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’ INTRODUCTION

The requests for applications that lead to the creation of CSAR
had the goal “to increase the amount of high-quality data publicly
available for development, validation, and benchmarking of ligand
docking and screening software” (http://grants.nih.gov/grants/
guide/rfa-files/RFA-GM-08-008.html). CSAR aims to provide
large, complete data sets—like those produced in the pharmaceu-
tical industry —through in-house experiments and donations of
data from the wider community. For our first benchmark exercise,
we were limited to the data for protein�ligand complexes available
in the public domain: PDB,1 Binding MOAD,2 and PDBbind.3

Other published evaluations of docking and scoring have all used
different data sets, making comparisons difficult. For this issue of
the Journal of Chemical and Information Modeling, all participants
have used the CSAR data set, allowing for consistency and an even
comparison between different participants’ insights. Participants
were asked to score the structures using a standard and an
alternative approach, allowing them to gauge the impact of different
parameters on the performance of their method.

The benchmark exercise culminated in a symposium at the
Fall 2010 National Meeting of the American Chemical Society in
Boston, with 14 speakers and open discussion sessions. The goals
of the exercise were:
(1) to bring the community together to discuss the issues

behind improving docking and scoring.
(2) to establish appropriate metrics for evaluating the perfor-

mance of scoring functions.
(3) to provide a baseline assessment of current scoring

functions using diverse proteins and ligands.
(4) to evaluate participants’ improvements of their para-

meters, particularly emphasizing what changes were the
most universal or had the greatest impact.
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ABSTRACT: A major goal in drug design is the improvement
of computational methods for docking and scoring. The Com-
munity Structure Activity Resource (CSAR) aims to collect
available data from industry and academia which may be used
for this purpose (www.csardock.org). Also, CSAR is charged
with organizing community-wide exercises based on the col-
lected data. The first of these exercises was aimed to gauge the
overall state of docking and scoring, using a large and diverse
data set of protein�ligand complexes. Participants were asked to calculate the affinity of the complexes as provided and then
recalculate with changes which may improve their specific method. This first data set was selected from existing PDB entries which
had binding data (Kd or Ki) in Binding MOAD, augmented with entries from PDBbind. The final data set contains 343 diverse
protein�ligand complexes and spans 14 pKd. Sixteen proteins have three or more complexes in the data set, fromwhich a user could
start an inspection of congeneric series. Inherent experimental error limits the possible correlation between scores and measured
affinity; R2 is limited to∼0.9 when fitting to the data set without over parametrizing. R2 is limited to∼0.8 when scoring the data set
with a method trained on outside data. The details of how the data set was initially selected, and the process by which it matured to
better fit the needs of the community are presented. Many groups generously participated in improving the data set, and this
underscores the value of a supportive, collaborative effort in moving our field forward.
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(5) to document which complexes are most difficult and
require new approaches.

(6) to identify the most important priorities for CSAR to
address with custom data sets of specific ligands and
targets.

Our second paper, later in this issue, outlines our insights from
comparing scores of all participants and how that information
impacts our priorities for additional data sets. Here, we describe
our process for creating the 2010 benchmark exercise data set
that was used in the studies to follow.

The selection of protein�ligand data sets for evaluating
docking/scoring has progressed from being only a handful of
crystal structures with suitable biological data to now having the
luxury of paring down thousands of structures to identify
hundreds of exceptional complexes. The initial evaluation set
for DOCK4,5 was 2 protein�ligand complexes in 1982. As time
progressed, FLEXX6 was presented in 1996 with an evaluation
set of 19 complexes. GOLD7 followed the next year with an
evaluation set of 100 complexes. By 2002, the group at Astex
had selected an evaluation set of 305 complexes, forming the
CCDC/Astex8 data set. Their “clean” set had 224 but only 180
with resolution e2.5 Å. In 2007, CCDC and Astex9 further
refined the set with more stringent quality assessments, reducing
the data set to 85 protein�ligand complexes. The PDBbind
refined data set (2007 version) is much larger at 1300, but the
quality is not as high.10 Currently, Binding MOAD has almost
5000 structures of complexes with binding data,11 but being
comprehensive in nature, it contains many that are not of suitable
quality for this purpose. Furthermore, the structures have not
been setup with hydrogens and a richer set of atom types, which
greatly limits their utility in docking and scoring. Table 1
provides additional examples of sets of protein�ligand com-
plexes with associated affinity data.

The perfect data set, like all things associated with any form of
perfection, is heavily dependent on the viewpoint of the parti-
cular person evaluating said perfection. However, there are some
common characteristics most would desire. The data set should
include only high-resolution protein�ligand structures with

well-resolved density and high occupancies in the binding site
with no unexplained density. Data should be available for a wide
range of protein targets. The binding data should be Ka, Kd, or Ki

and include the thermodynamic measurements of entropy,
enthalpy, and free energy of binding. The data set should be
comprised of several congeneric series of small molecules for
each target with at least four orders of magnitude in binding
affinity for each series. The compounds should be drug-like with
good water solubility and should encompass a wide range of
functional groups. In addition to the active molecules in each
series, very similar molecules that are inactive are needed.
Consistency across, and within, the experiments for targets is a
must. As an example, the protein sequence used for crystallo-
graphy should be the same as in the affinity measurements. One
should have actual, measured values for the physical properties of
the small molecules such as the pKa’s, log P’s, log D’s, solubility,
etc. The CSAR center aims to fulfill as many of these criteria as
possible for the data sets it is generating in house and gathering
from the wider community of structure-based, drug discovery
scientists.

