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Abstract: The availability of large-scale genomic data resources makes it very convenient to mine
and analyze genes that are related to important agricultural traits in rice. Pan-genomes have been
constructed to provide insight into the genome diversity and functionality of different plants, which
can be used in genome-assisted crop improvement. Thus, a pan-genome comprising all genetic
elements is crucial for comprehensive variation study among the heat-resistant and -susceptible rice
varieties. In this study, a rice pan-genome was firstly constructed by using 45 heat-tolerant and 15
heat-sensitive rice varieties. A total of 38,998 pan-genome genes were identified, including 37,859
genes in the reference and 1141 in the non-reference contigs. Genomic variation analysis demonstrated
that a total of 76,435 SNPs were detected and identified as the heat-tolerance-related SNPs, which
were specifically present in the highly heat-resistant rice cultivars and located in the genic regions
or within 2 kbp upstream and downstream of the genes. Meanwhile, 3214 upregulated and 2212
downregulated genes with heat stress tolerance-related SNPs were detected in one or multiple RNA-
seq datasets of rice under heat stress, among which 24 were located in the non-reference contigs of
the rice pan-genome. We then mapped the DEGs with heat stress tolerance-related SNPs to the heat
stress-resistant QTL regions. A total of 1677 DEGs, including 990 upregulated and 687 downregulated
genes, were mapped to the 46 heat stress-resistant QTL regions, in which 2 upregulated genes with
heat stress tolerance-related SNPs were identified in the non-reference sequences. This pan-genome
resource is an important step towards the effective and efficient genetic improvement of heat stress
resistance in rice to help meet the rapidly growing needs for improved rice productivity under
different environmental stresses. These findings provide further insight into the functional validation
of a number of non-reference genes and, especially, the two genes identified in the heat stress-resistant
QTLs in rice.

Keywords: rice (Oryza sativa L.); heat stress; pan-genome; single nucleotide polymorphisms (SNPs);
presence/absence variation (PAV)

1. Introduction

The growth of the world population needs our best efforts to increase crop production
by 100% before 2050 [1]. However, a number of environmental factors, such as light,
water, temperature, etc., significantly affect the production of crops. Due to global climate
change, high temperatures, in particular, have become one of the major disasters affecting
crop production and quality [2]. Rice is one of the most widely produced crops and is
consumed as a staple food by a large part of the world’s human population, providing
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more than 20% of calories (FAO 2016 statistics). It has been cultivated in a wide range of
climatic environments. The majority of the world’s top rice producers are mainly located
in the tropics and subtropics, where the temperature is high during the rice crop season.
High-temperature stress is a complex interaction between temperature intensity, duration,
rapidity, and plant growth stage. Damage from extreme high temperatures is particularly
severe when it occurs during the crop’s critical developmental stages, particularly the
reproductive period. The optimal temperature for rice plants during the reproductive
stage is 20–30 ◦C, but temperatures surpassing 35 ◦C have critical negative effects on rice
growth. High daytime temperatures in some of the major tropical rice-growing regions
are already close to the threshold, beyond which yield begins to decline [3]. One of the
fundamental measures to overcome the yield loss of rice under high-temperature stress is
to breed heat-tolerant rice varieties [4].

The heat tolerance of plants refers to the ability of plants to avoid and endure high-
temperature adversity. The tolerance of high temperatures in rice germplasm resources
has been identified in both Indica and Japonica subspecies [5,6]. The Japonica rice cultivars,
Akitakomachi, Nipponbare, Hitomebore, and Todorokiwase, are classified as heat-tolerant
genotypes [6–8] while the Indica cultivars, IR24, IR36, Ciherang, ADT36, BG90-2, Dular,
Huanghuazhan, AUS17, M9962, Sonalee, Carreon, Dular, N22, OS4, P1215936, HT54, Sin-
tiane Diofor, and AUS16, are known as heat-tolerant genotypes [7–11]. In many research
works, N22 has been used as an excellent heat-tolerant rice variety [3,12,13]. Giza178,
an Egyptian cultivar developed from Japonica–Indica cross breeding, has also shown con-
siderable heat tolerance during the booting stage and the flowering stage [8]. Accurate
evaluation of the thermotolerant degree of these rice cultivars and successful transfer of
these thermotolerant traits into specific cultivars with good agronomic performance is of
great importance for rice producers.

