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Introduction 
 Over the past three decades, the environment has progressively deteriorated leading to air, water, and soil 

pollution. Rapid industrialization and diverse-natured anthropogenic activities are the major causes contributing to quality 

decline in most of the cases [1‒4]. In addition, geogenic sources (naturally occurring) are also cited as contaminants in some 

instances [5,6]. It has been estimated that about one third of people in the world are deprived of safe drinking water [7]. 

Contaminated water and poor sanitation are linked to transmission of many diseases like cholera, dysentery, hepatitis A, 

typhoid, etc. [7]. Contaminants in drinking water are classified into four categories: (i) physical contaminants (sediment or 

organic material suspended in water), (ii) chemical contaminants that are either naturally occurring or anthropogenic (e. g., 

nitrogen, bleach, salts, pesticides, metals and heavy metals, toxins produced by bacteria, and human or animal drugs), (iii) 

biological contaminants (i.e., organisms in water such as bacteria, viruses, protozoan, parasites, etc), and (iv) radiological 

contaminants (elements made up of atoms having unstable nuclei that emit ionizing radiation). 

 Safe Drinking Water Committees under the aegis of the National Research Council in the US addressed the issue 

related to contamination of drinking water during 1977‒1987. They evolved a systematic scientific and administrative 

scheme to assess health risks associated with exposure to toxic chemicals in drinking water [8‒10]. Subsequently many 

studies were conducted globally to assess the quality of drinking water and health risks associated with ingestion of 

contaminated groundwater and surface water [3,4,6,11,12]. Health risk caused by heavy metals in a water source is an active 

area of research in recent years. This is because, depending on the heavy metal and its chemical form in water, prolonged 

exposure can affect target tissues such as brain, liver, bones, and kidneys in the human body resulting in serious health 

Abstract 
The Kolleru Lake, India is a famous wetland of international significance. Analyses of certain potentially toxic heavy 

metal ions in water indicate that this freshwater lake is characterized by highly heterogeneous distribution of chromium 

(Cr; 4.5‒80 μg/L), copper, iron (Cu, Fe; below detection limit), manganese (Mn; 1‒313 μg/L) and zinc (Zn; below detection 

limit). Non-carcinogenic health risk assessment indices like hazard quotients (HQ) and hazard indices (HI) are estimated 

following the guidelines recommended by the US Environmental Protection Agency (USEPA). These indices are found 

to be within the acceptable limit (<1), indicating negligible potential health risk via ingestion and dermal routes. 

However, when the average values of these indices pertaining to the Kolleru lake are normalized with similar estimates 

from clean and uncontaminated global surface water, both high and low ratios are obtained. While Cr (12.5), Cu (2.3) 

and Mn (3.7) exhibit high ratios, those of Fe (0.09) and Zn (0.99) show respectively low and comparable values. The 

significance of such heterogeneous distribution of hazard indices and their ratios are discussed. Further, average 

carcinogenic risk levels of the adults and children due to Cr ingestion are estimated to be 0.00154 and 0.0022, respectively. 

Both values are higher than the permissible levels recommended by the USEPA. As a remediation measure, it is 

recommended that monitoring the levels of heavy metal in water and other items like fish in the lake or rice and 

vegetables grown in the area is needed to be carried out at regular intervals. This study therefore offers requisite 

perception to the local government and health officials to evolve their plan of action so that effective management and 

mitigation of water quality of the Kolleru lake can be administered. 
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problems [13]. Therefore, health risk assessment is an essential part, where an evaluation is made to assess the possible 

health effects of groundwater and/or surface water bodies that are contaminated. 

 Among the surface water bodies, lakes provide livelihood to many people across the globe. In developing 

countries, more than 60 million people rely on lakes for their income [14]. However, pollution of lake ecosystem and its 

surroundings due to anthropogenic activities has become a major global issue in many parts of the world [15,16]. In India, 

the dependency on lakes for livelihood is also seen in different parts as evidenced from the explosion of agricultural and 

livestock farming, fishery industries and tourism around many lakes of the country [17‒19]. All these Indian lakes are 

subjected to human-induced adverse impacts, which are undesirable.  

