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Many studies have suggested that lncRNAs are involved in distinct and diverse biological 
processes. The mutation of lncRNAs plays a major role in a wide range of diseases. 
A comprehensive information of lncRNA-disease associations would improve our 
understanding of the underlying molecular mechanism that can explain the development 
of disease. However, the discovery of the relationship between lncRNA and disease 
in biological experiment is costly and time-consuming. Although many computational 
algorithms have been proposed in the last decade, there still exists much room to improve 
because of diverse computational limitations. In this paper, we proposed a deep-learning 
framework, NNLDA, to predict potential lncRNA-disease associations. We compared it 
with other two widely-used algorithms on a network with 205,959 interactions between 
19,166 lncRNAs and 529 diseases. Results show that NNLDA outperforms other existing 
algorithm in the prediction of lncRNA-disease association. Additionally, NNLDA can 
be easily applied to large-scale datasets using the technique of mini-batch stochastic 
gradient descent. To our best knowledge, NNLDA is the first algorithm that uses deep 
neural networks to predict lncRNA-disease association. The source code of NNLDA can 
be freely accessed at https://github.com/gao793583308/NNLDA.

Keywords: lncRNA, neural network, large dataset, non-linear, computational model

INTRODUCTION

There are about 30,000–40,000 protein-coding genes in the human genome, which are only about 
twice as many as in worm or fly (Lander et al., 2001). But the majority of the human genome 
transcripts are non-coding RNAs, in particular, long non-coding RNAs (lncRNAs) (Geng et al., 
2013). Protein-coding genes account for only 1.5% of the human genome. However, researchers 
observed a total of 62.1% and 74.7% of the human genome to be covered by either processed 
or primary transcripts respectively (Djebali et al., 2012). This suggests that lncRNA also plays 
an important role in biological processes. Recent studies revealed that numerous sets of non-
coding RNA involved in distinct and diverse biological processes, such as cell proliferation, RNA 
binding complexes, immune surveillance, ESC pluripotency, neuronal processes, morphogenesis, 
gametogenesis, and muscle development (Mitchell et al., 2009). Furthermore, some important 
lncRNA biomarkers were found in a wide range of human diseases. For example, the expression 
of HOTAIR would induce androgen-independent (AR) activation, which plays a central role in 
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establishing an oncogenic cascade that drives prostate cancer 
progression. It can also drive AR-mediated transcriptional 
programs in the absence of androgen (Zhang et al., 2015). So 
finding the relationship between lncRNA and disease can not 
only help us understand the mechanism of disease, but also 
accelerate the discovery of biomarker. However, discovering 
the potential relationship between lncRNA and disease by 
experimental ways are costly and time-consuming. Thus, 
many computational models have been proposed to predict 
potential connection patterns by utilizing existing data such as 
LncRNADisease (Geng et al., 2013), LncRNAdb (Cheng et al., 
2015), and NONE-CODE (Cheng et al., 2015).

The existing computational models can be divided into 
two categories. The first class of methods make predictions 
based on the similarity of artificial definitions. It assumed that 
similar diseases or lncRNA have similar connection patterns. 
Take a simple example, if we know that disease(i) is related 
to lncRNA(i) and disease(i) and disease(j) are very similar. It’s 
obvious that we can infer that disease(j) and lncRNA(i) are also 
related. This algorithm needs to collect a lot of additional data 
to accurately define similarity. If the definition of similarity 
is accurate, the algorithm can achieve high performance. For 
example, LncRDNetFlow utilizes a flow propagation algorithm 
to integrate multiple networks based on a variety of biological 
information including lncRNA similarity, protein-protein 
interactions, disease similarity, and the associations between 
them to infer lncRNA-disease associations (Zhang et al., 
2017a). IRWRLDA construct lncRNA expression similarity 
and lncRNA functional similarity to make prediction (Chen 
et al., 2016). RWRlncD infer potential human lncRNAdisease 
associations by implementing the random walk with restart 
method on a lncRNA functional similarity network (Sun et al., 
2014). BiWalkLDA integrating interaction profiles and gene 
ontology information to construct similarity network. Such an 
algorithm also has KATZLGO (Zhang et al., 2017b) and IDHI-
MIRW (Fan et al., 2019). It can be seen that this algorithm first 
constructs the similarity network based on the relevant data and 
then making prediction according to the constructed similarity. 
The second class of methods make predictions based on matrix 
factorization (MF). Their core idea is to learn a similarity 
rather than artificial definition similarity. This actually turns 
the prediction process into a classification question. For each 
lncRNA and disease, the aim of MF is to learn a latent factor 
to represent them and then make prediction based on learned 
latent factors. In this way, no additional knowledge is needed 
to define similarity. This method is widely used in prediction 
lncRNA-disease association. For example, the algorithm of 
MFLDA decomposes data matrices of heterogeneous data 
sources into low-rank matrices via matrix tri-factorization to 
explore and exploit their intrinsic and shared structure (Fu 
et al., 2017). SIMCLDA models the lncRNA-disease association 
prediction problem as a recommendation task and solves it 
with inductive matrix completion (IMC) (Lu et al., 2018).

