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FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic
effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or
drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed
higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-𝛽1 and 𝛼-
SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by
microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60GOs and two pathways
related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes
were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43
miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-
SAPK/JNK)/(SAPK/JNK) and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced
apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

1. Introduction

Liver fibrosis is a consequence of chronic liver disease char-
acterized by replacement of liver tissue by fibrosis, scar tissue,
and regenerative nodules, leading to loss of liver function.
The condition is associated with various types of liver injury,
including viral hepatitis, alcohol abuse, nonalcoholic steato-
hepatitis (NASH), autoimmunity, drug intoxication, and
primary biliary cirrhosis. While viral hepatitis remains the
leading cause of liver transplantation globally, the prevalence
of non-alcoholic fatty liver disease (NAFLD) has escalated
over the last decade and is increasingly being recognized as a
cause of liver cirrhosis and hepatocellular carcinoma (HCC)

[1, 2]. In order to prevent the development of end-stage
liver diseases, it is necessary to control or reverse fibrosis.
However, there is currently no high-efficient therapy method
for this condition.

Liver fibrosis results from chronic damage to the liver
in conjunction with the alterations in both the quantity [3]
and composition of extracellular matrix (ECM) proteins [4],
including collagens (I, III, and IV), fibronectin, undulin,
elastin, laminin, hyaluronan, and proteoglycans. Hepatic stel-
late cells (HSCs) are themain ECM-producing and regulating
cells in the injured liver [5]. HSCs reside in the space of Disse
(perisinusoidal space) in the normal liver. Following chronic
injury, HSCs transdifferentiate into myofibroblast-like cells
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and acquire contractile, proinflammatory, and fibrogenic
properties [6, 7].

Interactions between different cellular components are
thought to be involved in the disease process. A number
of abnormal candidate expression genes and miRNAs have
been proposed which could affect the progression of hepatic
fibrosis [8]. Transforming growth factor-beta 1 (TGF-𝛽1)
from both paracrine and autocrine sources has been shown
to be the key mediator of hepatic fibrogenesis [9], and alpha-
smooth muscle actin (𝛼-SMA) is an indicator of stellate cell
activation [10]. MiR-29b, -199a, -199a∗, -200a, and -200b
have been reported related to the process of liver fibrosis
[11, 12]. It has also been proposed that miRNA changes
regulated by negative feedback loops between miRNAs and
their downstream genes might play an important role in
the steady-state regulation [13]. So, detailed mechanism of
liver fibrosis involved in genes and miRNAs still needs
to be further clarified. In addition, in mammalian cells,
microRNAs (miRNAs) usually bind to complementary sites
in the 3 untranslated region (3-UTR) of specific target genes,
resulting in reduced gene translation. Since miRNAs do not
generally affect mRNA level, gene expression profiling is
not suitable for exploring the target signaling pathways of
miRNA. Instead, miRNA-mRNA interaction network anal-
ysis is widely used to the medical researches [14]. This is also
consistent with the view that the focus of cataloging a “parts
list” of genes and proteins should be changed to a strategy of
mapping the network of interactions between them [15].

Many kinds of traditional Chinese medicines (TCMs)
have been shown to have antifibrotic properties. These
include Ganoderma lucidum (Ling Zhi) [16], Sinisan [17]
and Shugan-Huayu powder [18]. TCM 319, also known as
FUZHENGHUAYU Tablet, is a compound containing
six Chinese herbs, including Radix Salviae Miltiorrhizae,
Fermentation Mycelium Powder, Semen Persicae, Fructus
Schisandrae, Chinensis Pollen pini, and Gynostemma
pentaphyllammak [19]. Previous studies have shown that
FUZHENGHUAYU has antifibrotic effects in rats [19–25].
But there are no reports of the effects of FUZHENGHUAYU
onHSC apoptosis, and little is known about the role played by
miRNA and mRNA related mechanisms with respect to the
effects of FUZHENGHUAYU Tablet. In this study, we used
the estalished methods and other technologies to investigate
the molecular mechanisms of FUZHENGHUAYU Tablet in
liver fibrosis.