 The Kolleru lake is one of the largest natural freshwater lakes in India located in the southern state of Andhra 

Pradesh. In August 2002, the lake has been designated as a wetland of international importance [20] under the International 

Ramsar Convention. Wetlands are of considerable economic importance, as they nourish diverse biota and are natural 

habitat for a large variety of resident and migratory birds. Naturally, the Kolleru lake was also a "paradise of birds" and 

used to be a place of tourist attraction. However, during the past two decades the lake habitat has degraded significantly 

owing to various anthropogenic activities around its vicinity that include intensive agricultural, industrial and farm 

activities [21‒25]. Despite being one of the largest freshwater lakes, it is irony that the area surrounding the Kolleru lake has 

acute shortage of drinking water [26]. Moreover, there is extreme poverty in the region that still persists [27]. It is therefore 

likely that majority of poor residents are forced to use lake water for drinking and other purposes. 

 As pointed out above, a number of studies were conducted to estimate the quality of Kolleru lake water and 

sediments, besides digital processing of IRS-1D LISS-III sensor data of the lake region [21‒25]. However, no work following 

the guidelines recommended by the US Environmental Protection Agency (USEPA) on human health risk assessment has 

been attempted so far. In view of this, health hazard risk assessment is carried out in this study. Concentrations of six heavy 

metals in the Kolleru lake water that include cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and 

Zinc (Zn) were analysed. Non-carcinogenic health risks associated with these heavy metals are estimated due to drinking 

and dermal absorption for general adults and children in the community. An attempt is also made to estimate cancerous 

health risk associated with ingestion of lake water contaminated with carcinogenic toxic metals. Significantly, the results of 

this new research may provide some insight to the local government and health professionals to evolve strategies to 

effectively manage water quality, and hence to revive the pristine glory of the Kolleru lake ecosystem. 

 

Materials and Methods 
Study area 
 In view of international significance of the area (Ramsar site), a brief account of the study area is presented first. 

Kolleru lake, located between the latitudes 16˚32ʹ and 16˚47ʹN and longitudes 81˚05ʹ and 81˚27ʹE, is the largest natural 

freshwater lake in the southern state of Andhra Pradesh. The lake lies between the deltas of two main rivers, Godavari and 

Krishna and it is approximately 35 km inland from the present shoreline (Figure 1). There are three main streams that drain 

into the lake. These streams are known as Budimeru, Thammileru and Ramileru. The lake finally drains itself to the Bay of 

Bengal through Upputeru river [24,25]. It is a shallow freshwater body with a natural spread of ~674 km2. However, its areal 

extent goes up to ~954 km2 during the rainy seasons when highest floods are recorded in the area. On the other hand, during 

dry seasons the areal extent comes down to as low as ~66 km2. It is significant to note that the lake also serves as a natural 

flood-balancing reservoir for the two major rivers‒ Godavari and Krishna. Fluvio‒marine deposits (sand, silt and clay) 

characterize the lake surroundings from all sides. The nearest rock formations occur about 10 km away from the lake. The 

geological formations include khondalite, Gondwana, Deccan traps and tertiary sediments [28]. 

 

 

 

 

 

 

 

 

Figure 1. Map showing Kolleru Lake. Two prominent towns close to the 

lake, viz., Eluru and Kaikaluru together with various anthropogenic inputs 

surrounding the lake area [21] are shown. Eighteen sampling points for 

water are marked by open circles. The horizontal scale (5 km) displayed in 

the figure corresponds to 0.045º. The geographical location of the lake 

(study area) in the state of Andhra Pradesh, India is marked in the inset.  
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Sample collection, preparation, and analysis 
 Eighteen sampling points were selected to cover the lake area (Figure 1). Uniform sampling could not be carried 

out due to inaccessibility of some of the locations. The water samples were collected following standard procedure [29]. 

