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Abstract: Aspergillus flavus and Aflatoxins in grain crops give rise to a serious threat to food security
and cause huge economic losses. In particular, aflatoxin B1 has been identified as a Class I carcinogen
to humans by the International Agency for Research on Cancer (IARC). Compared with conven-
tional methods, Surface-Enhanced Raman Scattering (SERS) has paved the way for the detection of
Aspergillus flavus and Aflatoxins in grain crops as it is a rapid, nondestructive, and sensitive analytical
method. In this work, the rapid detection of Aspergillus flavus and quantification of Aflatoxin B1 in
grain crops were performed by using a portable Raman spectrometer combined with colloidal Au
nanoparticles (AuNPs). With the increase of the concentration of Aspergillus flavus spore suspension
in the range of 102–108 CFU/mL, the better the combination of Aspergillus flavus spores and AuNPs,
the better the enhancement effect of AuNPs solution on the Aspergillus flavus. A series of different
concentrations of aflatoxin B1 methanol solution combined with AuNPs were determined based
on SERS and their spectra were similar to that of solid powder. Moreover, the characteristic peak
increased gradually with the increase of concentration in the range of 0.0005–0.01 mg/L and the
determination limit was 0.0005 mg/L, which was verified by HPLC in ppM concentration. This rapid
detection method can greatly shorten the detection time from several hours or even tens of hours to a
few minutes, which can help to take effective measures to avoid causing large economic losses.

Keywords: Aspergillus flavus; aflatoxins B1; carcinogen; Surface-Enhanced Raman Scattering; colloidal
Au nanoparticles; portable Raman spectrometer

1. Introduction

Aspergillus flavus, a common saprophytic mold widely existing all over the world,
has been recognized as the main pathogenic fungus causing grain crops mildew in the
process of storage. Aspergillus flavus and the closely related subspecies Aspergillus parasiticus
can contaminate grain crops in a wide range [1]. According to FAO reports, the annual
losses caused by fungal pollution in the world have reached tens of billions of dollars, and
most of them are caused by Aspergillus flavus contamination [2]. They can consume a lot of
nutrients, accelerate fat deterioration, and destroy protein, pantothenic acid, niacin, vitamin
A, vitamin D, vitamin E, and other components, resulting in the nutritional reduction
of grain crops. Moreover, 30–60% of them can produce aflatoxins under appropriate
conditions [3].

Aflatoxins are cancerous secondary metabolites from Aspergillus flavus and
Aspergillus parasiticus [4]. They are toxic to humans and animals causing liver damage,
abnormalities, mutations, and cancer, and when in high doses, aflatoxins can be fatal [5].
Due to their high toxicity and carcinogenic potential, they are a high concern for the safety
of food worldwide [6]. At present, more than 20 species of aflatoxins have been found,
mainly including B1, B2, G1, G2, M1, M2, etc. Among them, aflatoxin B1 is the most toxic and

Molecules 2022, 27, 5280. https://doi.org/10.3390/molecules27165280 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27165280
https://doi.org/10.3390/molecules27165280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules27165280
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27165280?type=check_update&version=2


Molecules 2022, 27, 5280 2 of 14

carcinogenic and has been identified as a Class I carcinogen to humans by the International
Agency for Research on Cancer (IARC) [7,8]. Given these adverse effects, regulatory control
limitations for aflatoxin B1 in food and feed are well-established. China has strictly set
limits of 20 µg/kg of aflatoxin B1 in corn and corn products, according to the national food
safety standard (GB 2761-2017) [9].

