
Citation: Movahedan, A.; Vargas, P.;

Moir, J.; Kaufmann, G.; Chun, L.;

Smith, C.; Massamba, N.; La Riviere,

P.; Skondra, D. Computerized Texture

Analysis of Optical Coherence

Tomography Angiography of

Choriocapillaris in Normal Eyes of

Young and Healthy Subjects. Cells

2022, 11, 1934. https://doi.org/

10.3390/cells11121934

Academic Editors: Maurice Ptito and

Paola Bagnoli

Received: 24 May 2022

Accepted: 13 June 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Computerized Texture Analysis of Optical Coherence
Tomography Angiography of Choriocapillaris in Normal Eyes
of Young and Healthy Subjects
Asadolah Movahedan 1,2, Phillip Vargas 3, John Moir 1, Gabriel Kaufmann 1 , Lindsay Chun 1, Claire Smith 1,
Nathalie Massamba 1, Patrick La Riviere 3 and Dimitra Skondra 1,*

1 J. Terry Ernest Ocular Imaging Center, Department of Ophthalmology and Visual Science,
The University of Chicago, Chicago, IL 60637, USA; asadolah.movahedan@uth.tmc.edu (A.M.);
john.moir@uchospitals.edu (J.M.); gabriel.kaufmann@uchospitals.edu (G.K.);
lindsay.chun@uchospitals.edu (L.C.); clairesylvestersmith@gmail.com (C.S.);
nmassamba@bsd.uchicago.edu (N.M.)

2 Department of Ophthalmology and Visual Science, University of Texas Health Sciences,
Houston, TX 77030, USA

3 Department of Radiology, The University of Chicago, Chicago, IL 60637, USA; vargasp@uchicago.edu (P.V.);
pjlarivi@uchicago.edu (P.L.R.)

* Correspondence: dskondra@bsd.uchicago.edu; Tel.: +1-773-702-3937; Fax: +1-773-702-0830

Abstract: Computerized texture analysis uses higher-order mathematics to identify patterns beyond
what the naked eye can recognize. We tested its feasibility in optical coherence tomography angiog-
raphy imaging of choriocapillaris. Our objective was to determine sets of parameters that provide
coherent and consistent output when applied to a homogeneous, healthy group of patients. This
observational cross-sectional study involved 19 eyes of 10 young and healthy Caucasian subjects.
En-face macular optical coherence tomography angiography of superficial choriocapillaris was ob-
tained by the RTVue-XR Avanti system. Various algorithms were used to extract texture features. The
mean and standard deviation were used to assess the distribution and dispersion of data points in
each metric among eyes, which included: average gray level, gray level yielding 70% threshold and
30% threshold, balance, skewness, energy, entropy, contrast, edge mean gradient, root-mean-square
variation, and first moment of power spectrum, which was compared between images, showing a
highly concordant homology between all eyes of participants. We conclude that computerized texture
analysis for en-face optical coherence tomography angiography images of choriocapillaris is feasible
and provides values that are coherent and tightly distributed around the mean in a homogenous,
healthy group of patients. Homology of blob size among subjects may represent a “repeat pattern” in
signal density and thus a perfusion in the superficial choriocapillaris of healthy young individuals of
the same ethnic background.

Keywords: computerized texture analysis; optical coherence tomography angiography; choriocapillaris

1. Introduction

The choriocapillaris (CC), the superficial layer of the choroidal vasculature, is of great
clinical interest and has been demonstrated to show microscopic pathological changes in
patients with prevalent retinal diseases [1–7]. However, this important layer has been out
of the reach of previous in vivo retinal imaging modalities due to its complex vascular
pattern, deep anatomical location, and the light scattering properties of the retinal pigment
epithelium [8–11]. Moreover, angiographic techniques using fluorescein and indocyanine
dyes have been restricted in their success due to the fenestration of the CC vasculature and
resulting excessive leakage of dye.

Optical coherence tomography angiography (OCTA) is a dye-less, in vivo imaging
technique that detects blood flow by comparing signal intensity in sequential scans and
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thus offers a novel technology for imaging the CC layer. En-face OCTA imaging technology
has led to significant discoveries in CC flow and density in normal subjects [12,13] and has
demonstrated changes in capillary density and CC flow associated with pathologies such
as age-related macular degeneration and diabetic retinopathy [14–20]. Data to this end
are encouraging but limited. Despite advances, analysis of OCTA imaging so far has been
mostly limited to binary discrimination of lighter versus darker pixels, corresponding to
faster versus slower or absent blood flow, respectively [15–20]. In the past few years, there
has been a great interest to explore ultrahigh speed OCTA technology, and many studies
have found new clinical applications for this modality [15,16,21–26].