2. Materials and Methods

2.1. Drug SerumandControl SerumPreparation. Twelvemale
Wistar rats, SPF grade, weighing 300–350 g, were divided
equally into control and drug groups. FUZHENGHUAYU
Tablet was suspended in distilled water at concentration
of 0.04 g/mL. The drug group received FUZHENGHUAYU
Tablet dilution at a dose of 2mL/100 g⋅wt, twice daily for
3 days. Two hours after the last dose of dilution, serum
was collected from the inferior vena cava and inactivated at
56∘C for 30 minutes. Serum samples were stored at −70∘C

until further processing. The control group rats were treated
with 0.9%NaCl and were subjected to the same procedure
[22]. This study was performed according to the interna-
tional, national, and institutional rules considering animal
experiments. In present study, drug and control serums were
supplied by Dr. Chenghai Liu, Institute of Liver Disease,
Shanghai University of Traditional ChineseMedicine, China.

2.2. Cell Culture, Grouping, and Treatment. Rat HSC-T6 cells
from our laboratory were cultured in Dulbecco’s modified
Eagle’s medium (DMEM; Gibco) containing 10% fetal bovine
serum (FBS; Gibco), 100U/mL penicillin, and 100 𝜇g/mL
streptomycin (Gibco) in a humidified chamber at 37∘C in
5% CO

2
. For the control and drug groups, control and drug

serums were used instead of FBS, respectively. The cells were
cultured for up to 24 h for RNAand protein extraction and for
72 h for apoptosis analysis. Actinomycin D (2 𝜇L/mL; Sigma)
was added into ratHSC-T6 cells exposed to 10%FBS after 12 h
as a positive control for the analysis of apoptosis.

2.3. Apoptosis Analysis. Rat HSC-T6 cells treated with drug
serum or control serum were washed twice in cold PBS
and harvested by exposure to trypsin-EDTA solution. The
harvested cells were centrifuged, washed with complete
media, and then suspended in Annexin V binding buffer.
Apoptosiswas assessed using anAnnexinV/7-AADapoptosis
kit according to the manufacturer’s protocol (Biolegend).
Fluorescein isothiocyanate (FITC)- Annexin V, and 7-AAD
were added to the cell suspension. The cells were incubated
for 30min at room temperature in the dark and analyzed
using a BD FACSCalibur flow cytometer. After fluorescence
activated cell sorting (FACS), the percentage of apoptotic cells
was assessed using ModFit software.

2.4. Total RNA Extraction. Total RNA was extracted using
an EZNA total RNA kit (Omega), according to the manu-
facturer’s instructions. For gene expression microassays and
miRNA sequeneing, total RNA was extracted using mirVana
miRNA isolation kit (Ambion) and checked for RIN number
to inspect RNA integration by an Agilent Bioanalyzer 2100
(Agilent technologies). Only samples with RNA integrity > 7
andwith 28S/18S ≥ 0.7 were used in the further analysis. RNA
samples were stored at −80∘C until further processing.

2.5. Real-Time PCR. An SYBR ExScript RT-PCR Kit
(TAKARA) and Power SYBR Green PCR Master Mix (ABI)
were used for real-time PCR. The primers of rat collagen
I, collagen III, TGF-𝛽1, 𝛼-SMA, and 𝛽-actin are listed in
Table 1 [26]. Beta-actin was used as an endogenous control.
Reactions for each sample were performed in triplicate with
equal amounts of template cDNA, using the ABI Prism 7500
Sequence Detection System. Real-time PCR conditions were
as follows: 95∘C for 10min, followed by 40 cycles at 95∘C for
15 s and 60∘C for 1min. Fold induction values were calculated
using the 2ΔΔCt method according to the manufacturer’s
instructions.
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Table 1: Sequences of primers used for real-time PCR.

Gene Primer sequence (5-3)

Collagen I Sense: TCCTGGCAATCGTGGTTCAA
Anti-sense: ACCAGCTGGGCCAACATTTC

Collagen III Sense: GGTCCTGCAGGTAACAGTGGTTC
Anti-sense: TGCTCCAGTTAGCCCTGCAA

TGF-𝛽1 Sense: TGCGCCTGCAGAGATTCAAG
Anti-sense: AGGTAACGCCAGGAATTGTTGCTA

𝛼-SMA Sense: AGCCAGTCGCCATCAGGAAC
Anti-sense: CCGGAGCCATTGTCACACAC

𝛽-actin Sense: GGAGATTACTGCCCTGGCTCCTA
Anti-sense: GACTCATCGTACTCCTGCTTGCTG

2.6. Microarray Hybridization and Data Analysis. Total
RNA (100 ng) was amplified, labeled, and purified by using
GeneChip 3IVT Express Kit (Affymetrix) to obtain biotin
labeled cRNA. Labeling and hybridization were performed
at Shanghai Biochip Company according to the protocols
in the Affymetrix Rat 230 2.0 microarray system. Raw data
were normalized using the MAS 5.0 algorithm (Gene Spring
Software 11.0; Agilent technologies).