Apart from the thermotolerance phenotypic studies, genetic studies have been con-
ducted to dissect and understand the mechanisms of heat stress resistance and discover
heat-resistant genes or quantitative trait loci (QTLs) and apply them to thermotolerance
breeding. Multiple genetic studies have shown that the heat tolerance of rice is a multigenic
trait that varies with the development stages and plant tissues [14,15]. With the advance of
molecular marker technology, the detection of heat-tolerant QTLs and investigation of its
genetic effects has become possible. Multiple heat-responsive QTL-related traits, such as
spikelet sterility, yield, flowering time, pollen fertility, and stay green, were mapped on all
12 rice chromosomes [13,16–30]. With the application of single nucleotide polymorphisms
(SNPs) in the third generation of molecular markers, genome-wide association study
(GWAS) has emerged as a tool to resolve complex trait variation down to the sequence level
by exploiting historical and evolutionary recombination events at the population level [31].
This approach has been successfully applied to dissect the number of important agronomic
traits in plants. Anuj et al. examined 190 rice accessions, including Indica and Japonica
sub-species, and identified 966 new heat stress-resistant loci linked with the panicle length
and number of spikelets [32]. Lafarge et al. conducted GWAS to detect 14 loci associated
with heat stress responses [33]. Similarly, Kilasi et al. also found multiple QTLs for different
traits under heat stress with varying phenotypic contributions [34].

Access to plant genomes has revolutionized the opportunities to discover specific
genes and their subsequent associated traits. The efforts to dissect the genetic architecture
of agronomically important traits in rice, such as QTL, GWAS, and genomic prediction,
have been carried out primarily at the level of SNPs [35,36]. These SNP discovery methods
were solely based on a single reference genome, which cannot cover the entire gene content
of a species due to structural variations, such as gene presence/absence variations (PAVs)
or copy number variations (CNVs) [37]. To address this issue, pan-genomes have been
constructed to detect the PAVs in a number of plants, including maize, soybean, rice, tomato,
wheat, sorghum, pigeon peas, and Brassica [38–43]. Multiple studies have also uncovered
that these PAVs are associated with environmental adaptation of plants, such as abiotic and
biotic stress tolerances [44–46].
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Thus, a pan-genome comprising all genetic elements is crucial for comprehensive
variation study among the heat stress-resistant and -susceptible rice varieties. Therefore,
in this paper, we firstly constructed a rice pan-genome reference from 60 heat-responsive
rice cultivars using a pan-genome iterative mapping and assembly approach. Secondly,
we detected the presence and absence of variation (PAV) and SNPs in the tested rice
accessions. Thirdly, we identified the SNPs specific to the highly resistant rice cultivars
and compared the results with the outcome of the comparative transcriptome analysis
we performed on multiple RNA-seq datasets to detect the potential candidate heat stress
tolerance genes in the non-reference sequences. Finally, the heat stress tolerance genes were
also identified by mapping the pan-genes to known heat stress-tolerant QTLs in multiple
rice reference genomes.

2. Materials and Methods
2.1. Data Collection

The genome resequencing data of 60 rice varieties with different heat stress tolerance
was downloaded from the 3000 rice genomes project (3K RGP) and other heat stress-related
studies. The heat stress response of each variety was identified from previously conducted
studies and the heat stress response of each variety was collected from each respective
study (Supplementary Materials Table S1). Based on the respective study conducted, the
response of each rice cultivar was evaluated according to its panicle development and
spikelet formation recorded with heat stress exposure. Accordingly, the rice cultivars were
classified as highly tolerant (with spikelet fertility >65%), tolerant (with spikelet fertility
50% to 65%), moderately tolerant (35% to 50%), susceptible (15% to 35%), and highly
susceptible (≤15%).

2.2. Pan-Genome Assembly and Annotation

By using the iterative mapping and assembly approach [40], the pan-genome reference
was constructed from the genome resequencing data of 60 rice varieties, including 45 heat-
resistant and 15 heat-susceptible rice varieties. There were 2 Admixture, 6 Indica, and
7 Japonica in the heat-susceptible group while the heat-resistant group was composed of
1 Aus, 2 Admixture, 11 Japonica, and 31 Indica rice varieties.

The pan-genome was constructed by mapping the sequence reads individually to
the Nipponbare reference genome by using Bowtie2 v2.4.2 with (-I 0 -X 1000) options [47],
and the unmapped reads were assembled using MaSuRCA v3.4.2 [48] to produce ad-
ditional reference sequences. Then, the assembled sequences were rechecked for any
redundancy with the reference genome sequence using BLAST v2.10.0. The assembled
contigs sequences were then compared to the National Centre for Biotechnology Infor-
mation (NCBI) nt database using BLAST v2.10.0 to filter out non-green plant sequences.
Subsequently, contigs with the best hit to non-green plants sequences were removed. Addi-
tionally, redundant sequences were removed using the CDHIT tool. The remaining newly
assembled contigs >500 b in length were annotated using MAKER2 [49]. The assembled
sequences were annotated by combining evidence-based ab initio gene prediction with
the SNAP [50] and Augustus [51] tools. Publicly available assembled rice ESTs (284,186)
from (www.plantgdb.org (accessed on 21 February 2021)) and 4 rice RNA-seq data sets
(PRJNA79825, PRJDA67119, PRJNA508820, and PRJNA562794) and plant proteins (43,287)
from NCBI were used as evidence. Finally, functional annotations of the predicted genes
were performed using the Blast2GO tool [52] and the eggnog [53] functional annotation
tools. Gene ontology (GO) terms were assigned according to the GO terms of the best hit of
each gene.