The known lncRNA-disease association data used by current 
algorithms is derived from LncRNADisease (Geng et al., 2013). 
This database was proposed in 2013 and does not contain much 
lncRNA and disease (almost 300 lncRNA and 700 diseases). 

Because the data is relatively small, even though the existing 
prediction algorithms can achieve high accuracy, many results 
are repetitive and therefore cannot provide more valuable 
results. Fortunately, recently, a larger dataset LncRNADisease 
2.0 can be used (Bao et al., 2019). LncRNADisease 2.0 curated 
19,166 lncRNAs, 823 circRNAs, and 529 diseases from 3878 
literatures. Although the form of data remains unchanged, only 
the increase in the amount of data makes previous algorithms 
not applicable to LncRNADisease 2.0. For methods that need to 
artificially define similarity, it is difficult to collect the additional 
information needed comprehensively in the face of such large 
data. So, it is difficult to define an appropriate similarity for 
prediction. For the method based on MF, the time cost of the 
algorithm is unacceptable with the increase of data. Besides, MF 
is actually a linear model of latent factors, so it cannot describe 
more complex relational patterns well (He et al., 2017). As we 
all know, deep learning can be applied to large-scale data and 
learn complex non-linear relationships by means of mini-batch 
stochastic gradient descentand and nonlinear activation function. 
In recent years, deep neural networks have yielded immense 
success on object detection (Ren et al., 2017), recommendation 
System (Zhou et al., 2017), single cell denoising (Eraslan and 
Simon, 2019; Peng et al., 2019), and many other fields. However, 
no deep learning-based algorithm has been proposed to predict 
potential lncRNA-disease association. In this article, we will 
introduce our proposed framework NNLDA which uses neural 
networks to predict lncRNA-disease association. To our best 
knowledge, NNLDA is the first algorithm that uses deep neural 
networks to predict lncRNA-disease association. Experiments 
show that NNLDA can be well applied to large data and to learn 
more complex non-linear relationships.

METHOD

Our prediction framework NNLDA is improved based on the 
MF method. In this section, I will first introduce the method of 
MF and point out its shortcomings. Then, we will explain how 
we solve these shortcomings and introduce the procedure of 
NNLDA in detail.

Matrix Factorization (MF)
MF is a frequently used method in the problem of predicting 
lncRNA-disease association (Fu et al., 2017; Lu et al., 2018). 
Its core idea is to learn a corresponding latent factor for each 
lncRNA and disease. The dot product of the latent factor was 
used to represent the possible score of corresponding lncRNA 
and disease. Take the prediction of lncRNA-disease association, 
for example. First, we should construct an adjacency matrix 
Anl×nd, where nl is the number of lncRNA and nd is the number 
of diseases. Aij = 1 represents that the ith lncRNA is associated 
with dj, otherwise, Aij = 0. Then, we assign a k-dimensional latent 
factor L(i) for each lncRNA(i) and a k-dimensional latent factor 
D(i) for each disease(i). These latent factors are usually randomly 
initialized at the beginning and then be adjusted by some 
optimization algorithm such as stochastic gradient descent. Now, 
we can use the dot product of the latent factor to re-estimate A. 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Predicting Potential IncRNA-Disease AssociationsHu et al.