After feature extraction (Feature Extraction software),
log 2 ratios, representing the ratio of Cy5-processed signal to
Cy3-processed signal, were calculated and converted to fold
changes. Genes with a log 2 ratio >1 (>2-fold increase) were
considered to be upregulated, and those with <−1 (>2-fold
decrease) were considered to be downregulated.

2.7. MicroRNA Profile Sequencing and Target Prediction. The
small RNA libraries were constructed following themanufac-
turer’s instructions for the Small RNA Sample Prep Kit (Illu-
mina). The small RNAs were ligated with adapters followed
by reverse transcription and amplification.The PCR products
derived from 22 nt and 30 nt small RNA fragments were
purified from 6% Novex TBE PAGE Gel. Purified miRNAs
were sequenced on the Illumina Genome Analyzer for 36
cycles. Sequencingwas performed at Shanghai Biotechnology
Corporation. MiRNAs genes with fold change ≥2 or ≤0.5,
𝑃 value ≤ 0.05, and FDR ≤ 0.05 were considered to be
up-regulated, and miRNAs genes with fold change ≤0.5, 𝑃
value ≤ 0.05, and FDR ≤ 0.05 were considered to be down-
regulated. Targetscan (http://www.targetscan.org/) was used
for miRNA target prediction.

2.8. Gene Ontology (GO) Category and Pathway Analysis.
DAVID gene database annotation (DAVID Bioinformatics
Resources 6.7) was used to interpret the biological effect
of mRNAs and target genes of miRNAs. The categorization
of the biological process GO of the difference expression
genes and target genes was analyzed using theGeneOntology
project (http://www.geneontology.org/) which is the key
functional classification of the National Center for Biotech-
nology Information (NCBI). The KEGG genome database
was used to identify significant differential genes pathways. In
view of the large differences in enrichment numbers, different
P-values (≤0.05, ≤0.01, and ≤0.001) were used as a threshold

to select significant gene ontology (GO) categories andKEGG
pathways, each representing significant differences.

2.9. Western Blot Analysis. Cultured cells were lysed using
Proteo JET Mammalian Cell Lysis Reagent (Fermentas)
containing a cocktail of proteinase inhibitors (Roche) and
phosphatase inhibitor cocktail (Pierce). The debris was
discarded and the supernatant containing total proteins
was quantified using a BCA kit. The proteins were run
on 10% SDS-PAGE and transferred onto PVDF mem-
branes (Millipore, Bedford). After blocking in 5% non-
fat milk, the membranes were probed with rabbit mono-
clonal antibodies against rat p44/42 MAP kinase (137F5)
(CST), SAPK/JNK (56G8) (CST), p38 MAP kinase (CST),
phospho-p44/42 MAPK (Thr202/Tyr204) (CST), phospho-
p38 MAPK (Thr180/Tyr182) (CST), phospho-SAPK/JNK
(Thr183/Tyr185) (CST), and mouse monoclonal antibody
against rat 𝛽-actin (Santa Cruz) as primary antibodies
at 1 : 1000 dilution. Goat anti-rabbit or goat anti-mouse
IgG labeled with HRP (1 : 2000) were used as secondary
antibodies. Immunoreactive signals were detected using an
Enhanced Chemiluminescence kit (Amersham Pharmacia
Biotech) through an ECL system.The results were quantified
using the Image J 1.43 software (National Institutes of Health,
Bethesda, MD) after densitometric scanning of the films.

2.10. Statistical Analysis. Data were expressed as means ±
SD. Differences between experimental groups were assessed
using the two-tailed t-test. Statistical significance was defined
as ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01.