2.3. Gene Presence/Absence Variation and Pan-Genome Modeling

We performed gene presence and absence analysis on the 56 rice cultivars with a read
depth of greater than 10×. We first aligned the raw reads of these 56 rice varieties to the
pan-genome sequence using bowtie2 v2.4.2 with (-I 0 -X 1000) options [47]. Then, the gene

www.plantgdb.org


Genes 2022, 13, 1353 4 of 18

PAV profile was calculated using the SGSgeneloss package with the criteria of at least
5 covered reads and a lost cutoff of 20% (minCov = 5 and lostCutoff = 0.2) [54]. A gene was
considered as present if >80% of the gene body was covered by at least 5 reads; otherwise,
it was considered as absent. To model the pan-genome gene growth, the mean count for
each sample size of core and pan-genome genes present in all possible combinations of
56 accessions was plotted. The pan-genome genes’ and core genes’ expansion was modeled
using the PanGP modeling tool [55]. To investigate the relationship between the heat stress
responsive cultivars based on the PAV, the Jaccard similarity index was calculated and a
tree was constructed using an in-house Python script.

2.4. Linking the Known Heat-Resistant QTLs with the Predicted Genes

Previously conducted QTL studies were used to map the pan-genome genes in known
heat stress tolerance QTLs. Consequently, 46 known heat stress tolerance QTLs in rice were
collected (Supplementary Materials Table S2). The sequences of QTL markers and primer
pairs were downloaded from the Gramene QTL database (https://archive.gramene.org/
qtl/ (accessed on 2 March 2021)). BLAST was used to map the marker positions on the
twelve cultivated Asian rice reference genomes (Supplementary Materials Table S3) [56].
Finally, the genes in the rice pan-genome were mapped to the QTL regions in each reference
genome, and homologous heat stress-tolerant genes were identified.

2.5. Processing of RNA-seq Datasets

The RNA-seq datasets were downloaded from the SRA archive of the NCBI database.
First, the fastq-dump tool available in the SRA-Toolkit version 2.8.2 (http://ncbi.github.
io/sra-tools (accessed on 26 October 2020)) was run with the options “–gzip” and “–split-
spot” to split the fastq reads. Residual adaptor sequences at both 5′ and 3′ ends were
removed from the raw reads using the default parameters of the Fastp trimming and
cleaning tool [57]. To deliver accurate quantitative transcript-specific expression data
from the RNA-seq datasets, we used STAR aligner [57] to align to the pan-genome and
count the transcript information with (–outFilterMismatchNmax 999 –alignIntronMin
20 –alignIntronMax 10,000 –quantMode GeneCounts –alignMatesGapMax 1,000,000) op-
tions. Finally, differential expression analysis was performed using DESeq2 and signif-
icant differentially expressed genes were defined as those with a false discovery rate
(padj) < 0.05 [58].

2.6. SNP Discovery and Annotation

Variants were identified based on the GATK best practices for SNP/Indel discov-
ery [59]. GATK version 4.2.1.0 was employed for all steps. Initially we performed the data
preprocessing for the variant discovery. Firstly, a quality check of the resequencing data
of all the rice varieties was conducted and the low-quality reads were trimmed using the
Fastp trimming tool [60]. Secondly, whole-genome sequence reads were mapped to the
pan-genome using Bowtie2 v2.4.2 [47]. The resulting SAM files were then converted to
BAM format using samtools [61], followed by the removal of duplicate reads using picard
tools v2.30 [62]. Then the data preprocessing was completed by recalibrating the reads
using the GATK BaseRecalibrator and ApplyBQSR tools and making it ready for variant
calling. Variants were then called on a per sample basis using GATK HaplotypeCaller, and
variants were then consolidated in a joint calling step with GenotypeGVCFs. Variants of
low quality were then filtered out using the GATK VariantFiltration tool with the default
criteria for filtering SNPs and indels. Subsequently, the variants missing in at least 80% of
the varieties and MAF of less than 0.05 were filtered out using the vcftools tool [63]. All
variants were annotated for their potential effects using SnpEff 4.3 t with the annotation
database built from the pan-genome gene set [64]. Finally, we selected all the SNPs that
were specific to the heat stress-resistant cultivars. An SNP-based phylogenetic tree was then
constructed by using the SNPrelate and ape R-packages and, finally, the tree was plotted
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using the ITOL (https://itol.embl.de/ (accessed on 29 May 2022)) online phylogenetic
plotting tool [65].