Several methods and techniques for the detection and quantification of Aspergillus flavus
and Aflatoxins have been developed. DNA-based techniques have been used for the de-
tection of aflatoxigenic strains of Aspergillus flavus. They mainly include the plate count
method [10], polymerase chain reaction (PCR) and Quantitative PCR (qPCR) [11–14],
enzyme-linked immunosorbent assay (ELISA) [15–18], and so on. High-performance liquid
chromatography (HPLC) [19], thin layer chromatography (TLC) [20], enzyme-linked im-
munosorbent assay (ELISA) [21], and electrochemical impedance spectroscopy (EIS) [22,23]
methods have been used for the detection of aflatoxins. In recent years, molecular spectrum
and hyperspectral imaging were widely used to detect Aspergillus flavus and Aflatoxins [24].
Raman spectroscopy (RS), a modern analytical technique that provides information about
molecular vibrations and consequently the structure of the analyzed specimen, has been
broadly used in various research fields ranging from the medical biological field [25–28] to
food safety [29,30] and electrochemistry [31].

Surface-enhanced Raman scattering (SERS) based on noble metal nanomaterials
or rough surface of a metal sheet has attracted increasing attention due to its unique
characteristics of high sensitivity and the capability of chemical fingerprint recognition.
Caldwell et al. utilized spherical gold nanoparticles with 14 nm and 46 nm diameters
to improve the scattering signal obtained during Raman spectroscopy measurements to
detect small plastic particles [32]. Bharathi et al. utilized picosecond laser-ablated gold
nanoparticles (Au NPs) as surface-enhanced Raman scattering (SERS) substrates to detect
the dye methylene blue and a chemical warfare agent simulant (methyl salicylate) [33].
Zavyalova et al. provided a SERSaptasensor based on colloidal solutions, which combines
rapidity and specificity in the quantitative determination of the SARS-CoV-2 virus [34].
Compared with the colloidal solutions, there is greater SERS signal stability and a better
detection limit may be achieved that allows the detection of low concentrations up to
single-molecule level based on some SERS substrates that were prepared by the template-
assisted electrodeposition [35], binary-template-assisted electrodeposition [36], pulsed laser
ablation [37], and other methods. The surface nanostructures of artificially roughened
metal thin films display many hot spots making them excellent SERS substrates [38]. The
conventional approaches have several limitations including complicated pretreatment
steps, requiring expensive instruments, operational complexity, lack of instrument porta-
bility, and difficulties in real-time monitoring [39–41]. Due to the toxicity of aflatoxin and
people’s attention to food safety, more and more studies on using SERS technology to
detect food security have appeared. The determination of aflatoxin B1 in peanut based on
QuEChERS purification and surface-enhanced Raman spectroscopy (SERS) was carried out
by Wang et al. [42]. Yang et al. used Raman spectroscopy technology to detect zearalenone
(ZEN) and aflatoxin B1 in six kinds of maize samples with different mold degrees [43].
Therefore, it is of great significance to develop a fast, solvent-free, and cost-effective an-
alytical method for noninvasive, rapid, and sensitive detection of Aspergillus flavus and
Aflatoxin B1 in grain crops to prevent potential economic losses.

An important application of SERS in pathogenic microorganisms is to rapidly detect
and identify pathogenic bacteria directly isolated from samples without relying on a culture
medium, so as to improve efficiency and reduce cost. In this paper, the rapid detection of
Aspergillus flavus and quantification of Aflatoxin B1 in grain crops using a portable Raman
spectrometer-based colloidal Au nanoparticles (AuNPs) will be presented. Detection
results of Aflatoxin B1 in grain crops were verified by HPLC in ppM concentration. The
characteristics of Aspergillus flavus and Aflatoxin B1 will help to identify the degree of
contamination by nondestructive testing of grain crops and gain timely control. In addition
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to the diagnostic application, this method is also potentially helpful for further determining
the storage methods of grain crops.

2. Results and Discussion
2.1. SERS of Aspergillus flavus on the Medium and on Corn

A large number of biochemical components on the cell membrane surface of pathogenic
microorganisms can be regarded as the characteristic signs of microorganisms. The struc-
ture and chemical composition information of the substance can be obtained based on SERS
at the single-molecule level. Therefore, SERS has fingerprint recognition characteristics
and high detection sensitivity of surface species, which can be used as a sign for the rapid
identification and identification of fungi.

