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Scaling of domain cascades in stripe and
skyrmion phases
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The origin of deterministic macroscopic properties often lies in microscopic stochastic

motion. Magnetic fluctuations that manifest as domain avalanches and chaotic magnetization

jumps exemplify such stochastic motion and have been studied in great detail. Here we report

Fourier space studies of avalanches in a system exhibiting competing magnetic stripe and

skyrmion phase using a soft X-ray speckle metrology technique. We demonstrate the exis-

tence of phase boundaries and underlying critical points in the stripe and skyrmion phases.

We found that distinct scaling and universality classes are associated with these domain

topologies. The magnitude and frequency of abrupt magnetic domain jumps observed in the

stripe phase are dramatically reduced in the skyrmion phase. Our results provide an incisive

way to probe and understand phase stability in systems exhibiting complex spin topologies.
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Nanoscale fluctuations and stochastic motion of the atomic
and/or electronic constituents have profound impact on
the emergence of functionality in complex materials1.

Fluctuations are of particular scientific interest in quantum
materials where correlation effects and competing interactions
yield a symmetry breaking non-trivial ordering phenomena,
such as stripe order, spin and orbital order, or in topological
spin phases that give rise to e.g. chiral spin textures2–6.
Recent numerical results show importance and connection
between fluctuating stripe phases and mechanism of high TC
superconductivity4,7. Skyrmions and quantum topological spin
texture are other class of examples, where theoretical calculations
predict the important role of spin fluctuations in stabilizing the
topological phase8.

Spin, charge, and orbital motions can be scattered by fluctua-
tions, thereby generating entropy and losing information. Con-
trolling and minimizing this decoherence will be a key feature of
deploying quantum matter in emerging information technologies.
An interesting example will be a lattice of skyrmions. Due to
the topological protection and existence of multiple length scale
energetics, skyrmions scatter weakly from defects and can be
moved relatively easily through the lattice. A key question is does
the topological protection that exists for single skyrmion extends
to the skyrmion lattice that contains domain walls? How are
skyrmion domain wall fluctuations affected by an applied field
excursion? It is conceivable that heterogeneity in order and
morphology is associated with intermittent events at the nanos-
cale that spawn statistically self-similar spatial and/or temporal
structures9.

Recently discovered skyrmions provide an ideal platform to
study how topology affects fluctuations and scaling. Skyrmions
are relevant in various condensed matter systems ranging from
2D quantum Hall systems10,11, liquid crystals12, multiferroics13,
ferroelectrics14 to even Bose condensates15. Specifically, sky-
rmions in magnetic systems provide unusual flexibility in mea-
suring the response of nanoscale topological features under
applied fields6,16–18. Skyrmions are particle-like chiral magnetic
spin structures that can get arranged in a hexagonal lattice. The
topology of a skyrmion is described in terms of a winding-
number, which is a quantized and conserved quantity. This
provides topological protection from defects and pinning sites,
and makes skyrmions a potential candidate for low power
memory and logic applications18,19. Since device stability depends
crucially on fluctuations, it is important to understand the effect
of topology on the abrupt domain jumps and avalanches, for
example, as the applied magnetic field is varied. In spite of a lot of
progress in materials discovery for skyrmions, questions about
stability, abrupt jumps, and domain stability have not been
addressed in detail. There are very limited studies focused on this
topic, for example, in a recent theoretical study, it has been
predicted that skyrmions can exhibit avalanches with power law
distribution and universality has been discussed20. Topologically
trivial magnetic structures, such as bubble domains, have been
discussed in the context of cascades and scaling behavior where,
under applied magnetic field the bubble domains were found to
self-organize in a sub-critical state21.