Computerized texture analysis has been previously validated for use in medical
imaging with analyses of breast mammography, radiography, computerized tomography,
and vascular ultrasound [27–39]. Computerized texture analysis has not been previously
explored for analysis of OCTA images, and evidence suggests that it can offer discrimi-
nation of spectral data beyond the naked eye through comparison of light and dark to
include second-order statistical information regarding pixel correlation, skew, and coarse-
ness [40,41]. Furthermore, quantitative analysis of OCT/OCTA imaging has been used in
wide-ranging fields in biology and medicine for the characterization of imaging features
found to correlate with histology, suggesting a role for texture analysis of OCTA images
of the choriocapillaris [42–45]. Given the clinical significance of the CC and the current
challenges in analyzing and interpreting OCTA images of this layer with widely available
technology, we investigated the feasibility of applying computerized texture analysis to en-
face OCTA imaging of the CC of normal subjects to extract quantitative metrics representing
the texture of vascular patterns/perfusion.

2. Materials and Methods

This is an observational cross-sectional study in which 19 eyes of 10 young healthy
Caucasian subjects with a minimal refractive error (spherical equivalent (SE) of −1.0 to
+1.0 diopters) were enrolled. Participants had no known retinal pathology or systemic
illnesses. The research study and design were approved by The University of Chicago’s
Institutional Review Board. Informed consent was obtained from all participants. All
experiments were performed in accordance with the declaration of Helsinki.

The RTVue-XR Avanti OCTA system (Optovue Inc., Fremont, CA, USA) with split-
spectrum amplitude-decorrelation angiography (SSADA) software (Fremont, CA, USA)
was used to obtain en-face 3 × 3 mm OCTA images of the superficial CC using automated
segmentation. SSADA enhances the signal to noise ratio of flow, enabling the visualization
of retinal and choroidal vasculature. The software also included 3D projection artifact
removal (PAR). The subfoveal choroidal thickness of each eye was measured using the built-
in caliper tool from the RPE to the sclerochoroidal boundary. The blood flow area (BFA) of
a 3 mm diameter circle overlaid on the CC was measured using built-in AngioAnalytics
software (Fremont, CA, USA) and represented the percentage of pixels corresponding to
blood flow.

Images were analyzed using computerized texture analysis algorithms to extract
texture features in five categories:

1. Absolute value of gray levels: including average gray level, gray level yielding 70%
threshold, and gray level yielding 30% threshold of the area under the histogram.

2. Gray-level histogram analysis, including balance and skewness parameters.
3. Spatial relationship among gray levels: including coarseness, contrast, energy, and

entropy parameters.
4. Edge frequency: defined as mean gradient as a function of distance between pixels.
5. Fourier transform analysis, including root-mean-square variation (RMS) and first

moment of power spectrum (FMP).

The mean and standard deviation from the mean were used to assess the distribution
and dispersion of data points in each metric among eyes. Established choroidal biomarkers,
including choroidal thickness and 3 mm CC flow, were correlated with textural parameters
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using Pearson’s correlation coefficient. A summary of the algorithms used for measurement
of textural parameters is included in Appendix A.

3. Results
3.1. Demographics

To test feasibility, we defined a homogenous group of subjects consisting of 19 eyes of
10 young, healthy Caucasians (3 men and 7 women) with an average age of 24.7 ± 2.5 years
with no or negligible refractive errors (range SE: −1.0 D to +1.0 D).

3.2. Textural Features

The mean and standard deviation from the mean were measured to assess the dis-
tribution and dispersion of data points for each metric among eyes (Table 1). Pearson’s
correlation coefficient was used to assess the relationship between the subfoveal choroidal
thickness and 3 mm CC flow and the various textural parameters (Table 1). Both of these es-
tablished biomarkers were moderately positively or negatively correlated with the majority
of the textural features. Using algorithms to extract desired textural parameters could be
visually demonstrated by using different filters (Figure 1). Filters can extract patterns such
as blobs and local binary patterns on en-face 3 × 3 mm macular OCTA images of the CC.
This indicates that a two-dimensional image of the CC can be broken down to elements,
allowing an observer to discern hidden patterns in otherwise similar images.