3. Results
3.1. Pan-Genome Assembly and Annotation

In this research work, we gathered 60 rice accessions with different tolerance of heat
stress. Based on the criteria mentioned in the data collection section of the Material and
Methods, the heat stress response recorded during panicle development and spikelet
fertility, the rice cultivars were classified as 3 highly resistant, 36 resistant, 6 moderately
resistant, 10 susceptible, and 5 highly susceptible to heat stress. The heat-responsive rank
and genome resequencing depth are provided in the Supplementary Materials Table S1.

The genome resequencing data of these 60 rice varieties was used to build the rice
pan-genome. After mapping the short read sequences to the Nipponbare genome, a total of
525 Mb non-reference sequences were obtained. The removal of contaminants (non-green
plant sequences) and redundant contigs resulted in 38,189 non-reference contigs with a
total length of 71,740,214 bp. In the final assembled non-reference sequences, using ab initio
gene prediction tools and additional RNA-seq data, protein sequences, and EST sequences,
a total of 1141 fully annotated genes were predicted (Supplementary Materials Table S4).

3.2. Core and Variable Genes in the Pan-Genome

The PAV analysis was conducted on the whole-genome resequencing reads of 56 rice
accessions with a sequencing depth greater than 10x. Subsequently, the presence and
absence profile of each gene was calculated using the SGSgeneloss package [54]. The
majority of genes were core genes, 31,046 (79.61%) of the pan-genome gene set, which
were shared in all the accessions. In total, 7952 (20.39%) of the pan-genome gene set were
identified as variable genes, which were absent in at least one individual rice accession
(Supplementary Materials Table S5). The size of the pan-genome expanded with each
additional line to 38,998 genes while the number of core genes decreased, and variable
genes increased with each added accession to 31,046 (Figure 1A). A total of 26 genes
were present in a single rice variety while the remaining variable genes were observed
in more than one variety. The comparison of the gene’s presence in the heat-resistant
and -susceptible rice cultivars showed that 53 genes were uniquely present in the heat-
resistant rice cultivars, including 5 genes from the reference contigs whereas 48 were from
the additional non-reference contigs. Additionally, the comparison of the gene length
between the variable genes and core genes showed that core genes were longer than the
variable genes and a relatively higher number of exons were observed in the core genes
(Figure 1B,C). The sequences of the additional annotated genes were generally shorter than
the genes from the reference sequences, with an average length of 1.94 Kbp, where the
number of exons per gene varied between 1 and 9, with an average length of exons of
350 bp.

The PAV-based relationships of the rice cultivars were accessed using the Jaccard
similarity index. The Jaccard similarity index of the genes’ presence/absence variation
varied between 0.9 and 1, suggesting that there was a close relationship between the
different accessions (Figure 2). However, the tree constructed from this similarity index
showed that the rice cultivars TN1 and BG90-2 were separated from the other accessions
in one cluster, which mainly resulted from the lowest number of genes being present
in these two accessions, with 34,999 and 35,003, respectively. On the other hand, the
remaining accessions clustered into two distinct clusters. The first cluster contained 18 rice
accessions and the second cluster contained the remaining 36 accessions. The majority of
the rice accessions in the first cluster were Japonica, containing 8 susceptible and 10 tolerant
accessions. In total, 38,601 pan-genome genes were shared in this clade while 159 genes
were present only in the resistant accessions. On the other hand, in the second cluster, the
majority of the rice accessions belonged to Indica, including 29 tolerant and 7 susceptible
accessions. Similarly, 38,860 genes were shared in these accessions and 370 genes were

https://itol.embl.de/
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unique to the resistant accessions. The number of heat-resistant accessions sharing these
unique genes varied from 1 to 14.
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3.3. Functional Annotation of Genes

GO-based enrichment analysis of the predicted genes showed that 491 of them were
involved in biological processes, among which the significantly enriched category included
38.9% involved in the response to stress, 20% in involved in biological regulation, and
11.8% in signal transduction functions. In the molecular function category, 535 genes were
identified in which the significant category included 59% associated with binding and
45.7% associated with catalytic activity. In total, 485 of the predicted genes were also
annotated to be involved in the cellular component functions, in which the genes associated
with the organelle part (53%), membrane part (10%), and protein-containing complex
(8%) were among the significantly enriched gene categories (Figure 3).
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3.4. SNP Analysis