The exercises that are part of CSAR’s goals are a special case.
One would ideally like to have unpublished data sets with the
above characteristic. “Blinded” data sets would circumvent many
of the limitations of studies in the literature, namely the back-
and-forth between results and known binding data. It is human
nature to track down the causes of discrepancies, but this often
leads to a change in the approach that skews the scientist’s results
in an immeasurable but tangible way. Future exercises will be
based on blinded data sets, preferably those contributed by our
colleagues in the pharmaceutical industry.

This paper presents the process of developing the data set used
in the 2010 CSAR exercise (flowchart in Figure 1). The
information is presented in chronological order to show how
the process evolved over time. The starting point was a data set
constructed from PDB entries up to 2006, which was subse-
quently augmented with entries from 2007 and 2008. In the
paper on PDB_REDO,29 older entries benefited more from
rerefinement than the newer entries, with the break point being
in the range of 2004�2006. The full data set was subdivided into
two parts, Sets 1 and 2, allowing one to be used as a training set
and the other as a test set if desired (we requested participants to
train on Set 1 and test on Set 2, then repeat the exercise by
training on Set 2 and testing on Set 1 to show robustness of their
approach). Setting the break point at 2006 provided almost
identical sets in terms of size and calculated physical properties
(see Figure 2). Set 2 is primarily comprised of the older entries
(up to but not including those deposited on January 1, 2007),
and that is where we will begin the discussion of the selection
process.

In the Strengths and Weaknesses section at the end of this
paper, we discuss the possible influence that the error in the pKd

or pKi values might have. Understanding the limitations of
integral parts of the data set is essential for using the data
properly and making solid conclusions. A description of the
experimental error in the biological assay data is just as critical as
describing the measures of error used in selecting the crystal
structures. The Supporting Information provides a discussion of
the 95% and 90% confidence intervals possible for Pearson R, R2,
Spearman F, and Kendall τ. The intervals are dictated by the size
of the data set, and users should know the confidence intervals in
the values they obtain when fitting methods to reproduce these
affinities. This is essential for interpreting whether improving a

Table 1. The Evolution of Sets of Protein�Ligand Com-
plexes with Affinities

database year no. complexes

Score112 1994 54

Jain13 1996 34

VALIDATE14 1996 65

ChemScore15 1997 112

Score216 1998 94

SCORE17 1998 181

PMF18 1999 225

BLEEP19,20 1999 90

DrugScore21,22 2000 83

LPDB23 2001 195

SMoG200124 2002 119

HINT25 2002 53

X-Score26 2002 230

PLD27 2003 485

AffinDB28 2006 474

PDBbind � refined set 2007 1300

MOAD with affinities 2008 2948
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method from R2 = 0.6 to 0.7, using the final 343 complexes of the
CSAR-NRC set, is statistically significant (it is at the 90%
confidence level).

’ INITIAL SELECTION PROCESS (STRUCTURES LATER
NAMED SET 2)

As part of the update effort for the 2006 version of the Binding
MOAD database, we had identified an initial set of 2916 PDB
structures deposited by December 31, 2006 with binding data
noted in the crystallography paper. This large starting set was
filtered using the quality metrics described below. We have also
coordinated our efforts with PDBbind and included those
structures that were unique to that database. This collection of
structures formed the basis of Set 2, the set containing PDB
entries up through 2006. A flowchart illustrating the general steps
involved is shown in Figure 1. The other set (Set 1), those from
2007 and 2008, followed the same procedure.

For both sets, an initial set of thousands of PDB entries with
valid ligands and binding data in Binding MOAD was identified.
We then calculated the diffraction-coordinate precision index
(DPI)30,31 for each structure using code based on work by Goto
et al.32 and modified to handle unique parsing issues. Hydrogen
atoms were ignored in the calculation because they are usually a
vestigial result of refinement and inadvertently reported. Only one
entry had resolution <1 Å where hydrogens might be resolved
(1us0 at 0.66 Å). It had a few hydrogens reported (i.e., Arg63,
Trp161, etc.), but we chose not to use them so that all entries were
processed in a consistent manner. In addition to the DPI, we also
examined the “fit to model” (Rfree � R). We downloaded the
structure factor files for each of the 2916 PDB entries, but many
were not available. With this information, the data set was filtered
for DPI < 0.5, fit to model <0.05, and the presence of a structure
factor file. All of the criteria had to have been met simultaneously.
Combined with the appropriate unique entries from PDBbind, the
resultant list of possible candidates was cut to 1241 entries.