It is known that Fe/Gd heterostructure is a ferrimagnet and can
be made to exhibit perpendicular magnetic anisotropy by suitably
choosing the thickness and composition22,23. Depending on
temperature and applied field, the Fe/Gd heterostructure exhibits
three distinct phases: (i) an ordered stripe phase, (ii) a disordered
stripe phase, and (iii) a skyrmion lattice phase24. The existence of
the three phases with distinct phase boundaries in Fe/Gd thin film
has remarkable similarity with physical systems that display two-
dimensional modulated structures25. For example, monolayers of
rare gas adsorbed on graphite show three phases: a disordered

fluid-like phase, an ordered phase registered with the underlying
lattice, and an incommensurate phase. The three phase-lines meet
at a multi-critical point near which enhanced fluctuations are
observed. Similar phase diagram also exists for Ising systems
where competing interaction gives rise to charge or spin density
waves26. Theoretically predicted phase diagram for such systems
is extremely rich, with a number of transitions between periodic
phases, including a floating unpinned phase. It is further shown
that entropy contributions and fluctuations determine stability
of these different phases. It is conceivable that the multiple
phase-lines in the Fe/Gd system may also have an underlying
critical point.

Central to the understanding of fluctuation and critical beha-
vior is the determination of existence of power law behavior.
Power law dependencies and the absence of characteristic scales
are of utmost importance in understanding the emerging mac-
roscopic properties from microscopic stochastic phenomena27–33.
The power laws are affected by different parameters such as,
material microstructure, external stress, demagnetizing field, etc.
If power laws obtained at different conditions can be collapsed
to a unique scaling behavior, the system is said to exhibit uni-
versality. Scaling and universality implies that the relevant sym-
metries, interactions, and conservation laws influence the
behavior of the system, while many other quantitative details are
irrelevant.

Here we show that resonantly tuned coherent X-ray scattering
provides a unique platform to perform element-specific studies
of stochastic events to quantitatively characterize fluctuations.
We studied a Fe/Gd thin film heterostructure that exhibit highly
tunable stripe and skyrmion phases (schematic of the phase
diagram is shown in Fig. 1a) and we addressed the question of
phase boundaries and underlying critical point in the context of
stripe and skyrmion phases. We show that even within a stripe
phase an order and disorder phase is separated by critical points.
In the pure skyrmions phase, magnitude of domain cascades are
dramatically reduced, however, the distribution of the cascade
size follow similar pattern as in stripe phase. Interestingly, the
divergence of correlation length is much faster for the stripes near
the critical point than for the skyrmions, which would imply that
skyrmions have a higher degree of criticalness. By analyzing the
data within the framework of statistical mechanics we show here
that the distribution of fluctuations could be collapsed to a uni-
fying scale with parameters that are distinct in the stripes and
skyrmions phases indicative of two separate universality classes.

Results
Resonant coherent soft X-ray scattering of stripe and skyrmion
phases. Resonant coherent soft X-ray magnetic scattering patterns
of the Fe/Gd multilayer are shown in Fig. 1e–g. Both stripe and
skyrmion peaks are modulated with speckles that indicate finite-
sized domain formation. We used the following field protocol
consistently throughout the experiment to get to the specific
phases. The sample was subjected to a magnetic field that was
first raised to 500mT, then reversed to −500mT and finally
reduced to zero before taking the measurements. The field ramp
rate for the first two segments was 13 mT/s while the final drop of
field from −500 to 0 mT to took place at a rate of 380mT/s. We
started our measurement at this zero-field condition and pro-
ceeded to measure diffraction data as a function of applied mag-
netic field using a ramp rate of 1.575 mT/s. The above protocol
was repeated at different temperatures between 85 and 300 K.

At room temperature an ordered stripe domain with
periodicity of 138 ± 5 nm forms at zero field. Around 200 mT
new peaks in the form of a distorted hexagonal pattern start to
appear due to the onset of skyrmion formation. The periodicity of
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skyrmion hexagonal-lattice at 200 mT is 190 ± 5 nm. The
ordering of the stripe was found to decrease as we lowered the
temperature. At the lowest measured temperature of 85 K, we
start with a disordered phase at zero-field condition. As the field
is increased the diffraction spots smear into arcs indicative of
formation of meandering or disordered stripes. The amount of
field-dependent rotation of the diffraction spots decreases with
increasing temperature, and stops eventually at some higher
temperature where hexagonal Bragg spots appear due to the
formation of skyrmions. Consequentially, there must exist a
minimum temperature where there is a field-driven transition
from stripe to skyrmion phase, which we have identified as T=
205 K. The rotation and movement of the diffraction pattern
gives a hint about the presence of temperature and applied field-
dependent instability in the system.