Polypropylene bottles (1 L) for sample collection were soaked in 5% HNO3 for 24 h followed by rinsing them a number of 

times with deionized water. The bottles were dried and water samples were collected in duplicate after filtration using 

Whatman No. 40 filter paper. The pH and total dissolved solids (TDS) were measured in the field. The pH electrode was 

calibrated with pH 4 and pH 9.2 buffer solutions. The samples were then acidified with 5 mL of HNO3 to prevent the 

adsorption of heavy metals onto the bottle walls and transported to the laboratory. Until use, preservation of these water 

samples was done following the recommendations of USEPA [29]. The heavy metal analyses were done in the laboratory 

within 2 to 3 weeks of the sample collection. The concentrations of cations such as Cd, Cr, Cu, Fe, Mn, and Zn were 

determined by ICP-OES (model Optima 4300 DV; PerkinElmer Life and Analytical Sciences, Shelton, CT, USA) using the 

standard procedure [30]. The instrument is equipped with a cross-flow nebulizer, Scott spray chamber, echelle grating, and 

segmented array charge-coupled device detector. The basic principle of operation of ICP-OES is that depending on the 

heavy metal contents in the sample, each element emits energy at specific wavelengths. However, based on the intensity of 

the emitted waves it is generally common to select a single wavelength for a given element. The intensity of energy emitted 

at the chosen wavelength is proportional to the concentration of the element of interest in the sample. It is thus possible to 

quantify the concentration of the element of interest in the sample relative to a reference standard using a calibration curve. 

During the course of analysis, a multi-elemental solution from Spex Certiprep, WP-15-500, (Spex, Metuchen, NJ, USA) was 

used for calibration. A process blank was also prepared, which was run along with samples and corrected for matrix effects. 

 

Governing equations for health risk assessment  
 According to the USEPA, "a human health risk assessment is the process to estimate the nature and probability of 

adverse health effects in humans who may be exposed to chemicals in contaminated environmental media, now or in the 

future"[31]. Pollutants such as Cd, Cr, Cu, Fe, Mn, and Zn were selected in this study. The health risk assessment of each 

heavy metal contaminant in water is based on the estimation of the risk level. The methods delineated by the USEPA [32,33] 

have been used to estimate the average chronic daily intake (CDI) from direct ingestion and dermal absorption routes, 

respectively. The governing equations are as follows: 

𝐶𝐷𝐼𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 =
𝐶𝑤 𝐼𝑅  𝐸𝐹 𝐸𝐷

𝐵𝑊 𝐴𝑇
         (1) 

𝐶𝐷𝐼𝑑𝑒𝑟𝑚𝑎𝑙 =
𝐶𝑤 𝑆𝐴  𝐾𝑝  𝐸𝑇  𝐸𝐹 𝐸𝐷  𝐶𝐹

𝐵𝑊 𝐴𝑇
            (2) 

where CDIingestion/dermal is expressed in g/kg/day; Cw is the measured concentration of chemicals in water (g/L); IR is the 

ingestion rate (3.5 L per day for adults [34]; 1.32 L per day for children [35]); EF represents the exposure frequency (EF = 365 

days per year); ED is the exposure duration (ED = 70 years for carcinogenic risk and 30 years for non-carcinogenic risk for 

adults; 6 years for non-carcinogenic risk for children [32, 33]); BW is the average body weight (57.5 kg for adults [36] and 15 

kg for children [32,33]); AT refers to the average time representing the period over which exposure is averaged (AT = 25,550 

days for carcinogenic risk and 10950 days for non-carcinogenic risk for adults; 2190 days for children [32,33]); SA is exposed 

skin area available for contact (18000 cm2 for adults; 6600 cm2 for children [33]); ET is exposure time (0.58 h/day for adults; 

1 h/day for children [33]); CF is unit conversion factor (0.001 L/cm3 [33]); and Kp is dermal permeability coefficient (cm/h) of 

heavy metal in water [33].  