Figure 1. Flowchart of how the data set was curated.
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The next phase examined the ligands in those structures to
identify those of acceptable quality. This involved a check of the
ligands as independent entities. All of the ligands for the 1241
entries were extracted in PDB file format, giving a set of 2494
individual ligand .pdb files. In some cases, there were several
copies of the ligand in a given entry.

As part of our assessment of the ligands, the ligand .pdb files
were stripped of the connect records, retaining only atom records
and coordinate information. By stripping the connect records, we
intended to test of the ability of available software to correctly
perceive the molecule’s bonds and bond orders correctly, based
on just the coordinates and general atom type. If software
recognized a part of a molecule as a phenyl ring, when it was

actually a cyclohexyl ring, then the ligand may require hand
processing or may not be of high local quality. If independent
software packages from different sources correctly perceived the
given ligand’s bond orders and bond types, then the ligand was
most likely of acceptable local quality, as it conformed to
definitions of standard bond lengths, bond angles, etc.

The ligand files were converted into Tripos33 .mol2 format, a
format with a relatively rich set of possible atom types, using two
software packages Omega2 from Openeye34 and MOE from
CCG.35 Omega2 was used to construct a low-energy conforma-
tion, while MOE used the exact conformation as entered (we
exploited the difference in the two methods to check for high-
energy ligand conformations in the complexes). The .mol2 files

Figure 2. Distribution analysis of the calculated physical properties of the data sets.
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from Omega2 were then loaded into MOE, and both sets of files
were washed and had hydrogens added in an internally consistent
fashion for the MOE energy calculations. Various descriptors
were then calculated for the two sets: atom count (a_count),
number of hydrogens (nH), number of aromatic bonds (b_ar),
number of double bonds (b_double), number of single bonds
(b_single), number of triple bonds (b_triple), number of heavy
atoms (a_heavy), and the energy (E) using the MMF94x
forcefield. This was output from MOE as a .csv file and moved
to JMP36 for additional analysis. If both programs perceive the
ligands with the same bonds and bond orders, then the difference
between these descriptors should be zero. The difference of the
descriptors for each set of ligands was calculated, and those with
no difference for all descriptors except E were moved on in the
process, while the remainder were flagged for by-hand process-
ing. The filtering provided a set of ligands with very standard
bond lengths and angles, minimizing any unusual structure
characteristics in the ligands in the data set.

The trimmed set of 1283 ligands was examined by a distribu-
tion analysis to look for potential outliers based on the difference
in energy between the conformations from MOE and Omega2,
which should identify ligands in high-energy conformations in
the crystal structures. Based on this analysis, 73 ligands fell
outside 1.5 times the interquartile range. Removal of these
structures resulted in a final set of 1210 ligands.

The final phase was the manual (visual) inspection of each
ligand in the context of the protein with any associated cofactors.
Here, we looked for conditions, such as alternate densities,
obvious strain in the ligand, ambiguity in identification of the
ligand(s), and obvious strain in the cofactors or other associated
nonprotein units. If there were multiple ligands per PDB entry,
each ligand was visually examined to ensure all were acceptable.
After the manual curation phase, we arrived at the 536 PDB
entries that passed all of the above selection criteria. The list was
further reduced by dropping all entries with IC50 data, keeping
only those with Ki, Kd, or Ka data. Structures with any cofactor or
ternary molecule within 4 Å of the ligand were also removed.
This resulted in a final number of 309 entries to be included as
Set 2. The entries, both protein and ligand, were then processed
using Sybyl33 in exactly the same manner as the PDBbind refi-
ned set,37 including the readdition of hydrogens and Gasteiger�
Huckel charges for the ligands. Each entry was successfully
scored in GOLD,7 Drugscore,21,22,38 X-Score,26 M-Score,39 and
FRED33 as a further check for robustness of the data sets.

’ADDITION OF PDB STRUCTURES FROM 2007 AND
2008 (SET 1)

The initial selection of Set 1 followed the same procedure as
that for Set 2. As part of the Binding MOAD 2007 and 2008
updates, we had an additional 1228 PDB files with binding data
to process. There were 113 PDB entries from the 2007 update
and 117 entries from the 2008 update that met our criteria as
defined above. The distributions of several calculated properties
of the ligands of Sets 1 and 2 were compared. The properties
considered were: number of rotatable bonds, number of hydro-
gen-bond donors, number of hydrogen acceptors, molecular
weight, number of acidic atoms, number of basic atoms, SLog P,
molar refractivity, and topological surface area. In order to obtain
a more similar distribution of these properties between the two
sets, 19 PDB entries were moved from Set 1 to Set 2 and 7 PDB
entries from Set 2 were moved to Set 1. The final numbers

associated with the two initial sets was then at 242 PDB entries
for Set 1 and 297 PDB entries for Set 2. The distributions for the
ligand properties for the two sets are shown in Figure 2.