Table 1. Mean and standard deviation from the mean of each texture metric and correlation with
established choroidal biomarkers.

Texture
Feature

Average Gray
Level 30%
Threshold

Average Gray
Level 70%
Threshold

Balance Skewness Energy Entropy Contrast Mean Gradient RMS * FMP **

Mean ± SD 106.80 ± 4.8 130.89 ± 6.3 −0.96 ± 0.005 0.30 ± 0.09 0.0058 ± 0.00053 5.28 ± 0.055 248,156.4 ±
23,327.2 0.033 ± 0.035 16,086,715.5 ±

447,937 0.0371 ± 0.001

Pearson’s
correlation with

subfoveal choroidal
thickness

−0.557 −0.625 −0.519 0.010 0.576 0.454 −0.418 −0.402 −0.366 −0.523

Pearson’s
correlation with

3 mm
choriocapillaris

flow

0.520 0.556 0.526 −0.442 −0.579 −0.480 0.471 0.599 0.063 0.509

* Root-mean-square variation; ** First moment of power spectrum.

Figure 1. En-face 3 × 3 mm macular OCTA image of choriocapillaris of a young healthy subject (A).
Texture modification using different filters: Edge filter (B), Corner filter (C), Histogram of oriented
gradients (D), Blob localization (E), Local binary pattern (F).
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Blob size distribution denoting a pattern of homology in healthy young adults of a
single race is shown in Figure 2A. Blob size distribution with highly concordant homology
between all eyes may represent a repeated pattern of signal density in the superficial
CC of healthy young individuals of the same racial background. Figure 2B depicts a
normalized Fourier transform plot of all eyes, signifying that despite minor differences,
there is a high structural similarity in the textural patterns of the CC in healthy young
adults. Figures 3 and 4 demonstrate a tight distribution of data points in each metric
around the mean: gray level histogram analysis consisting of measures of balance and
skewness (Figure 3A,B); absolute value of gray levels in OCTA images of the CC in each
eye measured by average gray level, gray level with 30% or 70% threshold (Figure 3C–E),
and spatial relationship among gray levels measured by energy, entropy, and contrast
(Figure 3F–H); Fourier transform analysis of parameters included Root mean square (RMS)
variation and First Moment of Power (FMP) spectrum (Figure 4A,B); and finally Edge
frequency analysis (Figure 4C).

Figure 2. Blob size distribution, each color representing one eye of a subject (A). Normalized Fourier
transform with 0.2 threshold; each color represents an eye (B).

Figure 3. Gray level histogram analysis consisting of measures of Balance (A) and Skewness (B).
Absolute value of gray levels in OCTA images of choriocapillaris in each eye. These set of measures
included average gray level (C), gray level with 30% (D) or 70% threshold (E). Spatial relationship
among gray levels in OCTA images of choriocapillaris in each eye. Energy (F), entropy (G), and
contrast (H) were measured in this category of measures.
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Figure 4. Fourier transform analysis of parameters. Root mean square (RMS) variation (A) and First
Moment of Power (FMP) spectrum (B) is shown. Edge frequency analysis (C) is depicted.

4. Discussion

It is known that the human visual system has difficulty discriminating higher-order
texture information, particularly the spectral frequency properties of an image such as its
coarseness or pattern. The en-face OCTA image of the CC is a complex image containing
an enormous amount of information regarding the pattern of blood flow in the CC; current
analysis methods, which mainly quantify flow voids or deficits based on a black–white
pixel density, are unable to interpret this information fully and with great accuracy.

In this study, sets of mathematical calculations referred to as computerized texture
analysis were applied to en-face OCTA images of the CC in healthy subjects. The main
objective was to determine which one of the previously used sets of parameters provided
coherent and consistent output when applied to OCTA images of a homogeneous group
of subjects.