3. Results

3.1. FUZHENGHUAYU Tablet Induces Apoptosis in Rat HSC-
T6 Cells. In order to analyze whether FUZHENGHUAYU
Tablet could induce apoptosis in rat HSC-T6 cells, we treated
rat HSC-T6 cells with control or drug serum, respectively.
Cells were stained with Annexin V-FITC/7-AAD and gated
into lower right (LR) and upper right (UR) quadrants. Cells in
LR and UR represented early (Annexin V(+)/7-AAD(−)) and
late apoptotic (Annexin V(+)/7-AAD(+)) cells, respectively.
Cells in lower left (LL) quadrants were considered to be alive
and those in the upper left (UL) quadrants were considered
to be necrotic. The extent of apoptosis was expressed as
the sum total of the percentages in LR and UR quadrants.
The apoptotic rates are showed in Figures 1(a) to 1(f). Cells
exposed to drug serum showedmore late apoptotic cells (10%
± 1%) than control serum (5% ± 1%) (𝑛 = 3, 𝑃 < 0.05). They
also contained a higher proportion of early apoptotic cells
(43% ± 6%) than the controls (26% ± 4%) (𝑛 = 3, 𝑃 < 0.05).
The total apoptotic cells in the drug group and control group
were 53% ± 6% and 31% ± 4%, respectively (𝑛 = 3, 𝑃 < 0.01).

3.2. FUZHENGHUAYU Tablet Decreased mRNA Levels of
Collagen I, Collagen III, TGF-𝛽1, and 𝛼-SMA. The levels of
collagen I, collagen III, TGF-𝛽1, and 𝛼-SMA were potential
markers of the antifibrosis efficacy of FUZHENGHUYU
Tablet. We found that mRNA levels of collagen I, collagen III,

http://www.targetscan.org/
http://www.geneontology.org/
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Figure 1: Continued.
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Figure 1: FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells. Cultured rat HSC-T6 cells were divided into control and drug
groups.The control group was incubated with DMEMmedium containing 10% control serum, and the drug group was cultured with DMEM
medium supplemented 10% drug serum for up to 72 h. Apoptosis was assessed using an Annexin V/7-AAD Apoptosis kit and analyzed using
a BD FACS Calibur flow cytometer. (a) HSC-T6 cells exposed to 10% FBS and stained with Annexin V(+)/7-AAD(+); (b) HSC-T6 exposed to
10% FBS + 2𝜇L/mL actinomycin D and stained with Annexin V(+)/7-AAD(+); (c) HSC-T6 cells exposed to 10% FBS + 2𝜇L/mL actinomycin
D and stained with Annexin V(+)/7-AAD(−); (d) HSC-T6 cells exposed to 10% FBS + 2 𝜇L/mL actinomycin D and stained with Annexin
V(−)/7-AAD(+); (e) HSC-T6 cells exposed to 10% control serum and stained with Annexin V(+)/7-AAD(+). (f) HSC-T6 cells exposed to
with 10% drug serum and stained with Annexin V(+)/7-AAD(+); (g) the late apoptotic cells in the drug (10% ± 1%) and control groups (5%
± 1%) (𝑛 = 3, ∗𝑃 < 0.05); (h) the early apoptotic cells in the drug (43% ± 6%) and control groups (26% ± 4%) (𝑛 = 3, ∗𝑃 < 0.05); (i) total
apoptotic cells in the drug (53% ± 6%) and control groups (31% ± 4%) (𝑛 = 3, ∗∗𝑃 < 0.01).
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Figure 2: FUZHENGHUAYU Tablet serum decreased the mRNA
levels of collagen I, collagen III, TGF-𝛽1, and 𝛼-SMA. Data are
expressed as mean ± SD. After incubation with drug serum or
control serum for up to 24 h, themRNA levels of collagen I, collagen
III, TGF-𝛽1, and 𝛼-SMA were significantly down-regulated (𝑛 = 3,
∗𝑃 < 0.05, ∗∗𝑃 < 0.01), being 0.73-, 0.64-, 0.74-, and 0.78-fold lower
than the control group, respectively.

TGF-𝛽1, and 𝛼-SMA was significantly down-regulated after
exposure of rat HSC-T6 cells to drug serum for up to 24 h.
The degree of expression was 0.73-, 0.64-, 0.74-, and 0.78-
fold lower than in the control serum group (Figure 2). These
findings suggest that apoptosis may be the mechanism of the
anti-fibrotic activity of FUZHENGHUAYU Tablet.