   The hazard quotient (HQ) is an estimate of the toxicity potential posed by an element from direct ingestion or dermal 

absorption routes, which can be calculated using the relation: 

𝐻𝑄𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙 =
𝐶𝐷𝐼𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙

𝑅𝑓𝐷𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙
        (3) 

where RfDingestion/dermal represents oral/dermal reference dose (g/kg/day) [32,33]) of each contaminant under consideration. In 

general, RfD is an approximate estimate of daily exposure to the human (including sensitive subgroups) that is likely to 

have any noticeable risk of harmful effects during a lifetime [32,33]. The RfD estimate may have an uncertainty spanning 

perhaps an order of magnitude. 

 The hazard index (HI) is the overall potential for non-carcinogenic effects posed by more than one contaminants 

via ingestion or dermal pathway, which can be estimated from the relation: 

𝐻𝐼𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙 = ∑ 𝐻𝑄𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙

𝑛

𝑖=1
        (4) 

Carcinogenic risk (CR) associated with the ingestion pathway can be estimated using the formula: 

𝐶𝑅𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 =
𝐶𝐷𝐼𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛

𝐶𝑆𝐹𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛
          (5) 
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where CSFingestion represents the cancer slope factor. Of the selected six heavy metals, Cd and Cr have significant cancer risk.  

 

Results and discussion 
 The pH of water samples from Kolleru lake are near neutral to alkaline (pH varying from 6.8 to 8.8; Table 1). The 

TDS in these waters are variable ranging from 1006 to 5285 mg/L. Such high TDS contents indicate brackish water that has 

typical TDS contents of 1000 mg/L or more [37]. In a previous study, it was demonstrated that there exists a two-component 

mixing relationship between Na+ content of lake water and δ18O composition of the carbonate fraction of surface sediments 

of the Kolleru lake [24]. Two-component mixing trend was also evident from cross-plot between log(TDS) and δ18O values. 

Taken together, such mixing trends are indicative of influx of significant amounts of seawater into the lake [24]. Several 

human-induced activities in and around the lake have led to almost near stagnant to dry condition of the lake with reduced 

inflow and outflow, overexploitation of groundwater surrounding the lake area and breached distributaries in Upputeru 

River, ultimately facilitating significant intrusion of seawater [24]. 

 

Heavy metal distribution in Kolleru lake 
 The range, average and standard deviation of the concentrations of trace metals Cr, Cu, Fe, Mn and Zn in the 

water samples of Kolleru lake are presented in Table 1. The concentration of Cd was found to be below detection limit for 

each sample, so I refrain from any further discussion on Cd in the later part. It is important to mention that of all the water 

samples #7 is characterized by maximum concentrations of Cu and Cr, although the Fe concentration of this sample is below 

the detection limit. Hence this particular site (Figure 1) is anomalous.  

 The normalized concentration ratio of five heavy metals is presented in Figure 2. The normalization is carried out 

with respect to the median values of concentration of these toxic elements that were reported for clean and uncontaminated 

surface waters (data from Langmuir [38]). Values in excess of 1 indicate enrichment and those below 1 specify depletion. It 

can be seen from Figure 2 that Cr is enriched and Fe is depleted, while the other elements like Cu, Mn and Zn show both 

enrichment as well as depletion at various locations (Figures 1 and 2). Figure 2 points to the fact that the distribution of the 

analyzed elements in water of the lake is highly heterogeneous, indicating that both free flow and internal mixing of water 

in the lake is obstructed. 

 As pointed out above, there are several anthropogenic activities which include unrestrained use of fertilizers and 

pesticides, fishpond discharges containing high concentrations of pesticides, polycyclic aromatic hydrocarbon (PAH) and 

heavy metals as indicated from the presence of such contaminants documented in the prawns cultivated in the area, 

discharge of industrial effluents and agricultural run-off carrying inorganic contaminants [27]. Further, 67 drains varying 

in length from 0.4 km to 280 km discharges water into the Lake [27]. Therefore, it is very difficult to pinpoint the exact 

source/sources that could be responsible for the observed high concentration in sample #7.  