Computerized texture analysis utilizing similar algorithms and parameters as in our
study has emerged as a valuable tool in imaging analysis in other organs. The included
parameters, notably entropy [37,38], energy [38], and contrast [3,38], have proven successful
for the discrimination of healthy versus at-risk or diseased tissue in various specialties and
imaging modalities. Recently, texture analysis of digitized mammograms has shown that
high-risk gene carriers and low-risk women have different parenchymal patterns, features
that may be useful for identifying women at high risk for breast cancer, thereby intensifying
screening protocols and monitoring of treatments for selecting breast cancer patients. As
an example, automated mathematical quantitative values can provide information about
patterns; high-risk subjects tend to have denser breast tissue as reflected by a negative value
in skewness measure, coarser texture of parenchymal patterns as indicated by a higher
coarseness measure, a lower fractal dimension measure, a smaller edge gradient measure,
and their images tend to be lower in contrast [33].

We found that macular scans of a homogenous group of healthy volunteers of white
race without retinal pathology and with similar refractive error demonstrate coherent and
consistent quantitative values in all 11 parameters of interest, demonstrating the feasibility
of this analysis. This tight clustering is further supported by a consistent correlation of
subfoveal choroidal thickness and 3 mm choriocapillaris flow, established with CC imaging
parameters, with the textual parameters of interest (Table 1).

Other than computerized texture analysis, other automated and machine-learning
analysis of ophthalmic imaging technologies, particularly OCT, have proven promising in
terms of identifying pathologies, particularly of the macula [46–48]. Thresholding strategies
have been the mainstay for quantification of the choriocapillaris. Flow deficit parameters
including number, mean size, total area, and density have been used. A systematic review
of thresholding studies indicated marked variability of quantification methods [49].

The most used algorithm to analyze CC flow deficits using thresholding is Phansalkar’s
method in ImageJ software (National Institutes of Health, Bethesda, MD, USA) [46]. Since
its introduction, several modifications have been proposed to adopt this algorithm for
analysis of the CC [50–52]. Furthermore, binarization of the CC using the Fuzzy C-means
method has been used for segmentation and analysis of CC slabs. Chu et al. [53] studied
normal adults from all age groups with SS-OCTA using en-face CC images to identify



Cells 2022, 11, 1934 6 of 10

flow deficits with either Standard Deviation from a young normal database as the global
thresholding or the Fuzzy C-means method with local thresholding. The authors found a
strong correlation and satisfactory agreement between the Standard Deviation and Fuzzy
C-means methods. A limitation of the Standard Deviation method is that it requires
reference to a normal database for quantification. The advantage of the Fuzzy C-means
method is its applicability across different OCTA devices or different scanning protocols;
however, the limitations of binarization methods apply to these methods. As new analytic
approaches emerge, it has become clear that there is confusion about the appropriate use of
thresholding algorithms for quantifying the CC, encouraging new strategies to overcome
these deficits and to guide their proper use [52].

Herein, by applying computerized texture analysis to en-face OCTA images of the CC,
we propose quantitative standards of CC patterns in healthy eyes and introduce a feasible
method for analysis of the CC. Ultimately, we hope the use of this technology will allow
for discrimination of flow patterns between healthy eyes versus at risk eyes or eyes with
diseased choroids.

To our knowledge, this is the first report of automated complex computerized texture
analysis with multiple parameters and algorithms to characterize and automatically quan-
tify texture patterns of the normal CC in OCTA images. Montesano et al. [13] have reported
an analysis technique with some similarities to ours. However, their textural analysis
focused only on two parameters: an Ising model β and γ, defined as pixel clustering and
white pixel density, respectively. Our study differs, in that we provide a greater number of
raw parameters for analyzing images of the CC. Additionally, our subjects represent a more
homogenous group than those of Montesano et al., whose ages ranged from 16–86, and
for whom refractive error was not considered. Possibly due to their heterogeneous study
population, one of their two study parameters demonstrated a relatively large standard
deviation from the mean value (γ: 0.003 ± 0.012), and thus may prove less meaningful in
terms of distinguishing normal from abnormal CC architecture and density.

Use of computerized texture analysis could potentially solve some of the problems
encountered by previous researchers attempting to glean meaningful information from
OCTA imaging of the CC. For example, work by Wang et al. added to the field by defining
normal CC vessel diameter, but their method of analysis requires time and labor-intensive
subdivision of CC images into distinct measurement areas, each of which is subsequently
analyzed for capillary density (defined as regions that meet a pixel threshold) [12]. Our
work offers the advantage of providing normative values regarding CC imaging without
depending upon manual extraction of data, while providing textural information beyond
the percentage of pixels achieving a certain threshold.