3.3. Differentially Expressed mRNA in Control Serum and
FUZHENGHUAYUTablet SerumGroups. Microarray profile
analyses of cellular mRNAs in rat HSC-T6 cells identified 334
mRNAs that were differentially expressed between the drug
serum group and control serum group; 199 mRNAs were up-
regulated and the remainder were down-regulated.

3.4. Differentially Expressed miRNAs in FUZHENGHUAYU
Tablet Serum and Control Serum Groups Target Gene Pre-
diction. MicroRNA profile sequencing identified 75 differ-
entially expressed miRNAs, which were down-regulated in
drug serum group in comparison with the control serum
group. Targetscan (http://www.targetscan.org/) prediction of
miRNAs identified 1963 potential target genes.

3.5. Bioinformatics Interpretation Revealed the GOs and Sig-
naling Pathways Regulated by Differentially Expressed mRNAs
and miRNAs. In order to gain insights into the function
of miRNAs and mRNAs, GO term and KEGG pathway
annotation were applied.

We have identified 30 up-regulated GOs (Figure 3)
and 30 down-regulated GOs (Figure 4) on the differen-
tially expressed mRNAs. These genes were involved in ion
transport, necroptosis, cell death, metabolic processes, cell
development, differentiation, and adhesion. This form of
analysis also identified 134 upregulated GOs by differentially
expressed miRNAs target genes (Figure 5), which could be
categorized as cell processes, gene expression, cell develop-
ment, morphogenesis, signaling pathways, cell organization,
proliferation, adhesion, and so on. Among all the differ-
entially regulated GOs, those involved in cell development,
adhesion, growth, necroptosis, and transport appeared to
predominate.

Additional functional analysis of mRNAs using KEGG
analysis identified the two signal transduction pathways reg-
ulated by drug serum. These were mitogen-activated protein
kinases (MAPK) and RIG-1 like receptors (Figure 6). In
addition, 43 signal transduction miRNA targets were found
to be regulated by drug serum. These included MAPK and
various cancer signals, as shown in Figure 7.

http://www.targetscan.org/
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Figure 3: Bioinformatics interpretation revealed the GOs regulated by up-regulated expressed mRNAs. Genes with up-regulated expression
in the drug and control groups were analyzed by GO. 𝑃 values ≤ 0.05 were used as a threshold to select significant GO categories.

Enrichment ranking of signaling pathways indicated that
MAPK signal transduction pathway was the most promi-
nent. As we know, MAPK signal transduction pathways are
involved in a series of important biological effects, such as
inflammation, migration, apoptosis, growth, development,
and differentiation [27, 28].

The apoptosis results, previous reports, and the results
of GO and KEGG analysis all suggested that MAPK signal
transduction pathwaymight be regulated by drug serum, and

this also might be related to the induction of apoptosis in rat
HSC-T6 cells.

3.6. MAPK Signal Transduction Pathway Was Regulated
by FUZHENGHUAYU Tablet. Mammals express at least
four distinctly regulated groups of MAPKs, extracellular
signal-related kinases (ERK)-1/2, Jun amino-terminal kinases
(JNK1/2/3), p38, and ERK5. MAPKs belong to a large
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Figure 4: Bioinformatics interpretation revealed the GOs regulated by down-regulated expressed mRNAs. Genes with down-regulated
expression in the drug and control groups were analyzed by GO. 𝑃 values ≤ 0.05 were used as a threshold to select significant GO categories.

family of serine/threonine protein kinases. They not only
activate/inactivate other proteins but are themselves acti-
vated/inactivated by other proteins through phosphoryla-
tion/dephosphorylation modification [29].

In order to analyze the hypothesis, the protein levels
of rat p44/42, SAPK/JNK, p38, phospho-p44/42, phospho-
p38, and phospho-SAPK/JNK were detected by Western
blot. The results indicated that the ratio of (phospho-
SAPK/JNK)/(SAPK/JNK) was significantly down-regulated
and that the ratio of phospho-p38/p38 was significantly up-
regulated by drug serum (𝑛 = 3, 𝑃 < 0.05) (Figure 8). There
was no significant change in the (phospho-p44/42)/(p44/42)
ratio. These results suggest that changes in SAPK/JNK and

p38 in response to drug serum might be related to its
apoptotic effects in rat HSC-T6 cells.