 

Non-carcinogenic health risk assessment   
 Health risk assessment has been carried out to explore the effect of heavy metals due to ingestion as well as dermal 

pathways on adults and children. Non-carcinogenic HQ values pertaining to each heavy metal for adults and children are 

presented in Figures 3 and 4. 

Table 1. Range, average and standard deviation of various parameters, pH, total dissolved solids (TDS), and 

concentrations of five trace metals, chromium (Cr), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn), in 

water samples from the Kolleru lake, India. Cadmium (Cd) could not be estimated, as it was below detection 

limit (BDL) in each sample. In the last row, the average hazard quotient (HQ) estimated for the trace metals 

dissolved in Kolleru lake water is compared with similar data estimated for uncontaminated global surface water 

for which the heavy metal contents were reported in Langmuir et al. [38] 

Parameter pH 
TDS 

(mg/L) 
Cr (µ g/L) Cu (µ g/L) Fe (µ g/L) Mn (µ g/L) Zn (µ g/L) 

Maximum 8.8 5285 80.0 20.0 20.0 313.2 57.0 

Minimum 6.8 1006 4.5 BDL BDL 1.0 BDL 

Average 7.7 3250 12.5 6.9 9.2 55.5 21.3 

Standard deviation 0.5 1168 17.1 6.0 4.5 96.7 17.0 

𝐻𝑄𝑀𝑒𝑡𝑎𝑙 𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙
𝐾𝑜𝑙𝑙𝑒𝑟𝑢 𝐿𝑎𝑘𝑒

𝐻𝑄𝑀𝑒𝑡𝑎𝑙 𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙
𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑊𝑎𝑡𝑒𝑟

   12.5 2.3 0.09 3.7 0.99 
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Figure 2. Plot showing heavy metal contaminated water chemistry of the Kolleru lake. The normalized ratios of 

selected toxic trace metals in the water samples of the lake are plotted for individual sampling site. For 

normalization, data from Langmuir [38] is used. Note that values greater than 1 indicate enrichment and those 

lower than 1 specify depletion. 

Oral pathway and dermal pathways 
 CDIingestion and HQingestion values were estimated using equations (1) and (3). The RfDingestion values used for each 

heavy metal are as follows: Cr = 3 g/kg/day [39], Cu = 40 g/kg/day [40], Fe = 700 g/kg/day [41], Mn = 140 g/kg/day [42] 

and Zn = 300 g/kg/day [43]. 

 Figure 3 shows that for both adults and children the average HQingestion values exhibit the following order: Fe < Zn 

< Cu < Mn < Cr. For adults, the HQingestion values for chromium show a wide range (0.093 to 1.636) with a mean value of 0.256.  

In the case of children, a wide range (0.133 to 2.346) is also characteristic with a mean value of 0.368. Only one sample is 

characterized by HQingestion value, which is greater than 1 (sample # 7, Figure 3a). The HQingestion values for Cu, Fe, Mn and Zn 

(Figure 3b to 3e) exhibit respectively the following ranges in the case of adults: (0 to 0.03; mean = 0.01), (0 to 0.002; mean = 

0.0008), (0.0004 to 0.137; mean = 0.024) and (0 to 0.012; mean = 0.004). For children, these ranges are: Cu = 0 to 0.044, Fe = 0 

to 0.0025, Mn = 0.0006 to 0.197 and Zn = 0 to 0.017 with respective mean values of 0.015, 0.0012, 0.035 and 0.006 (Figure 3b 

to 3e). Therefore, with the exception of one site where high Cr concentration is observed (sample # 7), the HQingestion of lake 

water corresponding to each heavy metal is estimated to be less than 1 (Figure 3). Further, the HQingestion values in the case of 

children are always high compared to those of the adults (Figure 3).  