One remarkable finding in our study is that blob size distribution showed a highly
concordant homology between all eyes, which may represent a “repeat pattern” of signal
density and, thus, perfusion in the superficial CC of healthy young individuals of the same
racial background. On this basis, we propose that detecting abnormal patterns of perfusion
in this critical retinal layer could improve understanding of chorioretinal disorders and
enable detection of early or subtle changes in the CC.

The most significant conclusion from our study stems from the fact that we applied
metrics that were all very coherent with consistent quantitative values amongst normal
subjects, establishing a “proof of concept” feasibility study of the computerized texture
analysis of CC OCTA images. This step is necessary prior to further exploration of clinical
applications such as evaluating changes of texture patterns in different clinical settings,
investigating its potential value to differentiate texture patterns among pathologies or to
monitor progression of texture patterns over time and their clinical correlations. For exam-
ple, texture analysis may allow us to diagnose a variety of choroidal and retinal diseases
before they would otherwise be clinically detectable. Due to the higher-order nature of
these parameters that the human eye cannot discern, texture analysis could plausibly lead
to earlier diagnosis of ocular disease, thereby improving outcomes. Furthermore, if these
textural parameters are established as reliable biomarkers of disease severity, they may
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be uniquely positioned to monitor disease progression and response to established and
emerging therapies.

One limitation of the study is that there are no data on repeatability, reproducibility,
and discrepancy, which are important reliability measures [54]; however, our goal in this
study was to focus on feasibility rather than reliability. Image averaging techniques are
being used more frequently to address discrepancy in particular [55], but despite the
substantial advancements in recent years [56], there seems to be a long road ahead to
perfection. Another limitation of the study pertains to existing artifacts, which could be
confounding factors affecting the analysis. This issue equally limits comparable studies.
Due to limitations in depicting vascular flow, deeper layers such as choroidal vessels can
be attenuated and have low signal from optical scattering by the RPE. The built-in image
processing software in RTVue-XR Avanti system uses thresholding to mask signals it deems
to be invalid. In this study, the superficial choriocapillaris (and no deeper vasculature) was
analyzed using the automatic CC slab set by the software. Despite all possible limitations
including poor penetrance and artifacts, which may affect the sensitivity for signal detection,
all subjects were imaged using the same system and analyzed by the same operator with the
goal of feasibility testing. Further studies using newer modalities of OCTA with increased
penetration and enhanced imaging of deeper structures will lighten this limitation and
provide greater insight into the texture analysis of the choriocapillaris and choroidal flow.

Computerized texture analysis of the CC in OCTA images is a promising and novel
approach that offers multiple parameters for interpreting differences between images
beyond binary analysis of black and white pixels. This method offers a great tool for
quantitative analysis that is well-suited for application to larger pools of data and/or
numbers of images, as it is less time consuming and more precise than manual extraction of
light versus dark binary data. Automated higher-order analysis of blood flow patterns in
OCTA images of the CC could also set the groundwork for artificial intelligence technology
to be applied in OCTA CC images. Further work is needed to determine how this type of
analysis correlates with age, race, and refractive error and, eventually, in pathological states.

In this work, we sought to establish the feasibility of applying advanced mathematical
algorithms for texture analysis of CC flow by demonstrating that the various texture
parameters yielded consistent values across normal eyes. In future work, we will explore
the power of analyzing these texture parameters for differentiating normal and diseased
eyes. Thus, we cannot yet speculate which parameter will be most sensitive or important
for this task. One great benefit of having multiple measures is that each of these parameters
assesses varying textural characteristics of the image, increasing the chances to detect
patterns when we apply these measures to diseased eyes. Our primary goal in this phase
of analysis was to show similar values for computerized texture parameters within a
homogeneous group of normal eyes as the basis for future comparisons between normal
and diseased eyes or between different stages of a disease.

As more investigators around the world explore this incredible technology, fascinat-
ing applications continue to emerge, helping us to learn about the role of the CC in the
pathophysiology, manifestations, and severity of prevalent and debilitating chorioretinal
diseases [21–23,26,57,58]. Computerized texture analysis of OCTA images of the CC could
potentially provide a better understanding of chorioretinal disorders and enable detec-
tion of early and subtle changes in the CC relevant to patients’ disease predisposition
and progression.
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Appendix A

Algorithms used for measurement of textural parameters. Descriptions of parameters
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