

on the 100 top-scoring detections per image for bounding boxes and segmentation masks,

respectively. For example, for threshold t = 0.5, detections with an IoU overlap of at least 50%

with a ground truth object are counted as true positives (TP). Unmatched predicted objects

are false positives (FP) and unmatched ground truth objects are false negatives (FN). Precision

is computed as p ¼ TP
TPþFP and recall as r ¼ TP

TPþFN. We use the 101-point interpolated AP as Lin
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et al. [39]. AP for a given IoU threshold threshold t is computed over all images in the test set

as

APðtÞ ¼
1

101

X

r2f0;0:01;:::1g

pinterpðrÞ; ð2Þ

where pinterpðrÞ ¼ max
~r :~r�r

pð~rÞ and pð~r) is the measured precision at recall ~r . For a detailed

description of interpolated AP, we refer to Everingham et al. [40]. The final mean average pre-

cision score (mean AP) is the mean over all threshold values between 0.5 and 0.90 with steps of

0.05. However, it should be noted that higher IoU thresholds are less meaningful in our data-

set, since in many cases there are no sharp cell borders and thus the corresponding ground

truth masks may be somewhat uncertain (see Fig 5).

Detection and segmentation results

First, we evaluated the performance of the nucleus model used in the FPF architectures (as

described in Table 1), Stardist, and U-Net. Table 2 shows results for both detection and seg-

mentation performance in terms of AP on the nuclei test images. Detection and segmentation

results are similar, since the majority of the nuclei are round and isolated. However, in some

cases nuclei appear adjacent. These instances are hard to separate for U-Net that cannot be

trained to detect instances before segmentation. Stardist performs slightly better for segmenta-

tion, while Mask-RCNN performs slightly better for detection.

Next, the performance of the architecture without any nucleus information, the architecture

with two input channels, and the FPF architectures are evaluated for cell detection and

Fig 5. Visualization of cell segmentation errors on a 256 × 256 patch of clustered cells in test data: Predicted

masks (red) differ only slightly from ground truth masks (white).

https://doi.org/10.1371/journal.pcbi.1008179.g005

Table 2. Detection and segmentation results for the nuclei test dataset in terms of AP.

IoU threshold 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 mean AP

U-Net APdet 0.674 0.656 0.610 0.604 0.578 0.529 0.418 0.241 - 0.467

Stardist APdet 0.938 0.937 0.925 0.909 0.895 0.874 0.852 0.768 0.524 0.847

Mask R-CNN APdet 0.953 0.941 0.925 0.915 0.915 0.896 0.867 0.822 0.569 0.867

U-Net APseg 0.694 0.671 0.634 0.610 0.591 0.528 0.408 0.187 - 0.479

Stardist APseg 0.942 0.924 0.922 0.905 0.894 0.892 0.880 0.812 0.600 0.863

Mask R-CNN APseg 0.952 0.936 0.925 0.912 0.912 0.890 0.862 0.810 0.536 0.859

https://doi.org/10.1371/journal.pcbi.1008179.t002
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segmentation. In the following,� is used for concatenation and� for addition. The experi-

ments are conducted on the whole cell test dataset as well as on a subset of the cell test dataset

that contains exclusively clustered cells, to have a closer look at those instances that are difficult

to detect and segment.

AP scores for detection and segmentation on the cell test dataset are shown in Tables 3 and

4, respectively. As expected, the performance of cell segmentation is much worse when knowl-

edge about nuclei is not incorporated at all. By simply adding one more input channel for the

nucleus signal to Mask R-CNN (see Fig 3b), significantly better results are achieved. For the

U-Net model, the same method is used to integrate the nucleus channel, i.e., the model has

two instead of one input channel. The drawbacks of the U-Net architecture on the cell test

dataset are two-fold. First, it cannot use available ground truth of nuclei directly and second,

there are even more hard-to-separate signals in this dataset than in the nucleus dataset. Since

Stardist is trained for cell segmentation only, it cannot use nucleus information. However,

Stardist still performs worse than the Mask R-CNN model without nucleus information. Com-

pared to the performance of Stardist on the nuclei test set, this is most probably caused by the

irregular shapes of cells and clustered cells.