 CDIdermal and HQdermal values were estimated using Equations (2) and (3), respectively. The dermal permeability 

coefficient (Kp) values used in equation (2) for Cr, Cu, Fe, Mn and Zn were reported earlier, which are 2.0E-03, 1.0E-03, 1.0E-

03, 1.0E-03 and 6.0E-04, respectively [33]. The RfDdermal values used in Equation (3) corresponding to each heavy metal were 

taken from the literature [44]. 

 The estimated HQdermal values corresponding to five heavy metals are displayed in Figure 4. As can be seen in the 

diagram, the average HQdermal is characterized by values that are less than 1. When the spatial distribution of samples within 

the lake is considered, it is observed that the individual HQdermal values corresponding to each metal exhibit wide scatter 

(Figure 4a to 4e). Another interesting feature that emerges from Figure 4 is that the HQdermal values in the case of children are 

almost double when compared to those of adults. 

 Summarizing the results on estimation of HQ values due to direct ingestion and dermal absorption routes, it can 

be inferred that with the exception of one site where high Cr concentration is observed (sample #7), there is negligible 

potential risk of either direct intake or other use of lake water that is contaminated with dissolved heavy metals. 

 Exposures to multiple chemicals may contribute to increased health risks. Therefore, a measure of cumulative risk, 

HI is estimated. HI represents the overall potential for non-carcinogenic effects posed by more than one contaminants via 

ingestion or dermal pathway, which can be estimated using equation (4). Figure 5a and 5b exhibit the HIingestion and HIdermal 

values corresponding to each site of the lake. Similar to Figure 3 and 4, we observe HIingestion and HIdermal that are characterized 

by low values (<1), indicating negligible health risk. However, one site is characterized by high HIingestion value (Figure 5a). 

 

Carcinogenic health risk assessment due to chromium (Cr) ingestion   

CRingestion of Cr was estimated using equations (1) and (5). The cancer slope factor (CSFingestion) for Cr is 500 g/kg/day 

[45]. Figure 5c shows the histogram plot of estimated CRingestion of Cr for adults and children. The CRingestion values range from  
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Figure 3. Non-carcinogenic hazard quotient through ingestion pathway (HQingestion) of heavy metals, (a) chromium 

(Cr), (b) copper (Cu), (c) iron (Fe), (d) manganese (Mn) and (e) zinc (Zn), of the Kolleru lake. HQingestion for 

individual sampling site corresponding to adults, children and the respective averages are shown.  

 

Figure 4. Non-carcinogenic hazard quotient through dermal pathway (HQderaml) of heavy metals, (a) chromium 

(Cr), (b) copper (Cu), (c) iron (Fe), (d) manganese (Mn) and (e) zinc (Zn), of the Kolleru lake. HQingestion for 

individual sampling site corresponding to adults, children and the respective averages are shown.  
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Figure 5. Estimated non-carcinogenic hazard index (HI) and carcinogenic risk due to chromium (Cr) ingestion. 

The bar diagram of hazard index corresponding to adults, children and the respective averages are shown. The 

HI represents the overall potential for non-carcinogenic effects posed by more than one contaminant via (a) 

ingestion (HIingestion) and (b) dermal (HIdermal) routes. Histogram plots showing (c) carcinogenic risk due to 

chromium ingestion (CRCr ingestion) and (d) comparative study between average Kolleru lake water HIingestion/dermal 

values and those estimated for global surface water (GSW; [38]). 

0.00056 to 0.0098 with an average of 0.00154 for adults. In the case of children, the minimum (0.0008) maximum (0.0141) and 

average (0.0022) values are higher compared to the adults (Figure 5c). The estimated CRingestion value is indicative of the 

incremental probability of an individual developing cancer over a lifetime. For example, CRingestion of 10‒4 indicates a 

probability of 1 in 10,000 individuals developing cancer [32]. Incidentally, according to the USEPA the permissible levels of 

total carcinogenic health risk is also 10‒4 [46]. The average CRingestion levels of the adults and children are 0.00154 and 0.0022, 

respectively. Both these values are therefore higher than the permissible levels [46]. Furthermore, children are more 

vulnerable to Cr ingestion. 