We identified a large number of variants (SNPs) by mapping the heat stress-responsive
cultivars’ whole-genome sequence reads to the pan-genome reference using the GATK
tools. After filtering out the low-quality SNPs, SNPs with MAF ≤0.05, and SNPs with
missing genotypes over 80%, a total of 5,059,798 biallelic SNPs were detected, among
which 191,187 SNPs were identified in the non-reference contigs. It was observed that
chromosome 1 had the highest number of SNPs (543,803), followed by chromosomes 4, 8,
and 11. On the other hand, chromosome 9 contained the fewest number of SNPs (310,316).
The SNP density comparison revealed that chromosome 8 had the highest number of SNPs
per Kbp with 26.27/Kbp, followed by chromosome 10, 11, and 12, and chromosome 3 had
the lowest density of SNPs per Kbp with 17.12/Kbp. The SNP density in the non-reference
contigs (8.72/Kbp) was less than that in the reference genome (21.69/Kbp). The SNPs in
each variety varied from 98,704 in HINUKARI to 2,211,361 in IR36 (Figure 4). N22 had the
highest number of SNPs with 85,186 in the non-reference contigs, followed by VANDANA
with 80,799 and DULAR with 79,322.
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To understand the relationship of the tested 60 rice varieties, a neighbor joining (NJ)
tree was constructed using the SNPs. The accessions were categorized into the rice sub-
species Indica, Japonica, Aus, and Admix. However, the phylogenetic relationships based on
the SNPs grouped the varieties into two major clusters, which are in agreement with their
population classification. The first cluster contained 19 rice varieties, in which the majority
belonged to Japonica species, whereas the second cluster included the remaining 41 rice
varieties, with the majority belonging to Indica species (Figure 4). To further understand
the variation within each cluster, we analyzed the SNPs separately in each cluster. The
cluster-based SNP classification showed that 2,373,085 SNPs were detected in cluster-1 and
4,763,997 SNPs were detected in cluster-2 (Table 1). It was also observed that 2,686,715 SNPs
were specific to cluster-2 and 295,803 SNPs specific to cluster-1 whereas 2,077,283 SNPs
were shared between the two clusters (Table 1).

Table 1. Classification of the SNPs detected in the rice pan-genome.

Variant Type Pan-Genome Reference Non-Reference Cluster 2 Cluster 1

Bi-allele SNP 5,059,798 4,868,611 191,187 4,763,997 2,373,085
Splicing 15,986 15,881 105 15,210 7773
Exonic 284,016 281,185 2831 269,738 140,517
Intronic 578,887 576,534 2353 548,909 277,418

UTR 224,599 224,127 472 213,375 105,933
Upstream 1,229,370 1,224,403 4967 2,790,074 1,351,465

Downstream 1,100,851 1,095,937 4914 2,595,947 1,262,776
Missense 143,819 142,071 1748 136,135 70,833

Stop gained 1936 1900 36 1816 840

The classification of the above 5,059,798 SNPs illustrates that the highest number
of SNPs were located in the intergenic regions (45%), followed by the upstream (29.9%),
downstream (14.4%), exonic (3.92%), and intronic (3.83%) regions (Table 1). Missense SNPs,
which could change the coding amino acid sequence, accounted for only 2.84%, and the
fraction of low-effect variants was 2.5%. Among the SNPs located in the coding sequences,
50.64% were nonsynonymous and 49.36% were synonymous. Meanwhile, the large-effect
SNPs, which could modify splice sites and stop or start codons, represented the smallest
class, with only 1936 (0.038%).

3.5. Identification of Heat Stress Tolerance-Related SNPs and Genes

To further identify the heat tolerance-related variants and candidate genes, we investi-
gated the genes that harbored the SNPs specific to the heat-resistant rice cultivars. Subse-
quently, we placed more emphasis on the high-impact SNPs, SNPs in the genic regions, and
SNPs located within 2 kbp upstream and downstream of the genes. Using these criteria,
we identified a total of 146,773 SNPs, including 2427 SNPs in 435 non-reference genes. Ad-
ditionally, we performed further variant filtering to screen the SNPs specific to the highly
heat-resistant cultivars. As a result, 76,435 SNPs were identified to be specific to the highly
resistant cultivars, including 827 SNPs in 187 non-reference genes, which were named heat
tolerance-related SNPs. The 76,435 SNPs were annotated as 162 high-impact SNPs (splice
site acceptor, splice site donor, start lost and stop gained), 5046 moderate-impact SNPs
(non-synonymous), 66,575 modifier SNPs, and 4458 low-impact SNPs (Table 2).