To illustrate how the structure evolves from stripe to skyrmion
phase, we plot in Fig. 2a, b line scans of the diffraction data
along the azimuthal direction (constant scattering momentum
contour) as a function of applied magnetic field. At T= 196 K
(near the stripe–skyrmion phase boundary), we initially obtain
two diffraction spots corresponding to an ordered stripe state.
The two spots persist to around 200mT when two additional new
spots appear 50° in azimuthal angle away from the original spot
position. The intensity of the original spot diminishes although it

does not disappear. In effect this means the stripes predominantly
rotate while some stripes persist in the original direction. In
contrast, the skyrmion phase at T= 226 K (Fig. 2b) starts with
two diffraction spots corresponding to stripes and develops
as field increases into six spots characteristic of the skyrmion
phase. Thus, as skyrmions form, four diffraction spots appear in
addition to the two diffraction spots due to the stripes without
involving any further rotations.

In Fig. 2c, d we show that diffraction peaks at zero field are
much more spread out in the azimuthal direction in reciprocal
space at 85 K compared to 300 K, indicating a shorter correlation
length and hence a larger degree of disorder in the stripes.
A contour plot of the full width half maximum (FWHM) of
the stripe diffraction peak as a function of applied field and
temperature in Fig. 2e shows that the degree of disorder is highest
at the lowest measured temperature and decreases continuously
till 230 K after which the FWHM becomes constant. Around
T= 230 K a transition from disordered to ordered stripe is
observed. We therefore conclude that our Fe/Gd undergoes
a transition from disordered to ordered stripe phase at (TCstripe,
HCstripe) ≡ (230 K, 148 mT) and stripe-to-skyrmion transition
at (TCsk, HCsk) ≡ (205 K, 220 mT). The importance of these
transition temperatures and fields in context of criticality will
be discussed below.
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Fig. 1 Magnetic diffraction from stripes and skyrmions. a Schematic of phase diagram of the Fe/Gd sample as a function of temperature and applied
magnetic field. b–d Schematic of order stripes, disorder stripes, and skyrmion phase. e–g Magnetic diffraction spots in the three phases. The insets show
enlarged image of the magnetic diffraction spots that are enclosed in yellow box. The red and black boxes are the regions of interest of magnetic diffraction
and airy fringes, respectively, for calculating the pair-wise correlation coefficients. The box sizes are the same for each data set, except for the disorder
stripe diffraction spot where it is elongated to account for the peak broadening
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Determination of stochastic domain jumps using speckle
metrology. Resonant coherent soft X-ray scattering from a
magnetic sample gives rise to speckle patterns due to the inter-
ference of randomly phase-shifted waves that are scattered by the
magnetic domains. A speckle pattern is a fingerprint, unique
to the specific domain configuration illuminated by the X-ray
beam. If the domain morphology changes either spontaneously or
due to an external influence, then the speckle pattern will change
as well. Such a change in an X-ray speckle pattern in reciprocal
space provides a statistically significant measure of nanoscale
changes in size, orientation and/or number density of the mag-
netic domains in real space. We developed a statistical measure of
field-induced domain jumps with the normalized pairwise cor-
relation coefficient, p, a standard tool to measure the similarity of
data sets (see Supplementary Note 2). Specifically, we correlated
consecutive speckle patterns, collected near the magnetic Bragg
peaks discussed above, as the field was swept. If p= 1 for parti-
cular pairs of consecutive speckle patterns, then the domain
patterns are the same and no jump has occurred. By contrast, p <
1 indicates a change in speckle pattern and domain morphology,
and the magnitude of the drop of p from unity quantifies the
magnitude of change in the domain morphology. This is shown
graphically in Fig. 3 for a large domain jump with p= 0.61, for
which the change in the speckle pattern is readily apparent.