When Aspergillus flavus was inoculated on the culture medium, the increase of
Aspergillus flavus on the culture medium could be clearly observed with the naked eyes
with the increase of culture days. As shown in Figure 1, the surface color of the medium
inoculated with Aspergillus flavus spores changed significantly from transparent color to
black with the increase in time. The picture of day 0 showed the fresh medium, which
was distinct from the following pictures of day 1, day 2, and day 3, respectively. After cen-
trifuging the culture medium (1 mL) at 8000 g for 5 min, the Aspergillus flavus spores were
collected and resuspended in 1 mL of 0.85% sterile normal saline, and then centrifuged and
washed under the same conditions. The above procedure was repeated another 2–3 times
to remove the culture medium and get the sample, of which 20 µL was taken and added to
500 µL of AuNPs solution and mixed for SERS detection. The SERS of Aspergillus flavus had
fingerprints at 400–1800 cm−1, as shown in Figure 2a, which were mainly reflected in the
characteristic peak absorption and spectral shape, especially at the range of 600–800 cm−1,
1200–1400 cm−1, and 1500–1600 cm−1. The peak of the surface-enhanced Raman spectra of
Aspergillus flavus was analyzed and explained. The peak at 1605–1615 cm−1 represents C=O
stretching in proteins [44], 1343–1346 cm−1 represents DNA base [45], 1315–1317 cm−1 rep-
resents the vibration of (–C=C–) conjugated of Amine III [26], 1302–1306 cm−1 represents
carbohydrates [44], and 805–825 cm−1 represents protein, respectively [46]. The intensity
of the Raman characteristic peak at 1535–1537 cm−1 increased obviously with the growth
of culture time of Aspergillus flavus spore suspension. The experimental results shown from
the SERS of Aspergillus flavus were consistent with the color changes observed directly on
the culture medium. The comparison of non-SERS and SERS of Aspergillus flavus was shown
in Figure 2b. The results showed that the SERS signals of Aspergillus flavus would increase
with the coupling with AuNPs, while under non-SERS conditions, the Raman signals of
normal Aspergillus flavus could hardly be detected by a portable Raman spectrometer.
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When Aspergillus flavus was inoculated on corn grains, the amount of Aspergillus flavus
gradually increased and the color of corn changed significantly with the increase in time,
as shown in Figure 3. The SERS of Aspergillus flavus inoculated on corn grains shown in
Figure 4 was similar to that inoculated on the medium, and they had the same fingerprints
at 400–1800 cm−1. Moreover, the intensity of Raman characteristic peak at 1536–1537 cm−1

increased obviously with the growth of culture time of Aspergillus flavus on corn in
different culture periods. The experimental results shown from the SERS of Aspergillus
flavus were consistent with the color changes observed directly on corn.
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Figure 2. (a) SERS of Aspergillus flavus on the medium in different culture periods. (b) The comparison
of non-SERS and SERS of Aspergillus flavus.
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2.2. SERS of Aspergillus flavus with Different Concentrations

Colloidal Au nanoparticles (AuNPs) with a particle size of about 60 nm, prepared
according to a previously published procedure [47], served as SERS substrates in this work.
Aspergillus flavus with different concentrations were added to a certain amount of AuNPs
solution and mixed, then different colors of the mixture appeared.

As shown in Figure 5, 102–108 CFU/mL Aspergillus flavus spore suspension and AuNPs
solution were mixed, with the concentration increase of Aspergillus flavus spore suspension,
the mixture color changed from pink to gray gradually. Since the color of AuNPs solution
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will change after Aspergillus flavus is combined with the AuNPs, the greater the color change,
the better the combination between the Aspergillus flavus and the AuNPs. The result showed
that with the increase of the concentration of Aspergillus flavus spore suspension, the better
the combination of Aspergillus flavus spores and AuNPs, the better the enhancement effect
of AuNPs solution on the Aspergillus flavus.
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A significant challenge for many applications of Raman spectroscopy is that the
spectra are often accompanied by a strong fluorescence background, especially for biological
samples. This background is generally dominated by intrinsic fluorescence from the sample.
There is no doubt that the existence of the resonance effect depends on the wavelength of
the excitation laser. If the excited photon cannot provide enough energy for the molecule to
be in the excited state, the corresponding fluorescence transition will not occur. However,
once the fluorescence is generated, its intensity will be much greater than the Raman
scattering light, thus masking the characteristics of the Raman signal. Therefore, choosing
laser wavelength is an effective way to avoid fluorescent radiation.