’ INITIAL RELEASE OF THE CSAR-HIQ SET (JULY 2009)

The initial sets were released as file archives for the community
to download.Within each set, each entry consisted of a high-level
directory named with the PDB code. Within each directory the
following files were included: the ligand, in both a .mol2 (Tripos)
and a .sdf (MDL) format, the protein in the .pdb format, and the
binding data in a kd.dat file. If the structure also contained a valid
small molecule besides the ligand, according to BindingMOAD’s
definition, then the coordinates for these molecules were also
included in appropriate .mol2 and .sdf files within the directory.
At this point, we had constructed two sets of high-quality PDB
entries to be used as reasonable starting points and put them
forward to the community on July 29, 2009.

This initial release reflected our choice of automated proces-
sing of the ligands and the proteins to simulate real-world
limitations in an industrial setting.40 A typical, high-throughput,
docking-and-scoring approach in industry would start with
processing the protein target based on the actual dockingmethod
being used and would vary frommethod tomethod. This impacts
if and how hydrogens are added, how covalently modified side
chains are handled, termini, etc.

In real applications in the pharmaceutical industry, hundreds
of thousands to millions of ligands would be represented in a
generic state chosen automatically when the database was
created. Proper ligand conformations and orientations of hydro-
gens would be unknown. Therefore, we made no attempt to
orient hydrogens in the ligand to maximize the interactions (or
minimize the clash) with their respective proteins. We did not
adjust the protonation state based on the crystallographic or
assay conditions (also the setup of choice for BindingDB’s41

validation sets, www.bindingdb.org/validation_sets/index.jsp).
Expert users expect good software to accommodate and correct
for hydrogen mismatches.

One of the major goals of this exercise was to find areas that
could be targeted for improvement in the prediction of affinity.
Known potential difficulties were left in the data set to determine
what impact they may have in the bigger picture and learn
whether the community at large—usingmany differentmethods—
could statistically prove these as problems. Most stumbling blocks
are known simply through anecdotal examples. Are metallo-
enzymes really harder to score well versus other targets? Do
ligands with poor fits to density really score much worse than
well-fit ligands? Do ligands affected by crystal contacts score
much worse than those without contacts? Most importantly,
which of these issues is the most detrimental to scoring? Indeed,
if users wish to assess their method’s susceptibility to these
limitations, performance could be compared between this initial
release and the final CSAR-NRC set used by authors in this
special issue. All of the sets described here are available at www.
csardock.org or by request.

’REMEDIATED CSAR-HIQ SET (RELEASED OCTOBER
2009)

Based on immediate feedback from the community, the quality
assessments of crystal structures were significantly expanded and
the original two sets subjected to more stringent assessment
criteria. Those entries not meeting the new requirements were
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removed, and these remediated sets were used for the symposium
at the Boston, MA 2010 ACS National Meeting. The improved
criteria for quality assessment and the remediation of several errors
in the initial set are presented below.

The global metrics of structural quality were expanded. We
eliminated those structures with Rfree >0.29 and those where the
recalculated R-factor disagreed with the reported R-factor from
the PDB. Additionally, we assessed the fit of the ligand to its den-
sity (recall that all entries were required to have structure factors
available). Those with a real-space correlation coefficient42,43

(RSCC) of 0.9 or better were accepted, and those with <0.9 were
examined by hand by G. Warren at OpenEye. Those of unac-
ceptable quality were removed (removal also verified by the
CSAR group). There were a handful of entries where the CSAR
group disagreed. For example, ligand P34 in Set 1�149 (2q6m)
was well resolved in its cyclic region but had poorer fitting for a
solvent-exposed tail. The CSAR team retained this structure,
despite its lower RSCC.

Several entries required corrections to the binding affinity
data. Most were nM-level affinities that were misprocessed into
μM for the kd.dat files. This only affected seven entries. We had
misprocessed ∼30 of the older files and improperly assigned
some Rfree and Rfactor information in the original Set 2. These
errors were remediated.

Non-natural amino acids were improperly processed in our
original automated preparation. The non-natural amino acids
were not recognized in Sybyl and simply dropped from the
structure in the original sets. Fortunately, they are uncommon,
and only ∼20 structures in the original data sets required
correction. For the final release, all non-natural amino acids
(PCA, LLP, KCX, SEP, etc) appear in the .pdb structure file.

Some crystallographic additives were eliminated very early in
our examinations and lead to the release of a few structures where
we initially failed to identify significant contact between the
ligand and a “third body”. Removing structures with three-body
interactions, whether biologically relevant or due to a crystallo-
graphic additive, simplifies the problem to a single ligand binding
to a single pocket. For the remediation, we also examined crystal-
packing contacts that could complicate the bound orientation of
the ligands.10 Any ligand with significant contacts (e4 Å) to a
well-resolved symmetry partner was eliminated. Contact to
surface residues modeled in without density to support the
conformation was not a cause to eliminate a complex from the
data set. All biounits were consulted to differentiate crystal-
packing contacts from inherent multimeric structure. Ultimately,
343 structures from Sets 1 and 2 passed the more stringent
requirements.