3.6. Meta-Analysis of Comparative Transcriptomic Data

Four RNA-seq datasets of rice under heat stress, PRJNA633211, PRJNA610667, PR-
JNA604026, and PRJNA508820, were downloaded from the NCBI database. Each dataset
contained the transcriptome data of two rice cultivars with a contrasting response to heat
stress and each sample had a minimum of two replicas (Table 3). After trimming the raw
reads of each dataset, clean data were obtained with a quality of 91.6% reads over Q30.
All the clean reads were then mapped to the pan-genome gene set and the alignment and
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mapping of genes were greater than 91.2% and 79.0%, respectively. Finally, differential
expressing genes (DEGs) in each sample were examined using the threshold of the false
discovery rate (padj ≤ 0.05) and log2foldchange (|LOG2FC| ≥ 1). After comparing the
heat-tolerant cultivar with the heat-susceptible cultivar in each experiment, we obtained
a total of 21,706 DEGs in PRJNA604026, 10,599 DEGs in PRJNA633211, 7624 DEGs in
PRJNA610667, and 5100 DEGs in the PRJNA508820 dataset (Table 3). As shown in Table 3,
the number of DEGs varied among the different experiments, which might be due to the
different varieties, experimental design, and technology used.

Table 2. Distribution of the heat stress-tolerant SNPs in the rice pan-genome.

Annotation SNPs in Resistant Cultivars SNPs in Highly Resistant Cultivars

Downstream 29,082 14,759
Exon 358 185
Intron 18,846 9541

Non_Synonymous 10,194 5046
Splice site acceptor 28 16
Splice Site donor 38 19

Start gained 769 366
Start lost 25 11

Stop gained 225 116
Stop lost 26 14

Synonymous 7827 4090
Upstream 66,718 35,970

UTR_3 8820 4422
UTR_5 3817 1880

Total 146,773 76,435

Table 3. Numbers of DEGs in the 4 RNA-seq datasets of rice under heat stress.

ProjectID * Test Cultivars Comparisons
Pan-Genome
Upregulated

Genes

Reference
Upregu-

lated
Genes

Non-
Reference
Upregu-

lated
Genes

Pan-Genome
Downregu-

lated
Genes

Reference
Upregu-

lated
Genes

Non-
Reference

Downregu-
lated

Genes

PRJNA604026 9311 9311HS_9311CTRL 8248 8202 46 9691 9616 75
Nipponbare NIPHS_NIPCTRL 4914 4909 5 6504 6495 9

PRJNA508820 Huanghuazhan HHZ40_HHZ32 2091 2064 27 1819 1800 19
IR36 IR3640_IR3632 1395 1364 31 1503 1486 17

PRJNA610667
HSR1 HSR1_LSR1 2143 2058 85 1650 1605 45
HSR2 HSR1_LSR2 1704 1645 59 1048 1020 28
LSR1 HSR2_LSR1 1617 1560 57 2232 2180 52
LSR2 HSR2_LSR2 1596 1532 64 2117 2060 57

PRJNA633211
MH101 MH36_MH28 1825 1809 16 1361 1354 7

MH38_MH28 5181 5145 36 2898 2881 17

SDW005 SD36_SD28 1380 1375 5 110 103 7
SD38_SD28 4618 4599 19 923 916 7

* NCBI project accession ID.

To further investigate the genes associated with heat stress tolerance, we screened the
DEGs with heat tolerance-related SNPs in all the datasets and excluded the DEGs with a
contradicting expression profile among the different studies. Consequently, we were able
to identify 3214 upregulated and 2212 downregulated genes with heat tolerance-related
SNPs in one or more RNA-seq datasets (Figure 5). Among these, 24 DEGs were located in
the non-reference contigs, including 15 upregulated and 9 downregulated genes (Figure 6).

Based on the functional and GO-based annotation, we found that some of the 24 non-
reference genes with heat stress tolerance-related SNPs were homologous to the genes in
wild rice. Calmodulin-binding protein 60 A-like (maker_00000041) was upregulated in two
RNA-seq datasets of rice under heat stress, with 99.8% similarity to the ORUFI11G23900.1
gene in Oryza rufipogon. The cysteine-rich receptor-like protein kinase 6 (maker_00001878)
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gene upregulated in two RNA-seq datasets was homologous to the OBART07G17510.1 gene
in Oryza barthii, with an identity of 81.4%. The thiol methyltransferase 2 domain-containing
protein (maker_00001393) gene was homologous to the OGLUM03G40460.1 gene in Oryza
glumipatula. The sulfotransferase (maker_00000647) gene was identified to be homologous
to ONIVA11G17360.1 in Oryza nivara, with a similarity index of 100.0% (Figure 6 and
Supplementary Materials Table S6).
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3.7. Mapping DEGs to the Known Heat Stress-Tolerant QTLs