The SERS spectra of Aspergillus flavus with different concentrations were determined
by using a portable Raman spectrometer with a 785 nm laser under the conditions of
300 mW of laser power, 20 s of integration time, and three integration times. According to
flocculation theory and hot-spot effect [48,49], when the AuNPs are close to a certain dis-
tance, in the gap between particles a highly enhanced electromagnetic field will be formed,
and hot spots with excellent enhancement effects will be formed, resulting in strong Raman
enhancement signal with the maximum enhancement factor possibly up to 1014–1015. When
the analyte concentration is high, the high concentration ratio AuNPs provides sufficient
adsorption sites for the analyte molecules and flocculates to obtain a strong SERS signal.
As shown in Figure 6, the average SERS spectra of Aspergillus flavus with different concen-
trations were obtained after baseline correction, normalization and smoothing. The results
showed that Aspergillus flavus with different concentrations had similar SERS fingerprints at
400–1800 cm−1, which were mainly reflected in the characteristic peak absorption and spec-
tral shape, especially at the range of 600–800 cm−1, 1200–1400 cm−1, and 1500–1600 cm−1.
Moreover, the intensity of the Raman characteristic peak at 1536 cm−1 and in the range of
1200–1400 cm−1 increased gradually with the increasing concentration of Aspergillus flavus
spore suspension. In addition, it also showed that the combination of Aspergillus flavus
spores and AuNPs was more sufficient with the increase of Aspergillus flavus spore concen-
tration and the enhancement effect was better, which was consistent with the results shown
in Figure 6. Probably due to the limited hot-spot, the Raman signal does not increase with
the concentration of analyte molecules. Even if the concentration ratio of Aspergillus flavus
is further increased, the AgNPs will not combine with more Aspergillus flavus, and the SERS
signal will no longer increase. Therefore, 102–108 CFU/mL Aspergillus flavus spore suspen-
sion should be selected to enable the AgNPs to absorb the abundant Aspergillus flavus to
generate the Raman signals for quantitative analysis.

The dynamic three-dimensional Raman spectrum revealed a dynamic result of the
determination of Aspergillus flavus spore suspension added to the AuNPs solution and com-
bined with the AuNPs, as shown in Figure 7. The results showed that the combination state
of Aspergillus flavus and AuNPs tended to be stable after Aspergillus flavus was added to the
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AuNPs solution for about 10 min. Therefore, the determination effect of the SERS spectrum
would be better after 10 min of sufficient combination of Aspergillus flavus and AuNPs.
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The Raman peak at 1536 cm−1 in the SERS diagram of Aspergillus flavus was selected
as the characteristic peak to carry on the semi-quantitative analysis. According to the signal
intensity, the relationship between different concentrations of Aspergillus flavus spore sus-
pension and Raman peak intensity at 1536 cm−1 was drawn by using the least square fitting
method, as shown in Figure 8, indicating that the method could be used for the determi-
nation of Aspergillus flavus. According to the experimental results, when Aspergillus flavus
was between 102–105 cfu/mL, the SERS signal intensity did not change significantly with
the increase in concentration. Therefore, it could be considered that 102 cfu/mL was the
lowest detectable concentration in this detection. Considering the dilution effect of the
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AuNPs solution on the solution of Aspergillus flavus, 20 µL of Aspergillus flavus was diluted
in 500 µL of AuNPs solution. Therefore, the limit of detection (LOD) was 3.85 cfu/mL.
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2.3. SERS of Aflatoxin B1