’PREPARATION OF THE REMEDIATED STRUCTURES

Each protein structure was prepared via Sybyl (8.0)33 to give a
standard PDB file format with partial header information. The
following curation was performed on each structure: The first
and last resolved amino acids of each chain were charged, but any
“internal” termini due to missing loops were neutralized by
addition of an NME or ACE group. The histidine residues in
the binding sites were examined and renamed to HIP or HIE
based on visual inspection (all HIS in the current files are the
HID tautomer). Histidines associated to a metal ion anywhere in
the protein were also examined to determine the proper proton-
ation state and orientation. Histidines outside the binding site
and away from a metal have not been examined manually, and all

are modeled as HID. Users may choose to alter these in their
applications.

All Cys were examined for participation in disulfide bonds
(denoted as CYX) and interactions with metals (deprotonated
Cys is denoted as CYM in our .pdb files).

When hydrogens were added to the structures, some clashes
were inevitably introduced. Some strain between the ligand and
the active site was reduced by manually reorienting an occasional
hydrogen (almost all were rotation of a hydroxyl group in the
ligand) or by removing the hydrogen if ionization/tautomeriza-
tion was applicable. Heavy atoms were never moved, except in
two straightforward cases. If needed, some histidine rings were
flipped by 180�, and very rarely, an asparagine or glutamine side
chain was flipped to reduce clashes with the ligand.

Missing side chains of flexible surface residues have been
added so that the charge of the protein is more appropriate for
the system. This was done in an automated fashion using the
mutate command in Sybyl. The additions were not minimized,
but NACCESS44 was used to identify added side chains that were
more buried, and those were manually inspected and corrected
when needed. Newly built heavy atoms within 2 Å of existing
heavy atoms in the structures were rebuilt with alternate rota-
meric states when possible. The 2 Å limit between heavy atoms
still permits some slight clash between the added hydrogen
atoms. It is likely that strain has been introduced in some
structures, especially given the unusual backbone orientations
assigned within flexible regions. We stress that none of these side
chain additions were in the binding sites, and we simply included
them so that the proteins were as complete as possible.
(However, we repeat that missing loop regions were capped
with NME and ACE rather than built, given the obvious limit-
ations.) Water molecules within 1 Å of a built residue were
removed.

Non-natural amino acids have been included, noted as HE-
TATMs in the .pdb files. Metals and any covalent modifications
(glycosylation, etc) have also been retained and noted as
HETATMs. All unusual modifications (SF4, PLP) are >10 Å
from the binding site. A list of all unusual residues was provided
for each entry. The protein, its metals, and its covalent modifica-
tions do not have any partial charges assigned, and the protein
was not energy minimized in any way. Our criteria did not
include whether or not any of the modifications were potentially
difficult to treat in current scoring methods. The lack of partial
charges and minimization was intended to avoid any force
field bias.

Several structures have amino acids that were modified in
association with the crystallography (MSE, CAS, CSO, CME,
CSS, and HIC residues). In these cases, the papers were
consulted, and the amino acids changed back to their respective
natural amino acids for consistency with the experiments that
provided the binding data reported for the structure. We have
verified that these residues are not close to the binding sites.
Several structures had ABA as a non-natural amino acid, which
was changed to ABU in keeping with Sybyl’s amino acid
dictionary.

For Set 1 no. 2 (2arb) and no. 3 (2are), we inspected the
electron density to conclude that the first amino acid for each
chain should be pyroglutamic acid (PCA) as opposed to glutamic
acid, as reported in the original PDB file. We have made such
changes to both structures through simple atomic replacement,
not a rerefinement of the structures. During the inspection of
ligand densities, it was observed that in Set 1 no. 148 (2pyy) the
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side-chain conformation of Arg10 placed the NH1 atom outside
the available density. The deposited conformation, in addition to
being outside the density, did not form an optimum salt bridge to
the carboxylate of the bound ligand (glutamic acid). A side chain
rotomer search, using the Richardson rotomer library, was
performed. A new conformation was discovered that fit the
density and allowed for the formation of a bidentate interaction
between Arg10 and the carboxylate of the ligand. The structure
was then rerefined using Refmac5 (v5.5.01009) with density
generated from the deposited structure factors.

All waters >5 Å from the protein surface were stripped away.
All crystallographic additives were removed. To allow users to
examine the locations of additives, ions, and other copies of the
ligands in multimeric structure, we included the complete,
corrected biounits from Binding MOAD.

Each ligand was then prepared via the Sybyl program. AM1-
BCC charges assigned to the ligand were calculated via OpenEye
QUACPAC15 1.3.1. File conversion and postprocessing was
performed to add the CSAR project information before the field
of “@<TRIPOS>MOLECULE”. Ligand density was evaluated
to determine the best resolved and most appropriate ligand to
use in each structure. Again, if the user wishes to examine the
locations of other copies of the ligands in multimeric structures,
the raw biounits should be consulted. There were a few cases
where a better resolved ligand was not chosen for the structure,
but those were cases where the second ligand was outside of the
active site in crystal-packing induced locations.