3 October 2019 | Volume 10 | Article 937Frontiers in Genetics | www.frontiersin.org

For  each pair of lncRNA(i) and disease(j), we predict its 

association using Â L Dij in nj
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A new L and D can be learned by minimizing loss. This 
loss is actually equivalent to Loss A LD F= −|| ||2 , which was 
frequently used in other literatures because the dot product 
of vectors can be seen as the angle of vectors in space (a⋅b = 
|a||b|cos(a,b)). So, matrix factorization actually maps each 
lncRNA and disease into k-dimensional space and then defines 
the relationship between lncRNA and disease by using the 
length and angle of the latent factor. However, there are several 
shortcomings in doing so: (1) There are limitations in utilizing 
the angle between latent factor to define the relationship 
between lncRNA and disease. Take two-dimensional space as 
an example, suppose we now learn three latent factors: a1(1,0), 
a2(0,1), a3(1,1), if we also have latent factor a4 and we want the 
angle between a4 and a1, a2 to be as small as possible, but the 
angle between a2 and a3 to be as large as possible. Obviously, 
no matter where a4 is, it can’t be satisfied. Of course, we can 
describe this relationship by adding spatial dimensions, but the 
increase of k actually increases the risk of over-fitting. It can 
be concluded that angle can’t actually describe some complex 
relationship patterns perfectly. (2) The time complexity of 
matrix decomposition is too high. When calculating the loss, 
it needs to calculate all possible connections between lncRNA 
and disease. As the amount of data increases, the time required 
is unacceptable. Besides directly optimizing, global loss is easy 
to fall into local minima.

Making Matrix Factorization Applicable 
to Large Data
In order to make the matrix factorization method suitable for 
large-scale data, we made some improvements to the original 
method and implemented the method with tensorflow. We named 

this method NNMF, which is different from the traditional MF 
method in two aspects:

(1) Unlike previous MF, full data is used to minimize loss. We 
adopt mini-batch stochastic gradient descent to train model. 
This means that we use only one batch data per round to 
minimize loss, which makes our algorithm suitable for large-
scale data.

(2) The traditional matrix factorization uses mean square 
error or absolute value error to measure loss. Its goal is to 
min || ||A LD F− 2 . In NNMF, we use cross-entropy as our 
loss function, which is proved to be more applicable to 
classification problems and easier to optimize.

With above two improvements, NNMF can be adapted to 
large-scale data. The structure of the network and an example 
of computational processes are shown in Figure 1. NNMF takes 
lncRNA(i) and disease(j) as its input and outputs the probability 
of the relationship between lncRNA(i) and disease(j). First, 
the network generates a dense latent factor for corresponding 
lncRNA(i) and disease(j). This operation is done by embedding 
lookup function in tensorflow. Then, the corresponding position 
elements of the two vectors are multiplied and summed. Sigmoid 
activation functions are added to limit output to between 0 and 
1. With the predicted results, we can calculate the cross-entropy 
loss to adjust the corresponding latent factor. To avoid storing 
the whole data set into memory each time we take a batch data to 
train, the batch size is set to 1,024. This process is repeated until 
the loss is no longer reduced. NNMF changes the way of training 
and the loss function compared with the traditional matrix 
decomposition algorithm. With these small changes, NNMF can 
be adapted to large-scale data easily.

Learning More Complex Relationships 
by Using Full Connectivity Layer
Matrix factorization actually maps lncRNA and disease into 
k-dimensional space, and then measures their relationship by 
using dot product of latent factors. This approach undoubtedly 
has its limitations. In order to learn more complex non-linear 
features, a natural idea is to use the full connection layer of the 

FIGURE 1 | (A) The structure of NNMF. Each lncRNA and disease is projected into a k-dimensional space. It means each lncRNA and disease would be 
represented by a corresponding k*1 eigenvector. The relationship between lncRNA and disease is measured by the dot product of their corresponding eigenvector. 
The activation function is sigmoid. (B) A toy example of the NNMF, where k is set to 3. 
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neural network to improve it. Similar to the NNMF process, 
we initialize a latent factor for each lncRNA and disease at the 
beginning. Then, we concatenated the latent factors and add 
full connection layers to learn more complex relationships. 
RelU activation function is used on each full connection layer 
to increase the non-linear description ability of the network. 
Sigmoid activation functions are added to limit output to between 
0 and 1. Considering that using full connection layer alone may 
increase the risk of over-fitting. We adopt the following two 
strategies to prevent over-fitting:

(1) Add L2 regularization to latent factors and full connection 
layer to limit models from learning too complex features.