The Raman spectra of solid aflatoxin B1 were determined so as to reduce the interfer-
ence of solvents and other factors. It can be seen from Figure 9 that there were many Raman
peaks of solid aflatoxin B1, and the most obvious characteristic peaks were produced by
inelastic scattering between incident laser and aflatoxin B1. The aflatoxin B1 molecule
contains an oxanaphthalene o-ketone, a difuran ring, and a cyclopentene ring. The SERS
characteristic peaks of aflatoxin B1 are 662, 686, 717, 776, 829, 927, 1007, 1082, 1135, 1247,
1309, 1366, 1481, 1554, 1559, 1628, 1691, and 1760 cm−1. Among them, the pyran ring
respiratory vibration is at 686 cm−1, the C–O–C Tensile vibration is at 1247 cm−1, and
the C–O–C Tensile vibration is at 1309 cm−1; 1554 cm−1 is the C–C Tensile vibration, and
1599 cm−1 is the C–H plane vibration [50,51].

However, due to the large interference of grain surface and interior in the determina-
tion of aflatoxin in the process of practical application, as aflatoxin exists in the interior
of grain, a certain pretreatment was needed to extract aflatoxin B1. Therefore, in the later
experiments, aflatoxin B1 was dissolved in methanol for SERS determination.

A series of different concentrations of aflatoxin B1 methanol solution (0.01 mg/L,
0.005 mg/L, 0.003 mg/L, 0.001 mg/L, and 0.0005 mg/L) were prepared for SERS detection.
The non-SERS and SERS of aflatoxin B1 were shown in Figure 10, The results showed that
the SERS signals of aflatoxin B1 would increase with the coupling with AuNPs, while under
non-SERS conditions, the Raman signals of normal aflatoxin B1 could hardly be detected
by portable Raman spectrometer. However, the SERS of aflatoxin B1 had fingerprints at
400–1800 cm−1, which were mainly reflected in the characteristic peak absorption and
spectral shape. In addition, the SERS spectra of aflatoxin B1 were similar to that of solid
powder by laser confocal micro Raman spectrometer and the characteristic peak increased
gradually with the increase of concentration when the standard concentration was in the
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range of 0.0005–0.01 mg/L. Compared with other peaks, the characteristic peak intensity at
1556 cm−1 was more linear with the change of concentrations, so the characteristic peak at
1556 cm−1 was selected for the data calculation of detection limit and repeatability. The
fitting equation of the curve was shown in Figure 11. Compared with the results of HPLC
determination in the published paper carried out by the same research group [52], SERS
determination showed the liner range was 0.0005–0.01 mg/L and the limit of detection was
0.0005 mg/L.
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3. Materials and Methods
3.1. Reagents and Materials

Colloidal AuNPs mainly at 60 nm particle size, prepared and provided by our research
group according to the primary work published article, were used as the enhanced substrate
to magnify the Raman signals [47]. Grain crops (corn) were purchased from the Songyuli
farmers’ market of Beijing (China). Aspergillus flavus was provided by the Yanjing beer
company of Beijing (China). Aflatoxin B1 was purchased from Sigma-Aldrich (Shanghai)
Trading Co. Ltd. (Shanghai, China).Potato glucose agar medium (PDA) was purchased
from Beijing Luqiao Technology Co., Ltd. (Beijing, China). Ultrapure water (18.2 MΩ•cm)
was prepared by Millipore (Direct-Q 8 UV-R) and used to prepare all aqueous solutions.
The glassware used in the experiment was cleaned with aqua regia (HCl:HNO3 = 3:1, v/v),
thoroughly rinsed in water, and dried in an oven at 100 ◦C prior to use.

3.2. Culture of Aspergillus flavus

Next, 8.2 g of PDA medium was placed into a 500 mL conical flask with 200 mL of
ultrapure water to obtain the PDA medium solution, which was then heated in a water bath
until the medium was clear and transparent. The solution was then placed in a sterilization
pot at 121 ◦C for 20 min. Further, 15 mL of sterilized PDA medium solution was transferred
to a disposable dish, then Aspergillus flavus was inoculated on the medium and cultured in
a constant temperature incubator at 30 ◦C. After culturing in the incubator for 3–5 days,
the mature standard strain was removed and placed in an ultra-clean workbench. The
spores on the culture medium were washed with sterile water and filtered to obtain a spore
suspension, which was inoculated on corns and cultured at 30 ◦C.