A tar file of both sets (Sets 1 and 2) with all the accompanying
informational files described below was made available on the
CSAR Web site (www.csardock.org) in the download area.
Within the tar file, there is a main directory for each set (Sets 1
and 2) which consists of a series of subdirectories for each
complex. The numbered subdirectories each include three files:
the ligand structure (#.mol2), the protein (#.pdb), and the
binding affinity (kd.dat). The file “kd.dat” provides information
about the structure in the following format: number, PDB id, and
affinity [given as �log(Kd or Ki)]. The following summary files
(located in the SUMMARY_FILES directory) are given to
describe the data set, again subdivided into Sets 1 and 2.
“DROP_LIST.txt” describes the complexes from the original
release that have been excluded from this release. Reasons are
given for each complex. “KEEP_LIST.txt” describes the com-
plexes that have been retained. (Note: Set 2 no. 258 was dropped
as an entry but inadvertently retained an entry in the KEEP_
LIST.txt, and there was a typographical error in Set 2 no. 213, the
binding data should have read 5.08 and not 2.08.) The structures
have been grouped by 100% and 90% sequence identity, and the
resulting protein families can be found in “100idFamilies.txt” and
“90idFamilies.txt”. These lists are provided to facilitate users
examination of relative binding trends or rankings of a series of
compounds bound to the same protein.

Comma separated files, “set1.csv” and “set2.csv”, detail the
contents of the sets in the following format: structure number, its
PDB id, the binding affinity (in pKd), and the ligand name. In the
#.pdb, “set1_unusual-molecules.txt” and “set2_unusual-mol-
ecules.txt” list any molecules files that differ from the typical
amino acids and may require additional parameters. Non-natural
amino acids (ABU, PCA, LLP, KCX, SEP, TRQ, etc.), metal ions,
and covalent modifications of the protein are listed. While
metalloenzymes may be difficult for some methods, we stress
that many metals only play a structural role and are well outside
the binding sites. We discouraged users from shying away from

entries that contain metals since many are quite tractable. Lastly,
there are two cases, Set 2 no. 178 (2fxu) and no. 202 (1bky),
where a cofactor (ATP and SAH, respectively) is located well
outside the binding site and was retained for completeness.

The release of the remediated set contained 343 entries,
organized into: Set 1 (176 complexes, most deposited to the
PDB in 2007 and 2008) and Set 2 (167 complexes, most
deposited in 2006 or earlier). In order to avoid confusion, the
numbering of the structures is the same as the original July 29,
2009 release. Thus, removing structures has resulted in missing
numbered directories in each data set. These remediated sets
were used for the scoring exercise starting on October 4, 2009.
Participants scores were accepted well into February 2010,
and the results of that exercise were discussed in three sessions
held at the August 2010 meeting (240th) of the ACS in
Boston, MA.

’MODIFICATIONS TO THE DATASET, POST-MEETING
EXERCISE: CSAR-NRC HIQ DATASET (SEPTEMBER 24,
2010 RELEASE)

In the course of working through the exercise, Traian Sulea
(National Research Council of Canada, NRC) had identified
necessary modifications to both the ligands and the proteins in
the October 4 release of the data set. The vast majority were
changes in the protonation state of either the protein or the
ligand and also included changes in tautomerism or reorienta-
tions of a polar hydrogen. Here, we will present a very brief
description of those modifications and our collaborative effort to
improve the data set based on his work. For any additional details
on his work, the reader is directed to Sulea, Cui, and Purisma’s
paper in this issue of Journal of Chemical Information and
Modeling.

Examples of the modifications include: deprotonation of the
sulfonamide ligands of carbonic anhydrase complexes (9 in-
stances), deprotonation of Cys215 in the protein tyrosine
phosphatase complexes (9 instances), and protonation of
Asp25/A in the HIV protease complexes (26 instances, though
Set 1 no. 164 and Set 2 no. 7 are still doubly deprotonated as is
appropriate for the bound ligands). In all, we made protonation
changes on 41 ligand entries and 69 proteins. There were polar
hydrogen reorientations in 72 entries. Our NRC colleagues
provided the CSAR group with the full data set of 343 complexes
with all of his modifications, including a minimized version of
each entry. There were only five instances where the CSAR group
disagreed, and we worked together to resolve the differences.

During the final discussion sessions of the CSAR symposium
at the ACS meeting, it was decided that most of the participants
would repeat their scoring using the NRC modifications to the
CSAR sets. These changes should improve performance of the
various methods and allow users to assess the impact of
protonation states if desired. The major difference in the overall
formatting of the CSAR-NRC release is in the structures
directory. It consists of two directories (Sets 1 and 2) with each
containing subdirectories based on the initial numbering system.
Each of the subdirectories has the kd.dat file, the unminimized
complex in .mol2 format, and the minimized complex in .mol2
format. The waters were stripped out of the .mol2 files for the
NRC’s methods, but we have included them in a .pdb formatted
file for others to add back in if they so choose.We stress that users
will need to use the unminimized coordinate set if they add the
water in their application. This tar file set was made available late
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in September 2010 on the CSAR Web site as the CSAR_
NRC_HiQ_Set_24Sept2010.tar.