FPF performs better than merely using an additional input for Mask R-CNN. However, it

does not depend on the merge operation: merging features by concatenation or addition

results in similar performance. AP scores for detection (Table 3) and segmentation (Table 4)

are similar for all pyramid fusion configurations. Although mean AP performance is slightly

better for both architectures trained under a weighted loss, a higher weighting of edges at gaps

between cells and near-border pixels in the loss function does not result in a significant perfor-

mance gain, neither in detection, nor in segmentation. Relative to the mean AP of the model

without any nucleus information, the best performing FPF architecture (FPF� with weighted

Table 3. Detection results for the cells test dataset in terms of AP.

IoU threshold 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 mean AP

U-Net 0.674 0.656 0.610 0.604 0.578 0.529 0.418 0.241 - 0.484

Stardist 0.847 0.814 0.739 0.655 0.566 0.480 0.361 0.247 0.105 0.535

no nucleus 0.886 0.870 0.845 0.790 0.743 0.675 0.548 0.426 0.230 0.668

nucleus input 0.921 0.910 0.886 0.865 0.821 0.727 0.619 0.448 0.221 0.713

FPF� 0.944 0.932 0.912 0.884 0.848 0.771 0.613 0.480 0.237 0.736

FPF� 0.935 0.925 0.901 0.886 0.842 0.758 0.633 0.479 0.220 0.731

FPF� weighted loss 0.944 0.932 0.897 0.883 0.842 0.767 0.633 0.453 0.228 0.731

FPF� weighted loss 0.942 0.932 0.916 0.891 0.841 0.766 0.648 0.484 0.224 0.738

https://doi.org/10.1371/journal.pcbi.1008179.t003

Table 4. Segmentation results for the cells test dataset in terms of AP.

IoU threshold 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 mean AP

U-Net 0.538 0.471 0.414 0.354 0.295 0.224 0.155 0.077 - 0.283

Stardist 0.869 0.843 0.813 0.773 0.698 0.632 0.504 0.322 0.094 0.616

no nucleus 0.898 0.870 0.858 0.838 0.811 0.751 0.657 0.499 0.226 0.712

nucleus input 0.931 0.909 0.908 0.881 0.866 0.807 0.733 0.585 0.236 0.762

FPF� 0.943 0.943 0.920 0.905 0.885 0.830 0.746 0.600 0.284 0.784

FPF� 0.935 0.935 0.909 0.908 0.896 0.840 0.762 0.592 0.246 0.780

FPF� weighted loss 0.946 0.934 0.921 0.890 0.876 0.835 0.753 0.605 0.253 0.779

FPF� weighted loss 0.941 0.930 0.930 0.911 0.890 0.849 0.764 0.603 0.247 0.785

https://doi.org/10.1371/journal.pcbi.1008179.t004
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loss) achieves a performance gain of 10.25%. Compared to the model with the nucleus input

channel, the relative performance gain is 3.02%. Similarly, the performance gain for detection

is 10.48% (no nucleus) and 3.5% (nucleus input channel). A detailed evaluation including the

number of true positives (TP), false positives (FP), and true negatives (FN) of the segmentation

results for an IoU threshold of 0.75 is shown in Table 5.

The superior performance of the FPF architectures becomes evident when they are evalu-

ated on the clustered cells subset (Tables 6 and 7): a relative performance improvement of

23.88% (no nucleus) and 4.43% (nucleus input channel) for detection in terms of mean AP.

Fig 6 visualizes the segmentation results for clustered cells. Fig 7 shows a visualization of the

segmentation masks predicted by the model without nucleus information, with nucleus chan-

nel, and the best performing FPF architecture.

Similarly for segmentation, FPF� with weighted loss performs better. Its relative perfor-

mance improvement is 23.17% compared to the model without nucleus information, and

4.16% compared to the model with the nucleus input channel, both in terms of mean AP. Fig 8

shows an example of a segmentation performed by FPF� with weighted loss on a cluster of

macrophages. The experiments show that U-Net is not suitable here and the instance-based

Table 5. Detailed cell segmentation results for an IoU threshold of 0.75 on the cells test dataset.

TP FP FN mean AP

Stardist 379 91 129 0.632

no nucleus 409 93 99 0.751

nucleus input 427 79 81 0.807

FPF� 441 82 67 0.830

FPF� 443 65 65 0.840

FPF� weighted loss 445 69 63 0.835

FPF� weighted loss 450 66 58 0.849

https://doi.org/10.1371/journal.pcbi.1008179.t005

Table 6. Detection results for clustered cells test dataset in terms of AP.