3.3. Preparation of Aflatoxin B1 Samples

For the preparation of aflatoxin B1 samples, 1.0 mg of Aflatoxin B1 powder was
accurately weighed with an analytical balance and was transferred to a 1000 mL volumetric
flask to obtain a 1.0-mg/L Aflatoxin B1 Standard solution after being fixed to the scale with
chromatographic methanol. A series of different concentrations of aflatoxin B1 methanol
solution (0.01 mg/L, 0.005 mg/L, 0.003 mg/L, 0.001 mg/L, and 0.0005 mg/L) was prepared
by diluting 1.0 mg/L aflatoxin B1 solution for SERS determination.
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3.4. SERS Measurement and Spectra Preprocessing

The SERS measurement was conducted by using a portable Raman Spectrometer
(RamTracer–200, Suzhou OptoTrace Technologies Co. Ltd., Suzhou, China) equipped with
a diode laser with a wavelength of 785 nm and power of 300 mW. The wave number range
was 250–1800 cm−1, the resolution was 2 cm−1, and the laser bandwidth was 0.2 nm. The
laser power was 300 mW with an integration time of 20 s and was integrated three times.

Before each measurement, X-axis calibration was carried out with acetonitrile (Spec-
trally Pure) to ensure that the experimental conditions were consistent. Then, 500 µL
colloidal AuNPs solution was transferred with a micropipette and placed into a 2.0 mL
glass bottle, and 20 µL of Aspergillus flavus solution was added and mixed with a vibrator
for Raman spectrum measurement immediately. The original spectra were sequentially
pre-processed by removing cosmic rays and by baseline correction using Wire 4.1 software
(in Via, Renishaw, Gloucestershire, London UK). All of the figures were plotted with Origin
software (version 8.0, OriginLab, Northampton, MA, USA).

4. Conclusions

In this work, the rapid detection of Aspergillus flavus and quantification of Aflatoxin
B1 in grain crops were presented by using a portable Raman spectrometer combined with
AuNPs. The SERS of Aspergillus flavus had fingerprints at 400–1800 cm−1, which were
mainly reflected in the characteristic peak absorption and spectral shape, especially at the
range of 600–800 cm−1, 1200–1400 cm−1, and 1500–1600 cm−1. However, the intensity
of the Raman characteristic peak at 1536 cm−1 increased obviously with the growth of
culture time of Aspergillus flavus spore suspension. When Aspergillus flavus was inoculated
on corn grains, the SERS of Aspergillus flavus was similar to that inoculated on the medium.
With the increase of the concentration of Aspergillus flavus spore suspension in the range
of 102–108 CFU/mL, the better the combination of Aspergillus flavus spores and AuNPs,
the better the enhancement effect of AuNPs solution on the Aspergillus flavus. A series of
different concentrations of aflatoxin B1 methanol solution combined with AuNPs were
determined based on SERS and their spectra were similar to that of solid powder. Moreover,
the characteristic peak increased gradually with the increase of concentration in the range
of 0.0005–0.01 mg/L.

The results showed that rapid detection of Aspergillus flavus and quantitative determi-
nation of aflatoxin B1 by using a portable Raman spectrometer combined with colloidal
Au nanoparticles based on SERS was reliable and could be used for the assessment of
Aspergillus flavus and Aflatoxin B1 contaminants in grain crops during storage conditions.
Compared with the conventional methods, this rapid detection method can greatly shorten
the detection time from several hours or even tens of hours to a few minutes, which is
very important in the detection of grain crops. Once the grain crops are contaminated by
Aspergillus flavus and aflatoxin B1, we can quickly take effective measures according to the
detection results to avoid causing large economic losses.
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