For further validation, we mapped the above DEGs with heat stress tolerance-related
SNPs to the known heat stress-tolerant quantitative trait loci (QTLs) in rice. The positions
of 63 heat stress-tolerant QTLs were retrieved from previous research. After filtering the
overlapping QTL regions, 46 heat stress-tolerant QTL regions were selected (Supplementary
Materials Table S2). In order to identify the heat stress-tolerant candidate genes in the non-
reference contigs, we mapped the heat stress-tolerant QTLs to the 12 different representative
genomes of Asian domesticated rice cultivars [56]. The number of genes in the non-reference
contigs mapped to the QTL regions in the different rice reference genomes varied between
37 and 60 genes (Table 4). Subsequently, we mapped the DEGs with heat stress tolerance-
related SNPs to the heat stress resistance QTL regions. A total of 1677 DEGs, including
990 upregulated and 687 downregulated genes, were mapped to the 46 QTL regions,
in which 2 upregulated genes were identified in the non-reference contigs. One of the
genes was annotated as the protein transport protein Sec24-like and the other was root
phototropism protein 2-like. Homology search of the Sec24-like protein showed that this
gene is similar to the ONIVA11G05100.1 gene from the wild species Oryza nivara.

Table 4. Number of genes in the non-reference contigs mapped to the heat-tolerant QTLs in each
reference genome.

BioSample ID * Number of Genes

SAMN08217222 37
SAMN10564385 60
SAMN12715984 49
SAMN12721963 46
SAMN12672924 55
SAMN12718029 49
SAMN12748569 38
SAMN12748589 42
SAMN12748590 55
SAMN12748600 41
SAMN12748601 39
SAMN13021815 51

* Biosample ID of the rice accession.

4. Discussion

The sequencing and assembly of the rice genome have allowed tremendous progress
in rice genotyping and gene identification. Multiple studies have been conducted on rice
using the pan-genome approach to mine the overall variation in rice cultivars, such as
Zhao et al. (2018) [38], Wang et al. (2018) [66], Sun et al. (2016) [67], etc. These studies
systemically investigated the whole set of coding genes in the pan-genome, which showed
an extensive presence and absence of variation among the different rice varieties. On
the other hand, the previous research identifying heat resistance-related variations in
rice was based on a single reference genome, which might lose the genome structural
variation information, including the presence/absence or copy number variation among
the different individuals. The published rice reference genome assembly is 373 Mbp in
size with 37,860 predicted genes [68]. In this study, we constructed a rice pan-genome
from heat-responsive cultivars to identify and characterize the heat-tolerant candidate
genes, especially those that are not present in the single rice cultivar reference genome.
The pan-genome represents the entire gene set of heat stress-resistant and -susceptible rice
cultivars, including core and variable genes. Compared to the single reference genome,
the pan-genome constructed in this research had an increment in the genome size of
15.8% and an additional 1141 non-reference genes. This increment in additional genes
was mainly due to the non-reference contigs, which could not be successfully mapped to
the single reference genome, and these genes were annotated using additional EST and
RNA-seq data evidence. The iterative mapping and assembly approach has been used
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to build pangenome references in facilititating the characterization of resistant genes in
Brassica napus [69], and identification of number of agronomic trait-related genes in pigeon
pea [43] and sorghum [42]. Here, it was used to construct the rice pan-genome, followed
by remapping of the sequencing data to the pan-genome to identify the presence/absence
variations in heat stress responsive varieties.

Overall, 20.79% of the rice pan genomic genes were variable genes, and the PAV-based
classification of the tested rice varieties was in agreement with the SNP-based cluster. A
total of 159 and 370 unique genes were found in the resistant varieties in the two PAV-based
clusters, respectively (Figure 2), demonstrating the structural variation among the heat
stress-responsive rice cultivars. This was consistent with the multiple previous studies.
Gabur et al. (2020) found the association of the gene PAV with Verticillium longisporum
disease resistance in Brassica napus [70]. In another study, Weisweiler et al. (2019) applied
the transcriptomic data and PAV in the barley genome to predict phenotypic traits [71].
Therefore, PAV in the pan-genome might contribute to the phenotypic diversity of the heat
stress-responsive rice cultivars.

With the rapid development of next-generation sequencing technologies, it is now
much more reliable to discover DNA polymorphisms at a genome-wide scale, which plays
a vital role in unraveling the genetic basis of phenotypic differences. As a result, the variant
analysis using the pan-genome reference enabled us to discover 191,187 additional SNPs
from the genetically diverse rice accessions. Recent pan-genomic studies, such as the
studies by Ruperao et al. (2021) on the sorghum pan-genome [42], Zhao et al. (2020) on
the pigeon pea pan-genome [72], and Li et al. (2021) on the cotton pan-genome, identified
significantly associated SNPs in the non-reference sequences of the pan-genome. Thus,
the SNPs on the non-reference contigs identified in this study are an added resource for
identifying additional markers of heat tolerance in rice. Furthermore, the SNPs in the tested
rice varieties’ genome were grouped into two clusters, which was consistent with the rice
sub-groups, Indica and Japonica. Previous studies, such as Xu et al. (2020), found significant
variation in the LOC_Os12g39840 (SLG1) gene between Japonica and Indica species, which
confer high-temperature tolerance in Indica rice [72]. Given the fact that the rice plants’
resistance to heat stress varies with their genetic background [73], the heat-tolerant SNPs
detected in this study are of great value for further genotype–phenotype studies and useful
for the breeding of new heat-tolerant rice varieties.