 

Comparison of health risk associated with Kolleru lake water vis-a-vis global surface water  

 The non-carcinogenic health risk assessment of Kolleru lake water has indicated negligible potential risk via 

ingestion and dermal routes. However, in the backdrop of Figure 2 shown above, it is important to estimate the health risk 

associated with global surface water for which the heavy metal contents were reported in Langmuir [38] and compare them 

with the Kolleru lake water. Table 1 presents the ratio between average HQ values associated with various heavy metals 

dissolved in Kolleru lake water and global surface water. It can be seen from Table 1 that three heavy metals, Cr, Mn and 

Cu are characterized by ratios that are greater than 1 and the ratios follow the order: 

𝐻𝑄𝐶𝑟 𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙
𝐾𝑜𝑙𝑙𝑒𝑟𝑢 𝐿𝑎𝑘𝑒

𝐻𝑄𝐶𝑟 𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙
𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑊𝑎𝑡𝑒𝑟 > 

𝐻𝑄𝑀𝑛 𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙
𝐾𝑜𝑙𝑙𝑒𝑟𝑢 𝐿𝑎𝑘𝑒

𝐻𝑄𝑀𝑛 𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙
𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑊𝑎𝑡𝑒𝑟 > 

𝐻𝑄𝐶𝑢 𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙
𝐾𝑜𝑙𝑙𝑒𝑟𝑢 𝐿𝑎𝑘𝑒

𝐻𝑄𝐶𝑢 𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛/𝑑𝑒𝑟𝑚𝑎𝑙
𝐺𝑙𝑜𝑏𝑎𝑙 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑊𝑎𝑡𝑒𝑟 

Therefore, Cr is the major contaminant in the Kolleru lake water, which is also demonstrated in this study through 

estimation of carcinogenic health risk assessment due to Cr ingestion. Two other metals, Zn and Fe, represent average HQ 

ratios that are either close to 1 (Zn = 0.99) or very less (Fe = 0.09).  

 The comparison study made here on the calculated HI is extremely significant. An overall insight as to how the 

Kolleru lake water must have been affected due to presence of dissolved heavy metals as a consequence of anthropogenic 

activities was plotted in Figure 5d. In this diagram the estimated HIaverage values for adults and children via ingestion and 

dermal pathways are displayed (Figure 5d). The HI values are also estimated based on median values of concentration of 

the same toxic elements [38] reported for global clean and uncontaminated surface waters (Figure 5d). These latter values 

are also displayed against HIaverage of Kolleru lake water for comparison. Marked differences can be noticed between the two 

sets of HI values (Figure 5d), indicating the degradation of water quality of the lake. 

 It is significant to mention that presence of various types of macrophytes such as Eichhornia crassipes, Pennisetum 

purpureum, Salvania sp., Ipomea aquatica and many others have been noticed within the Kolleru lake during the field survey. 

The toxic metal removal potential of water hyacinth was evaluated by Stephenson et al. [47] It was found by these researchers 

that E. crassipes can be used as remediator plants for several toxic metals like Cd, Co, Cr, Cu, Fe, Pb etc. Likewise, to improve 
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the water quality, the role of macrophytes by preferentially scavenging different heavy metals was also reviewed [48]. In 

view of the above two studies, it is inferred that the estimated HQ values pertaining to various heavy metals in water of the 

Kolleru lake may be considered as the minimum limit. The heterogeneous distribution of HQ values displayed in Figure 3 

and 4 explains the metal scavenging role of macrophytes. Although with the available data it is difficult to point out the 

exact source/sources and assess the relative contribution of each source for the observed heterogeneous distribution of HQ 

values in the lake water, it is certain that unchecked anthropogenic activities in and around the Kolleru lake area are 

responsible for the degradation of its water quality. In this context it is pertinent to mention that the Andhra Pradesh 

Government initiated a task called "Operation Kolleru" during 2005–2006. The main aim of this task was to ensure traditional 

activities only and to do away with all encroachments within the designated site of the lake so that free flow of water is 

restored. After the operation was over, migratory birds started returning to the lake, which caught attention of many. 