The evolution of domain states under applied magnetic fields
results through a collection of different physical mechanisms. If
we were to perform pair correlations that take into account all
potential field-dependent (e.g. stripe domain phase, coexisting

stripe, and skyrmion phase) domain morphologies, then the
resulting scaling laws would be complex and the dynamics from
each phase could not be distinguished. (In Supplementary Figs. 2
and 3 we show simulation of jumps appearing due to position
change and size change of domains.) Here, we performed analysis
of pair correlations in distinct pure phases, namely stripe phases
and the skyrmion phase using a well-established34 mean field
model of avalanche dynamics. A magnetic material magnetizes in
a phase through a series of jumps under slowly changing external
field with no characteristic size scale, similar crackling happens in
many systems when pushed slowly9. The statistical formalism
used here has been making rapid progress to predict behavior of
such systems on long scales of length and time, independent
of many microscopic details.

Figure 4a–c shows the variation of the pairwise correlation
coefficient of two consecutive datasets as a function of magnetic
field in the ordered stripe, skyrmion, and disordered stripe
phases, respectively. The correlation curve of stripe phase shows
multiple sharp drops (jumps) indicating abrupt changes in the
topological configuration of domains (red curve in Fig. 4a). The
onset of the jump is the point at which the slope of the correlation
curve changes from zero or positive to negative while the position
of a jump is defined as the value of the magnetic field where the
slope of the correlation curve sharply changes its sign from
negative to positive. The correlation curves were repeated for
more than 100 hysteresis loops at each temperature to build up
statistics. The appearance of the abrupt jumps is reminiscent of
domain avalanches/cascades observed in Barkhausen events1,8,10.
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We obtained direct experimental evidence that the magnitude
and frequency of jumps in the skyrmion phase is significantly
smaller compared to those in the stripe phase (for example,
compare magnitude of jumps in Fig. 4b with Fig. 4a–c). The
reduced jump size is most likely a consequence of the stability
due to topologically protective nature of the skyrmions. In the
disordered stripe phase the size of the jumps are smaller at
lower field values, but at higher applied field large jumps
dominate (Fig. 4c). Interestingly, large and more cascades appear
in the same field region where the skyrmions would appear for
T ≥ 205 K. Since the characteristics of jumps are representative of
a phase, a change in average jump size indicates a phase change
and may have an underlying critical point.

A contour plot of the average jump size 〈X〉 as a function of
field and temperature is a simple way to visualize the jump
characteristics and ascertain probable presence of critical points.
In Fig. 4d we show a contour plot spanning all the three magnetic
phases present in the sample as a function of field and
temperature. The contour plot shows that the average size of
jumps increase with both temperature and field. By approaching
from any direction in the contour plot it is observed that in the
stripe phase, the average jump size shows a maximum value near
the point T∼ 225 K and H∼ 148 mT, indicating the presence of a
critical point in temperature and field around these values.

The green region inside the contour plot (Fig. 4e) shows the
temperature-field conditions where all the six peaks are of same
intensity thereby representing the pure skyrmion phase. The pure
skyrmion phase is surrounded by bigger jumps indicating
presence of mixed phases, which is in close agreement with the
line scan shown in Fig. 4a. As shown before in the line scans
(Fig. 4a–c), the magnitude of jumps is similar in both ordered and
disordered stripes, however, the average jumps size in the
skyrmion phase is almost an order-of-magnitude smaller than
in the stripe phase.

Scaling collapse of jump data. To test criticality, we make an
ansatz assuming that there is a critical point where the moments
of the avalanche size distribution get very large. If there is a
critical point, i.e. a non-equilibrium phase transition, then we can
use the mean field model for avalanche dynamics from ref. 34,
which has been tested in several systems like earthquakes,
nanocrystals, and granular materials33. According to the ava-
lanche model, the distribution of jump sizes is expected to have
the following general form:

Z X;T;Hð Þ ¼ X�af1 X T � TCj j1nT ;X H � HCj j1nH
� �

� X�af
X

Xmax

� �

ð1Þ

where X is the jump size TC, HC are critical temperatures and
fields, respectively, and, nT and nH are critical exponents, and
Xmax∼ (ξ(T − TC, H−HC))1/συ is the maximum (cutoff) jump
size and ξ(t, h) is the correlation length that diverges at the critical
point, with t≡ |T− TC|→ 0 and h≡ |H−HC|→ 0. The critical
exponents nT and nH are related to how the correlation length
grows as one approaches the critical point along the T or H
direction. 1/συ is the fractal dimension of the jumps, and the
universal scaling function f(x) is expected to decay exponentially
as f(x)= Ae−Bx, with A and B being non-universal constants.