Genome-wide SNP markers have been used to identify stress-resistant genes in plants
in previous studies, including Li et al. (2017), Silva et al. (2012), and Xu et al. (2014), etc. [74–
76]. These studies identified a number of stress-resistant candidate genes and SNPs using
whole-genome and transcriptome comparison methods. In this study, using the constructed
rice pan-genome as a reference, we identified 24 DEGs with heat tolerance-related SNPs in
the non-reference contigs, including 15 upregulated and 9 downregulated genes (Figure 6).
The functional annotation revealed that these genes might play a key role in heat stress
tolerance. Among the upregulated genes, calmodulin-binding protein 60 A-like (CAM),
a ubiquitous and multifunctional Ca2+ sensor, was involved in heat stress tolerance in a
number of plant species, including Arabidopsis [77–79]. PDR-like ABC transporter is known
to play a key role in cellular signaling and environmental adaptation. Rizhsky et al. (2004)
reported that the expression of ABC transporter in Arabidopsis was enhanced by multiple
stresses, especially heat and drought [80]. Sulfotransferases (SOTs) are sulfate-regulating
proteins found in various organisms. Chen et al. (2012) analyzed the genome-wide
comprehensive expression of 35 putative SOT genes in rice and characterized 11 SOTs that
participated in the response to abiotic stresses [81]. Other genes among the 24 DEGs with
heat tolerance-related SNPs in the non-reference contigs, including proteasome subunit
α type-5 gene, protein transport Sec24, cell division cycle gene, senescence-related genes
(SRGs), cysteine-rich receptor-like protein kinase 6 (CRK6), and cytochrome P450 genes,
were also found to be involved in the response to stresses [82–86]. The other 15 genes
might be novel heat stress resistance genes in rice and will be confirmed in our functional
validation experiments. Therefore, the combination of SNP detection and transcriptome
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analysis was an effective approach to discover the novel heat stress-tolerant candidate
genes in rice.

Several heat-resistant QTLs in rice have been identified in previous research (Supple-
mentary Materials Table S2). In this study, we also mapped the rice pan-genome genes
to the heat-resistant QTLs in different rice reference genomes to identify the heat stress
resistance candidate genes. We used the strategy of combining the SNP detection and RNA-
seq data analysis with previously identified QTL regions, which were broadly applied to
identify the key candidate genes corresponding to the different traits in different crops.
Wen et al. (2019) used a similar strategy to identify the stress-resistant genes in tomato
while Behnam et al. (2020) applied this method to detect the candidate genes associated
with cadmium tolerance in barley [87,88]. Additionally, previous pan-genome studies
also found a number of non-reference genes corresponding to different agronomic traits.
For example, Ruperao et al. (2021) identified 79 genes associated with drought stress in
sorghum [42], Li et al. (2021) uncovered 124 PAVs linked to a favorable fiber quality and
yield loci [89], etc. In this study, among the 24 non-reference DEGs with heat resistance-
related SNPs, we identified 2 upregulated genes, which were annotated as protein transport
protein Sec24-like and root phototropism protein 2-like, that were mapped to known heat
stress-tolerant QTL regions. Protein transport Sec24 are components of the COP II complex
response during the ER-to-Golgi transport of secretory proteins. Qian et al. (2015) found
that multiple genes of this family were upregulated in response to different abiotic stress
treatments in rice [90]. In conclusion, the findings of this study provide insight into the
further functional characterization of the heat resistance candidate genes identified in the
non-reference contigs in rice.

5. Conclusions

We constructed and characterized the rice pan-genome using the rice reference genome
and the whole-genome resequencing reads of 60 heat stress-responsive rice varieties. The
pan-genome had 38,898 genes, which were categorized into core and variable genes accord-
ing to the presence and absence variation. The results showed that PAV in the pan-genome
contributed to the phenotypic diversity of the heat stress-responsive rice cultivars. Conse-
quently, 3214 upregulated and 2212 downregulated genes with heat tolerance-related SNPs
were identified by combining the strategy of SNP and transcriptomic analysis. Twenty-four
DEGs with heat resistance-related SNPs were located in the non-reference contigs of the
pan-genome, among which most were annotated as stress-responsive genes in rice. Two
DEGs with heat resistance-related SNPs in the non-reference contigs were mapped to the
known heat-resistant QTLs. Overall, the results of this study provide further insight for
researchers on the functional validation of these heat stress resistance candidate genes.
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