(2) The deep part is trained together with NNMF. In this way, we 
cannot only learn more diverse connection relationships, but 
also improve the generalization ability of the model.

We name this new model NNLDA. It means predicting 
lncRNA-disease association by means of neural networks. 
The overall structure of NNLDA is shown in Figure 2. First, 
for each lncRNA and disease, we will find their corresponding 
latent factors. MF part multiplies the corresponding elements 
of latent factors and deep part use several full-connection layers 
to learn the complex relationship between lncRNA and disease. 
Their results are concatenated together and connected to a 
full connection layer for final prediction. Sigmoid activation 
function is added to limit output to between 0 and 1. NNLDA 
learns more complex relational patterns by combining dot 
product of latent factors and full connectivity layer. Because 
NNLDA uses mini-batch stochastic gradient descent to 
minimize loss, it can also be well applied to large-scale data. We 
believe that NNLDA can perfectly solve the shortcomings of 
traditional MF methods.

Implementation
NNLDA is implemented in Python 3.5 and uses TensorFlow1.12.0. 
Length of latent factor is set to 32. Three full-connection layers 
with lengths of 32, 16 and 8 are added in deep part. L2 regulation 
is added in all full-connection layers and latent factors to prevent 
over-fitting and regulation rate is set to 0.01. We use adam for 
optimization with learning rate 0.01. Epoch is set to 100 and 
batch size is set to 1024.

EXPERIMENT

Dataset
Unlike previous algorithms which usually perform on small data 
sets such as LncRNADisease database, we use LncRNADisease 
2.0 to measure the results of the algorithm. LncRNADisease 
2.0 shows that there exists 205,959 interactions between 19,166 
lncRNAs and 529 diseases. We believe that more valuable results 
can be found by using larger data. Such large-scale data also 
challenges previous algorithms. The experimental data can be 
downloaded from http://www.rnanut.net/lncrnadisease/. We 
remove all repeating records with the same lncRNA and disease, 
and all these non-human associations. Finally, we retained 187,55 
lncRNA and 463 disease with 177,899 associations.

10-Fold Cross Validation
To test the algorithm performance, we employed a widely-used 
strategy, 10-fold cross validation. Known lncRNA and disease 
associations are divided into 10 copies. In each round, nine of 
them are used to train algorithms and the remaining one is used 
as a test set. Notice that we need negative samples to train the 
algorithm, but in fact we don’t know which lncRNAs are not 
associated with diseases. So, for each known LncRNA-disease, 

FIGURE 2 | The structure of NNLDA. MF part is same as NNMF. Deep part use several full connection layers to learn complex association relationships. Their 
results are concatenated together to make final predictions.
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we will randomly sample four lncRNA that do not interact by 
this disease as negative samples. When predicting test sets, we 
no longer use AUC as an evaluation criterion. This is because 
AUC needs to compute all possible associations. This means 
that if there are n lncRNA and m disease, we need to calculate 
n*m possible cases and then generate a rank list. It’s obvious 
that it’s unrealistic when the data set is large. So we adopt a 
new evaluation strategy. For each test sample, we will sample 
99 random lncRNA that not interact by this disease. The model 
scores 99 negative samples and one positive sample to generate 
the corresponding rank list. Then, we use Hit Ratio (HR) to 
assessment results. The HR intuitively measures whether the 
test item is present on the top-k rank list and we can interpret 
HR (K) as the probability of positive samples appearing in top-k 
rank list. If the test sample is in the first k of rank list, its value 
is plus one. The hit rate value can be obtained by dividing the 
final hit value by the number of test samples. The higher the hit 
rate, the higher the likelihood that true sample will appear in the 
top-k rank list.