’STRENGTHS AND WEAKNESSES

Here, we present an assessment of the experimental error and
outline the limits they impose upon use of the data set. The
greatest asset for the final CSAR-NRC set is the high level of
curation, generously contributed by many experts. It likely
represents the “best of the PDB” for structures deposited before
January 1, 2009, augmented with binding data from Binding
MOAD and PDBbind. It also represents the full diversity in
targets and ligands for publically available complex structures,
given the stringent constraints applied in the curation process. It
provides a relatively unrestricted landscape that good docking
and scoringmethods should be able to process. Part of the reason
for seeking this diversity was to document the issues that limit
docking and scoring. Metalloenzymes are thought to be difficult
targets because of anecdotal experience. Are they truly more
difficult than other targets, if one examines a larger spectrum of
available targets? Without a data set like the CSAR-NRC set, one
cannot hope to answer this question or to prioritize the issues
that most limit our field.

However, that diversity can also be considered a weakness.
Data are only available for 16 small, congeneric series (see
Table 2), and data on known inactive compounds are not
available. Though it is limited, a user could easily incorporate
more ligand data if needed for their purpose. Each protein has
3�11 structures, completely setup and ready for docking, which
is a very good starting point for docking and scoring studies on
series of compounds. Furthermore, the data being collected by
the CSAR center from industry and our in-house efforts are
specifically intended to expand data on congeneric series for a
variety of drug targets.

The range of affinities in the CSAR-NRC set is quite large, 14
orders of magnitude in pKd. Though a large range of affinity is the
property most important for obtaining a reasonably good fit from
linear regression,45 it is not the range that is most useful in
practical applications. Instead, the ability to score ligands
with nM level affinities over μM affinities is the critical range
for identifying leads over mere hits. The bulk of the data in the

CSAR-NRC set have pKd in that key range between 5 and 10, and
a user could choose to limit his/her studies to those complexes.
Brown et al.45 have shown that 3 orders of magnitude or more
with about 50 data points per target protein is appropriate for
obtaining good fit to experimental data.

Another concern is that the diversity of proteins requires users
to try to calculate absolute free energies of binding. With series of
compounds against a single target, one can focus on relative
ranking. Some thought that an exercise based on absolute free
energies was impossible, but the papers in this issue show that
the correlations for absolute free energies are no worse than the
correlations seen for studies based on congeneric series.46 The
ability to properly calculate absolute free energies of binding is
the Holy Grail of computational drug design, and it appears to be
nearly as tractable as relative ranking. If we were to make
significant progress in this aim, then all of our problems would
be solved simultaneously. If absolute free energies can be
calculated, then relative ranking is trivial. Furthermore, enrich-
ment in database searching would be de facto. Even determining
selectivity for ligands against homologues or possible side effects
from binding to alternate targets would be possible.

Lastly, one could argue that the uncertainty inherent to
comparing all proteins, all experimental techniques, and Kd vs
Ki creates more “noise” than “signal” in the data set. Indeed, this
does raise an important point that is frequently misunderstood
by computational chemists. The error given for experiments in
almost all publications is underestimated! Reported error is
typically for multiple measurements on the same day, under
the same conditions, by the same scientist. Experimentalists
understand that independent laboratories can measure Kd (or
Ki) of the same complex and easily differ by 3-fold (0.5 logKd or
0.7 kcal/mol). Occasionally, two laboratories differ by an order of
magnitude (1.0 logKd or 1.4 kcal/mol), and this is acceptable.
Yet, we often require the best calculations to match experimental
values within 1 kcal/mol. Depending on the system, we can often
require accuracy for our calculations that is not possible in the
experiments we benchmark against.

Returning to the question of signal over noise, the values
above can be used as estimates for appropriate standard devia-
tions (σ) in the experimental affinities reported in the CSAR-

Table 2. Congeneric Series Present in the Data Set

protein count ligand series type pdb id pdb id pdb id pdb id pdb id pdb id pdb id pdb id pdb id pdb id pdb id

HIV-1 protease (L63P) 11 hydroxyethylamine 2cem 2cen 2qnq 1g2k 1d4i 1d4j 1ebz 1ec0 1ec1 1ec2 1xl5

HIV-1 protease (WT) 11 hydroxyethylamine 2psv 2q54 2qhy 2qhz 2qi1 2qi3 2qi4 2qi5 2qi6 2i0a 2i0d

tyrosine-protein phosphatase 8 thiophene-dicarboxylic acid 2hb1 2qbq 2qbr 2qbs 2zmm 2zn7 2azr 2b07