According to Eq. (1), the distributions follow a power law up to

the maximum jump size cut-off values given by XTmax �
T � TCj j 1

nT for H=HC and XHmax � H � HCj j 1
nH for T= TC.

Further, we can also obtain cumulative distribution function
(CCDF) given by

CCDF X;T;Hð Þ ¼ X� a�1ð Þg1
X

XTmax
;

X
XHmax

� �
� X�ða�1Þg

X
Xmax

� �
;

ð2Þ

where, g xð Þ � xa�1 R1
x e�A′t :t�adt, with A′ being a non-universal

constant.
From Eq. (1) we can derive the relation for the average size of

the jumps, Xh iðTÞ ¼ R1
0 XZ X;Tð ÞdX, which at H=HC is given

by Xh iðTÞ � T � TCj jða�2Þ=nT .
Analogously, for temperature T= TC we obtain

Xh iðHÞ � H � HCj jða�2Þ=nH .
We have calculated the CCDF of the number of jumps (NOJ),

i.e. CCDF= 1− CDF and plotted it as function of Jump Size in
log–log scale (details are given in the Supplemental Notes 4 and
5). Figure 5a, b show the CCDF for the stripe phase, at a fixed
magnetic field HCstripe, for temperatures below and above TCstripe,
respectively. Similarly, the CCDF at fixed temperature TCstripe
for fields below and above HCstripe are shown in Fig. 5d, e,
respectively.

In the inset of Fig. 5c we plot 〈X〉 (T) versus |T− TCstripe| at
H=HCstripe, and fit the data to obtain the critical exponents
aTstripe= 1.1 ± 0.2 and nTstripe= 3.4 ± 0.6. We find same critical
exponents for both T < TCstripe and T > TCstripe cases. The
obtained values of critical exponents were used to collapse
the data using Eq. (2). Figure 5c shows the collapse for all the
distributions presented in Fig. 5a, b. Similar results are shown as a
function of H for the case of T= TCstripe in the inset and main
panel of Fig. 5f, where the critical exponents were found to be
aHstripe= 1.1 ± 0.3 and nHstripe= 3.73 ± 1.0. (The detailed analysis
technique followed is given in Supplementary Notes 3, 4 and 5
and Fig. 5 of Supplementary information.)

A similar analysis was performed for the skyrmion phase
(shown in Fig. 6). We found that the critical exponents that
collapsed the data best at H=HCsk= 220 mT are aTsk= 1.1 ± 0.3
and nTsk= 2.06 ± 0.5, while at T= 205K∼ TCsk, we obtained the
critical exponents values of aHsk= 1.1 ± 0.2 and nHsk= 0.5 ± 0.2.

Discussion
One of our important findings from jump characteristics is that
once the skyrmion phase sets in there is hardly any evidence of
sudden change in the periodicity, orientation, or number density
of the distorted hexagonal lattice as is the case in stripe phase.
Previous experimental studies have not reported the exact nature
of changes occurring in the skyrmion phase relative to the size,
morphology, or number density. It is likely that the topological
protection that allows skyrmions to move easily through the
lattice is also the reason that domain walls are not pinned and
consequently show smaller magnitude of jumps.