The Effects of Parameters
Length of Latent Factors
In the first step of NNMF and NNLDA, both lncRNA and disease 
need to be mapped into a k-dimensional vector. This vector is 
called latent factors. Here, k is an artificially defined parameter 
and represents the dimension of feature space. If the value of 
k is very small, the model cannot learn complex relationships. 
If the value of k is big, the risk of over-fitting of the model 
increases. In order to test possible effects on the performance of 
the algorithm under different value of k, we changed the value of 
k in 8, 16, 32, 64, and 128 each time, and then calculated the HR 
10. Because KNN does not use latent factors, we only compared 
NNMF and NNLDA here. The experimental results show in 
Figure 3. The result shows that the length of latent factors don’t 
actually have much impact on the hit ration. This is because 
we added L2 regularization to latent factors. Even if the length 
of latent factors increases, it will not be over-fitting data. If no 

regularization is added, the loss of the model decreases rapidly 
and over-fitting will occur soon.

Number of Layers
We used several full-connection layers in deep part to learn more 
complex relationships. More layers can theoretically learn more 
complex models, which also increases the risk of over-fitting. 
In order to test the possible effect of number of layers on the 
performance of the algorithm. We changed the number of layers 
in 1-layer (32), two-layer (32 and 16), three-layer (32, 16, and 
8) and four-layer (32, 16, 8, and 4), and calculate the hit ration 
value. The experimental results are shown in Figure 4. It can be 
seen that increasing the number of layers of the network will not 
greatly improve the effectiveness of the algorithm. Algorithm 
performance is poor when the number of layers is 4. This shows 
that even if we use L2 regularization to prevent over-fitting, the 
number of layers of the network should not be too big.

Comparison With Other Algorithms
Because we use LncRNADisease 2.0 to compare the performance 
of our algorithm. Traditional algorithms cannot be applied to 
such large dataset. So, although many computational models 
have been proposed, they cannot be used for comparison. We 
have made some changes to the traditional algorithm. NNMF 
can be seen as a matrix factorization algorithm suitable for 
large-scale data. For algorithms that need to define similarity 
artificially, we implement an algorithm manually based on the 
idea of KNN. The specific process is as follows: First, we calculate 
the gauss similarity between diseases which is widely used in 
other papers. Then for each disease, we will find 40 diseases that 
are most similar to it and use their average interaction profile to 
make predictions.

We compare NNLDA with other two computational methods 
(NNMF and KNN) of lncRNA-disease association prediction 
in terms of HR. All algorithms use the same data to make 
predictions. The experimental results are shown in Figure 5. It 
can be seen that the performance of KNN is very poor. This is 

FIGURE 3 | HR @ k Three Algorithms under Different value of k. FIGURE 4 | Effects of lengths of latent factors.
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because similarity-based algorithms need to artificially define 
the similarity between diseases and then make predictions based 
on similarity. As the amount of data increases, additional data 
becomes more and more difficult to obtain. Because of this, 
it is difficult to define an accurate and reasonable similarity. 
So, the performance of this algorithm is limited by similarity. 
Comparing NNLDA and NNMF, we can find that NNLDA 
outperforms NNMF in all k values. In fact, NNLDA can be seen 
as model fusion of NNMF and full connectivity layer. This shows 
that more complex connection relationships can be learned by 
using the full-connection layer.

CONCLUSION

Many recent studies suggest that lncRNAs are strongly associated 
with various complex human diseases. Therefore, the discovery of 
the potential association between lncRNA and diseases helps to 
understand the biological processes and underlying mechanisms 
of diseases. Many prediction algorithms have been proposed to 
predict lncRNA-disease association. Although the algorithm 
can achieve high accuracy, traditional prediction algorithms 
can no longer be applied to more and more large-scale data. 

In this paper, we propose NNLDA to predict lncRNA-disease 
association. NNLDA uses mini-batch stochastic gradient descent 
and cross-entropy loss to enable the algorithm to be applied 
to large-data sets and use full-connection layer to make up for 
the deficiency of MF expression ability. Our contributions can 
be summarized as follows: 1) NNLDA is the first algorithm can 
predict lncRNA-disease association on large datasets. 2) NNLDA 
is the first algorithm to use neural network to predict potential 
lncRNA-disease association. Compared with traditional MF 
algorithm, NNMF can better describe their relationship by using 
full-connection layer. In the experimental part, we compare 
NNLDA, KNN, and NNMF. The experimental results show that 
NNLDA performs better in terms of hit rate on LncRNADisease 
2.0 database. The experiment of parameter influence shows that 
NNLDA is robust to different parameter setting.
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