IoU threshold 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 mean AP

no nucleus 0.772 0.726 0.667 0.623 0.566 0.482 0.334 0.218 0.057 0.494

nucleus input 0.852 0.839 0.792 0.747 0.688 0.581 0.447 0.261 0.066 0.586

FPF� 0.856 0.825 0.825 0.756 0.699 0.640 0.438 0.256 0.073 0.596

FPF� 0.851 0.837 0.815 0.763 0.706 0.591 0.473 0.280 0.063 0.598

FPF� weighted loss 0.856 0.847 0.827 0.785 0.747 0.618 0.475 0.271 0.078 0.612

FPF� weighted loss 0.861 0.849 0.825 0.775 0.694 0.625 0.481 0.267 0.059 0.604

https://doi.org/10.1371/journal.pcbi.1008179.t006

Table 7. Segmentation results for clustered cells test dataset in terms of AP.

IoU threshold 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 mean AP

no nucleus 0.779 0.720 0.684 0.673 0.631 0.558 0.459 0.319 0.104 0.548

nucleus input 0.839 0.826 0.815 0.777 0.754 0.676 0.589 0.416 0.142 0.648

FPF� 0.856 0.846 0.824 0.805 0.778 0.703 0.615 0.434 0.150 0.668

FPF� 0.860 0.839 0.814 0.796 0.785 0.712 0.636 0.419 0.136 0.666

FPF� weighted loss 0.859 0.849 0.829 0.819 0.788 0.718 0.625 0.420 0.160 0.674

FPF� weighted loss 0.860 0.848 0.835 0.807 0.785 0.726 0.619 0.427 0.161 0.675

https://doi.org/10.1371/journal.pcbi.1008179.t007
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FPF architectures perform much better. Although Stardist performs well for nucleus segmen-

tation, the performance is considerably lower for cell segmentation.

Using additional post-processing, the detection mean AP on the dataset of clustered cells is

improved to 0.65, while the segmentation mean AP increases to 0.682. For the detection mean

AP, this is a relative improvement of 31.58% (no nucleus) and 10.92% (nucleus input channel).

For the segmentation mean AP, this is a relative improvement of 24.45% (no nucleus) and

5.25% (nucleus input channel).

The runtime of the FPF model is about 222 ms per image using Tensorflow Serving on a

server with an Nvidia Geforce GTX 1080 Ti graphics card.

Fig 6. APs for cell segmentation on clustered cells.

https://doi.org/10.1371/journal.pcbi.1008179.g006

Fig 7. Visualization of segmentation of clustered cells. Top: nucleus signal (a), cytoplasm signal (b), and ground

truth segmentation (c). Bottom: Instance segmentations predicted by for model without nucleus information (d), with

nucleus channel (e), and FPF� with weighted loss (f).

https://doi.org/10.1371/journal.pcbi.1008179.g007

PLOS COMPUTATIONAL BIOLOGY Detection and segmentation of eukaryotic cells via feature pyramid fusion

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008179 September 8, 2020 13 / 16

https://doi.org/10.1371/journal.pcbi.1008179.g006
https://doi.org/10.1371/journal.pcbi.1008179.g007
https://doi.org/10.1371/journal.pcbi.1008179


Availability and future directions

In this paper, we presented a novel deep learning approach for cell detection and segmentation

based on fusing previously trained nucleus features on different feature pyramid levels. The

proposed feature pyramid fusion architecture clearly outperforms a state-of-the-art Mask

R-CNN approach for cell detection and segmentation on our challenging clustered cells data-

set with relative mean average precision improvements of up to 23.88% and 23.17%, respec-

tively. Combined with a post-processing step, the results could be further improved to 31.58%

for detection and 24.45% for segmentation, respectively.

Code, dataset, and models are publicly available. The dataset is available at https://box.uni-

marburg.de/index.php/s/N934NJi7IsvOphf. Code and models are available at https://github.

com/umr-ds/feature_pyramid_fusion.

There are several areas for future work. First, sharing backbone weights to build a model

that can be trained end-to-end for nucleus/cell detection and segmentation could be interest-

ing. For this purpose, separate Mask R-CNN heads for nuclei and cells have to be attached to

the architecture for region proposal generation, regression, classification, and segmentation.

Second, the integration of a full-image segmentation loss in addition to an instance-based

detection and segmentation loss should be investigated. Third, optimizing the anchor

box sampling strategies for nuclei and cells could lead to further performance improvements.
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