4. Discussion

Traditional Chinesemedicine (TCM)uses a holistic approach
taking the human body as a self-controlled system network.
The goals of biologically the based medicine partially overlap
the principles of TCM. Bioinformatic and systems biology,
therefore, represent an important link between TCM and
Western medicine [30]. Bioinformatics and system biology
have previously been used to identify disease-related genes or
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Figure 5: Bioinformatics interpretation revealed the GOs regulated by differentially expressed miRNAs target genes. Genes with significant
expression difference in the drug and control groups were analyzed by GO. 𝑃 values ≤ 0.001 and FDR ≤ 0.05 were used as a threshold to select
significant GO categories.
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Figure 6: Bioinformatics interpretation revealed the KEGG
genomes regulated by differentially expressed mRNAs. Genes with
significant expression differences in the drug and control groups
were analyzed by KEGG. 𝑃-values ≤ 0.05 were used as a threshold
to select significant KEGG analysis.

functional modules and to recognize redundant, adaptable,
and system mechanisms in diseases [31, 32]. The previous
reports have supplied us with perfect examples in network
pharmacology study.

Liver fibrosis results from the activation of HSCs as part
of the wound-healing response to chronic liver injury [33]. It
is known that HSCs undergo a transition from a quiescent
to an activated phenotype following liver tissue damage
[34]. The generation and proliferation of 𝛼-SMA positive
myofibroblasts from the periportal and perisinusoidal areas
also play a central in the fibrotic process. Previous studies
have shown that FUZHENGHUAYU is able to normalize
ALT and AST levels in patients with chronic hepatitis B
and to some extent reverse the development of liver fibrosis
[20, 21]. Another study indicated that FUZHENGHUAYU
decoction prevents the autocrine activation of HSCs, pos-
sibly by inhibiting secretion of VEGF [22]. A similar study
proposed that the anti-fibrotic effects of FUZHENGHUAYU
may also be associated with inhibition of liver collagen pro-
duction. It has also been reported that FUZHENGHUAYU
extracts attenuate hepatic fibrosis induced by CCl4 in rats
[19]. The same study showed that the anti-fibrotic effect
of FUZHENGHUAYU was associated with down-regulation
of mRNA expression of PDGF-B and PDGF-R𝛽 and with
reduced protein expression of TGF-𝛽1 [23]. In addition,
spontaneous or targeted apoptosis of HSC has been shown
to be associated with regression of liver fibrosis in animal
models [24, 25].

In the present study we showed for the first time that
FUZHENGHUAYUTablet was able to induce apoptosis in rat
HSC-T6 cells. In order to confirm the relationship between
the apoptotic and anti-fibrotic effects, we analyzed themRNA
levels of collagen I, collagen III, TGF-𝛽1, and 𝛼-SMA. Our
results showed a significant down-regulation in each case.

The miRNAs and their target genes have emerged as
key regulators of diverse biological processes, including
cancer [35], development [36], cell growth, apoptosis [37],
and immune responses [38]. It is known that miRNAs and
mRNAs both play essential roles in apoptosis, differentiation,
proliferation, andmigration inHSCs [8] and also are involved
in the process of liver fibrosis [39]. A previous study suggested

that miR-29 regulates liver fibrosis and together with TGF-
𝛽 and nuclear factor-𝜅B forms part of a signaling nexus
in HSCs [40]. It has also been shown that hepatic levels
of miR-29 are significantly increased in mice with CCl4
induced liver damage and also in the livers of patients
with advanced fibrosis. By contrast, miR-29b appears to act
as a beneficial factor that protects against liver fibrosis by
suppressing the activation of HSCs [11]. It has been suggested
that upregulation of miR-199a, -199a∗, -200a, and -200b s
triggers the process of liver fibrosis [12]. Specifically, it has
been suggested that miR-16 has the potential to inhibit HSC
proliferation and induce apoptosis by inducing Bcl-2 while
concurrently reducing cyclin D1 levels [37]. Other evidence
suggests that overexpression ofmiR-181b increases the growth
of HSCs by directly targeting p27 [39].