coagulation factor X 6 pyrrolidin-2-one 2uwl 2uwp 2cji 2j2u 2j34 2j4i

carbonic anhydrase 2 6 sulfamide analogues 2h15 2pov 2pow 3bl0 2hd6 2pou

tRNA guanine transglycosylase 5 quinazolin-4-one 2bbf 1r5y 1s38 1s39 1q4w

HMGCoA reductase 5 atorvastatin analogues 3ccw 3ccz 3cd7 3cd0 3cda

acetylcholinesterase 4 huperzine/hupyridone 1vot 1gpk 1h22 1h23

estrogen receptor alpha 4 phenol 2pog 2r6w 2ayr 1qkt

urokinase 4 benzamidine analogues 1gja 1gj8 1gjd 1gi9

β-1,4-xylanase 3 aza-sugar analogues 1fh8 1fh9 1fhd

glutamate [NMDA] receptor ζ1 3 small ring amino carboxylic acid 1y1m 1y1z 1y20

lectin 3 saccharides 1ax1 1ax0 1ax2

membrane lipoprotein tmpC 3 purine neucloside analogues 2fqw 2fqx 2fqy

retropepsin 3 macrocyclic peptidomimetic 1b6j 1b6l 1b6m

transporter (LeuT) 3 small amino acid 3f3d 3f48 3f4j
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NRC set. With a normal distribution of experimental error,
measurements within (1σ will occur ∼68.3% of the time
((2σ = 95.4%, ( 3σ = 99.7%). A σ of 0.5 logK would make
differences of up to 3-fold common (2 in 3 measures) and errors
>1.0 logK would be seen only on rare occasion (1 in 22
observations). Let us assume that each measured value should
be normally distributed around its “ideal” Kd (or Ki), the value
obtained under the exact same conditions with no error. To
approximate this, we can use the reported affinities in the CSAR-
NRC set as ideal measures, generate random error around those
points, and assess the potential influence on the analyses
(Figure 3). When 100 independent generations of random error
are used, there is aminimal addition of “noise” to the affinity data;
the R2 range from 0.970 to 0.980 with a median of 0.976 (ave
|error| = 0.40 logK, median |error| = 0.34 logK, RMSE = 0.50
logK). If error is added to both x and y directions to simulate the
same variation in scores and experimental values, then the R2

range from 0.943 to 0.962 with a median of 0.952 (ave |error| =
0.56 logK, median |error| =0 .47 logK, RMSE = 0.71 logK).

Of course, differences between laboratories come from both
standard error and differences in experimental conditions, which
exist even when trying to replicate the exact same experiment. If
experimental conditions change, then no one would be surprised
at differences in Kd of an order of magnitude or more. A σ of
1.0 logK would make differences of up to an order of magnitude
common (2 in 3 measures) and beyond 2 orders of magnitude
seen on rare occasion (1 in 22 observations). Still the random
error gives small noise to affinity data; the R2 range from 0.892 to
0.931 with a median of 0.913 (ave |error| = 0.80 logK, median
|error| = 0.68 logK, RMSE = 1.00 logK). Based on this, we can
set an upper limit to the performance of scoring methods. If a
method has many tunable parameters all trained to specifically
reproduce the data in Sets 1 + 2 of the CSAR-NRC data set, the
uncertainty in the underlying experimental data should make it
impossible to achieve a perfect correlation. We expect the limit to
be R2 ≈ 0.9. In fact, the limit to a scoring function trained on
outside data and tested against the CSAR-NRC set should be
R2≈ 0.8 because adding random error with σ = 1.0 logK to both

Figure 3. The addition of random error with standard deviations of 0.5 logK (top) or 1.0 logK (bottom) do not significantly degrade the “signal to
noise” in the CSAR-NRC data set. Only 10 of the 100 randomly generated sets are shown for clarity, and a line with a slope of 1.0 is given as a
guideline in all the graphs. (Left) Correlations based on the model that the reported affinities are ideal (y-axis) and random, normally distributed
error can be added to generate possible measurements found in another lab (x-axis). (Right) Correlations based on the model that both the reported
value and another measured value could have the same, random error. These plots also approximate the variation between scores and measured
affinity values.
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scores and experimental values produced R2 between 0.798 and
0.864 with a median of 0.835 (ave |error| = 1.13 logK, median
|error| = 0.95 logK, RMSE = 1.41 logK).

Pushing the limits beyond what is likely: σ = 2.0 logK leads to
median R2 of 0.744 for correlations to ideal values (ave |error| =
1.59 logK, median |error| = 1.34 logK, RMSE = 1.99 logK) and
0.553 for correlations between scores and experimental values
with the same range of error (ave |error| = 2.27 logK, median
|error| = 1.91 logK, RMSE = 2.85 logK); σ = 3.0 logK gives
median R2 of 0.590 (ave |error| = 2.41 logK, median |error| =
2.04 logK, RMSE = 3.01 logK) and 0.355 (ave |error| = 3.39
logK, median |error| = 2.88 logK, RMSE = 4.24 logK) for
correlations to ideal values and between scores and experimental
values, respectively.

’SUMMARY

This data set is the product of many different contributions
from the modeling and crystallographic communities and has
benefitted greatly from users’ input, comments, and constructive
critiques over the course of approximately a year. The partici-
pants have used this single data set in many different scoring
approaches (knowledge based, force-field based, grid based, etc),
with expert hands in each case, to a common goal of calculating
absolute free energies. This impressive array of information has
been collected, collated, and analyzed with regard to what is the
current state of the art and what trends (both global and specific)
can be gleaned from this exercise. The knowledge gained from
this exercise is reflected in the papers in this issue. While based on
the final CSAR-NRC data set of September 24, 2010, it is
certainly grounded in the thoughts and critiques from the larger
community on its various incarnations; the journey, if you will, on
the path to this data set.
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