Subsequent publications also reported retrieval of the lake ecosystem [49,50]. However, recent studies reveal that several 

anthropogenic activities have once again picked up momentum within the lake and its surroundings [23,24,51]. Despite 

negligible potential non-carcinogenic health risk of either direct intake or other uses of lake water as indicated by <1 HQ 

and HI values (Figure 3, 4, and 5), this study demonstrates that the ratios between estimated average HQ values associated 

with various heavy metals like Cr, Cu and Mn dissolved in Kolleru lake water and global surface water is high (Table 1 and 

Figure 5c and 5d). Therefore, there is an urgent need to stop further degradation of the lake and its surroundings. In order 

to ensure sustenance of the lake’s health, concerted efforts are needed on local and regional scales.  
 

Conclusion and recommendation 
 (i) The individual HQingestion HQdermal values are estimated to be less than 1 for the heavy metals dissolved in Kolleru 

lake water. Such low values are indicative of an acceptable level of non-carcinogenic health risk for the heavy metals 

dissolved in water.  

(ii) The average HIingestion and HIdermal, for both adults and children are also less than 1, suggesting negligible amount 

of overall adverse health risk. 

(iii) Water intake represents only a proportion of fluid consumed. However, taking other food items such as fish 

of the lake and rice grown in the lake surroundings when consumed, can have adverse health effect. Because in such case, 

cumulative ingestion candidates may contribute to intake of increased amounts of heavy metals.  

(iv) As far as average CRingestion levels of the adults and children due to Cr are concerned, high CRingestion values of 

0.00154 and 0.0022, respectively are estimated for adults and children. Both these values are higher than the permissible 

levels [46]. 

(v) It is therefore recommended that monitoring the levels of heavy metal in water and other items like fish of the 

lake, rice and vegetables grown in the area need to be carried out at regular intervals. 

(vi) In view of the phytoremediation potential of various species discussed in the literature [47,48], one of the most 

pertinent questions that may arise is whether to eliminate or maintain the macrophytes in the lake ecosystem. This is 

particularly important in view of sampling site #7, where anomalously high concentration of Cr is registered. As a mitigation 

measure, it is therefore suggested that the phytoextraction process may be continued for some more time, even if it is at the 

expense of restriction of free flow of water in the lake. However, once the phytoextraction processes are over, the macrophyte 

species need to be disposed safely during the initial stages of restoration phase of the lake. Subsequently, if the domestic 

and industrial effluents are allowed to discharge into the lake, proper treatment becomes mandatory to ensure no toxicity.  

(vii) The natural macrophytes that preferentially scavenge heavy metals and present in the lake need to be 

disposed periodically after the phytoextraction processes. In this context, strategies may be made about their safe disposal. 

For example, Sas-Nowosielska et al. [52] examined a large number of strategies that include composting, compaction, 

incineration, ashing, pyrolysis, direct disposal, liquid extraction, etc. They suggested that incineration (smelting) is the most 

feasible, economically viable and environmentally friendly method. However, there are other researchers who proposed 

that pyrolysis of hyperaccumulator biomass is the most suitable method [53,54]. According to them, the char can be 

considered a rich "ore" or metal concentrate, which can be processed for possible separation of the metal in an ore-processing 

unit. Such mitigation measures could prove to be extremely beneficial for long-term sustenance of the lake ecosystem. 

(viii) The results presented in this study and recommendation made thereof is expected to provide adequate 

insight to the local government and health professionals to evolve strategies to effectively manage and mitigate the water 

quality of the Kolleru lake. 
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