Microarray techniques are increasingly being used as
research tools in chemistry and life sciences. The sequencing
of the human genome, together with the development of
high-throughput technologies, affords a unique opportu-
nity for future research [41]. Microarray and high-throught
sequencing are both based on computational biology and
bioinformatics, and both are appropriate for mRNA and
miRNA research. In this study, we identified 334 differentially
expressed mRNAs. Sequencing identified 75 miRNAs with
down-regulated expression in the drug serum group. Online
database analysis identified 60 differently regulated GOs
from mRNAs and 134 regulated GOs from miRNAs targets
that were principally involved in cell development, adhesion,
growth, necroptosis, and transport processes. Functional
analysis of mRNAs by KEGG revealed that drug serum
regulated two signal transduction pathways, involvingMAPK
and RIG-1 like receptors. In addition, drug serum regulated
43 miRNA signal transduction pathways, principally the
MAPK pathway and to a lesser extent pathways involved in
cancer signals. These findings suggested that drug serum has
wide ranging effects on rat HSC-T6 cells, which resulted from
differential expression of miRNAs and mRNAs. They also
suggested that MAPK signal transduction might be involved
in these complex processes. The number of predicted target
genes was much higher than the number of differently
expressed mRNAs, reflecting differences in the numbers of
enriched pathways.

It is possible that liver fibrogenesis is regulated by intracel-
lular signaling pathways, involved in apoptosis, proliferation,
migration, or inflammation. Mammals express at least four
distinctly regulated groups of MAPKs: ERK-1/2, JNK1/2/3,
p38 proteins (p38alpha/beta/gamma/delta), and ERK5. The
MAPK cascade is known to be involved in various cellular
functions, including cell proliferation, apoptosis, differen-
tiation, and migration. MAPKs have also been shown to
modulate major fibrogenic actions of HSCs, but different
members of the group have different effects. A previous study
showed that ERK stimulation in experimentally induced liver
injurymediated the proliferation andmigration ofHSCs [42].
Other reports have shown that p38-MAPK and caspase-3
bothmediate superoxide-induced apoptosis in rat HSCs [43].
Another study showed that TAK1/JNK inhibition decreased
HSC proliferation, whereas p38 inhibition increased the rate
of HSC proliferation, independently of its activation status
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Figure 7: Bioinformatics interpretation revealed the KEGG genomes regulated by mRNAs of differentially expressed miRNAs. Genes with
significant difference in the drug and control groups were analyzed by KEGG. 𝑃-values ≤ 0.01 were used as a threshold to select significant
KEGG analysis.

[34]. The same study showed that JNK inhibition increased
and p38 inhibition decreased collagen alpha 1 (I) mRNA
levels. Additional evidence indicates that c-JNK regulates
hepatocyte apoptosis as well as regulating the secretion of
inflammatory cytokines by cultured HSCs [44, 45]. Indole-
3 carbinol (I3C) is known to inhibit the proliferation of HSC
by blocking theNADPHoxidase/reactive oxygen species/p38
MAPK signal pathway [46]. A recent study has shown that
p38 may play an important role in the regulation of HSC
self-renewal in vitro. Based on this finding, it was suggested
that inhibition of p38 activation with a small molecule
inhibitor might represent a novel approach to promote ex
vivo expansion of HSCs [47]. In our study, drug serum

down-regulated the levels of phospho-SAPK/JNK and up-
regulated phospho-p38. There was no change in phospho-
p44/42. These results suggest that the changes in phospho-
SAPK/JNK and phospho-p38 might in part explain the
apoptotic induction effects of TMC 319 in rat HSC-T6 cells.

5. Conclusions

Taken together our results indicate that FUZHENGHUAYU
Tablet increases apoptosis of rat HSC-T6 cells by activating
p38 and inhibiting SAPK/JNK. These effects may in part
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Figure 8: The MAPK signal transduction pathway is regulated by FUZHENGHUAYU Tablet. Protein levels of rat p44/42 MAP kinase
(137F5), SAPK/JNK (56G8), p38MAPkinase, phospho-p44/42MAPK (Thr202/Tyr204), phospho-p38MAPK (Thr180/Tyr182), andphospho-
SAPK/JNK (Thr183/Tyr185) were detected by Western blot.

explain the mechanism by which FUZHENGHUAYU Tablet
protects against liver fibrosis.
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