Our analysis clearly shows critical behavior for both stripes and
skyrmion phase that is centered around different critical field and
temperature. The critical exponent a has a similar value for both
phases, but exponent nH takes different value for stripes com-
pared to skyrmions. The similarity of the exponent a suggests that
near the critical point the distribution of avalanche sizes for both
stripes and skyrmions follows roughly the same power law dis-
tribution although the magnitudes are much different. Since long-
range dipolar interactions play important role in the Fe/Gd het-
erostructure22, it is not surprising that the exponent a is similar in
both cases. It is reported that dipolar interaction with frustration
lead to small power law exponents a in other avalanche systems:
for example, the Sherrington–Kirkpatrick avalanche model gives
an exponent of a= 1 ± 0.1, which is very close to our findings35.
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The difference in the nT and nH exponents between stripes and
skyrmion, on the other hand, suggests that the divergence of the
correlation length is much faster in one case than the other. Since
all the critical exponents are not same for both the phases, this
indicates that stripes and skyrmions belong to different uni-
versality classes. Apart from average size of the jumps, which is
a non-universal quantity, we can therefore use the avalanche
statistics and universal exponents nH for distinguishing stripes
and skyrmions.

Distinctly separate critical fields HC and temperatures TC
indicates differences in energetics govern the formation of stripes
and skyrmions. It is well established that stripe and skyrmion
phases have different symmetry and dimensionality. One of the
reasons for differences in jump size and critical exponents could
be attributed to differences in dimensionality. A stripe is a one-
dimensional structure whereas a skyrmion is a two-dimensional
lattice. Results in Fig. 4 suggest that under an applied magnetic
field, stripe domains undergo avalanches while skyrmions become
locally distorted. Since we know the skyrmion winding number
needs to be conserved, which makes them move relatively easily
through lattice, the domain walls are weakly pinned leading to a
small magnitude of jumps. As a consequence, topology and
dimensionality influence the dynamic behavior of stripe and
skyrmion phases.

Apart from field-induced domain fluctuations, thermal fluc-
tuations are most likely enhanced near the critical temperature.
Future studies will be directed towards understanding the nature
of the disorder–order transition particularly that involves meron
and skyrmion spin textures36. Indeed, study of fluctuations as a
function of time will enable us to determine “correlation function”
that may shed light into formation of skyrmions. It will be
important to perform similar studies on a Dzyaloshinskii–Moriya-
based skyrmion system and evaluate the critical nature of the
helical and skyrmion state. Beyond magnetic systems, our X-ray-
based technique can be applied to a wide variety of materials
system, such as liquid crystals, polymers, ferroelectrics to directly
study stochasticity and scaling behavior at the nanometer
length scale.

Methods
Sample fabrication. The samples studied were nominally [Fe (0.34 nm)/Gd (0.4
nm)] × 80 multilayers deposited on Si3N4 membranes using DC magnetron sput-
tering in an ultrahigh vacuum (UHV) environment under a 3 mTorr argon
environment with a 20 nm Ta seed and capping layers.

Coherent soft X-ray scattering. Resonant coherent X-ray scattering experiments
were performed at the Coherent Soft X-ray Science beamline of the Advanced
Light Source at Lawrence Berkeley National Laboratory. The beamline was
designed to produce linearly polarized coherent soft X-rays. The resonant con-
dition was achieved by tuning the energy of the incident beam to the Fe L3 edge
(≈707 eV photon energy or 1.75 nm photon wavelength). Since at resonant
condition the X-rays are sensitive to the magnetization along the beam propa-
gation direction, we used a normal incidence transmission scattering geometry to
enhance the magnetic contrast. A 10 μm pinhole was put in the path of the
incident beam to establish transverse coherence in the beam. Typical transverse
coherence length of the beamline is about 5 μm. The existence of Airy fringes and
magnetic speckle pattern in the measured data (see Fig. 1) clearly demonstrate the
coherence of the soft X-ray beam. A charge-coupled device detector placed 0.5 m
down-stream of the sample was used to record the scattered intensity patterns as
a function of magnetic field over multiple field cycles and repeated at different
temperatures.

Data availability
The data that support the plots within this paper and other findings of this study are
available from A. Singh (e-mail: arnabsingh21@gmail.com) and/or the corresponding
author upon reasonable request.

Code availability
Computer codes that were written to analyze the data is available from A. Singh (e-mail:
arnabsingh21@gmail.com) and/or the corresponding author upon reasonable request.
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