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Type I interferons (IFNs) are critical effector cytokines of the immune system and were
originally known for their important role in protecting against viral infections; however, they
have more recently been shown to play protective or detrimental roles in many disease
states. Type I IFNs consist of IFNa, IFNb, IFNϵ, IFNk, IFNw, and a few others, and they all
signal through a shared receptor to exert a wide range of biological activities, including
antiviral, antiproliferative, proapoptotic, and immunomodulatory effects. Though the
individual type I IFN subtypes possess overlapping functions, there is growing
appreciation that they also have unique properties. In this review, we summarize some
of the mechanisms underlying differential expression of and signaling by type I IFNs, and
we discuss examples of differential functions of IFNa and IFNb in models of infectious
disease, cancer, and autoimmunity.
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INTRODUCTION

Interferons (IFNs) are cytokines that were originally discovered and named for their ability to
interfere with viral replication (1). IFNs are grouped into three classes according to the receptor that
mediates their effects: type I IFNs (the focus of this review), type II IFN (IFNg), and type III IFNs
(IFNls) (2, 3). Broadly speaking, each IFN class signals through receptor-associated Janus kinases
(JAKs), which activate various Signal Transducer and Activator of Transcription (STAT)-signaling
pathways. Type I IFNs signal through the heterodimeric IFN-a/b receptor 1 (IFNAR1) and
IFNAR2, which are associated with the JAKs tyrosine kinase 2 (TYK2) and JAK1, respectively
(4). Canonically, activation of TYK2 and JAK1 leads to the formation of the IFN-stimulated gene
(ISG) factor 3 (ISGF3) complex, composed of STAT1, STAT2, and interferon regulatory factor 9
(IRF9). The ISGF3 complex then translocates to the nucleus to regulate the expression of hundreds
of IFN-stimulated genes. Type I IFN signaling can activate other STAT complexes, often in a cell-
type dependent manner. Additionally, alternative signaling cascades, including the mitogen-
activated protein kinase p38 pathway and the phosphatidylinositol 3-kinase pathway, are also
required for optimal generation of type I IFN responses (4).

Type I IFNs have broad, pleiotropic effects that include antiviral activity, antiproliferative effects,
and immunomodulatory properties. There is growing evidence that the overall outcome of type I
IFN responses can be beneficial or detrimental for the host depending on the timing, magnitude,
and source of IFN production, as well as the specific biological context (5). Moreover, despite
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signaling through a shared receptor, type I IFN subtypes possess
important functional differences, both in vitro and in vivo. The
purpose of this review is to summarize the current understanding
of differential type I IFN properties, focusing on the role of
human and mouse IFNa and IFNb in infectious disease, cancer,
and autoimmunity. In particular, we seek to highlight the few
examples that demonstrate or suggest differential activities for
type I IFN subtypes in vivo.
TYPE I IFNS: A MULTIGENE FAMILY

Type I IFNs exist as a multigene family across many species
(Figure 1) (6). IFNas, IFNb, IFNϵ, IFNk, and IFNw are found in
many species, whereas IFNd and IFNt are only found in pigs and
cattle (7). In humans (HuIFN), the type I IFN genes are located
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on chromosome 9 and encode 13 IFNa subtypes and single
forms of IFNb, IFNϵ, IFNk, and IFNw (7). Type I IFNs in mice
(MuIFN) are located on chromosome 4, and likewise, consist of
multiple genes with some differences compared to human.
MuIFNs include 14 IFNa subtypes, IFNb, IFNϵ, IFNk, an
IFN-like cytokine IFNz (also known as limitin), but lack a
functional IFNw, which is present as a pseudogene (8).

Phylogenetic analyses reveal that the type I IFN subtypes form
clades consistent with mammalian speciation (7, 9, 10). For the
most part, placental mammals possess single copies of the genes
encoding IFNk, IFNb, and IFNϵ, and these unduplicated
subtypes represent the first major clade within mammalian
IFNs (11). IFNk is the first subtype to diverge within
mammalian type I IFNs and forms an outgroup, possibly the
result of a unique evolutionary route for IFNk relative to IFNb
and IFNϵ (11). IFNk is additionally distinctive as the only
A

B

FIGURE 1 | Type I IFNs are a closely related family of related cytokines. (A) Depicted is a summary of existing phylogenetic analyses of the type I IFNs. The
branches are not drawn to scale. IFNk, IFNb, and IFNϵ are mostly present in placental mammals as single copies and the first subtypes to diverge from the other
type I IFNs. IFNb and IFNϵ are especially similar and can be found within the same clade in some analyses. IFNd and IFNz are the next subtypes to diverge and are
only found in pigs and mice, respectively. IFNt and IFNw are closely related, despite their differences in function and distribution—IFNt is only expressed in placental
tissues of ungulate species and involved in pregnancy, whereas IFNw is found in many species and possesses the more canonical antiviral and immunomodulatory
functions. IFNw and IFNa loci are expanded to include many subtypes in a number of species. (B) The chromosomal locations of human (top) and murine (bottom)
IFNk, IFNb, and IFNϵ genes are depicted. The arrow direction indicates on which strand the gene is encoded: a left-to-right arrow depicts the forward or positive
strand and a right-to-left arrow indicates the reverse or negative strand. IFNk is the only subtype to contain an intron and is situated further away from the other type
I IFNs, though its positioning relative to the other IFNs is different in mice and humans. IFNb and IFNϵ roughly form the boundaries of the type I IFN locus, with the
other type I IFNs falling between the two genes.
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mammalian type I IFN that contains an intron, and for many
species, the gene encoding IFNk is situated further away from the
IFN locus (7, 9, 11). Depending on the analysis, IFNb or IFNϵ is
the next subtype to diverge from mammalian type I IFNs, and in
some analyses IFNb and IFNϵ fall within the same clade,
suggesting that these subtypes might be more closely related to
each other than the other type I IFN subtypes (7, 9, 11, 12). The
genes encoding IFNb and IFNϵ are situated at the “beginning”
and “end” of the type I IFN locus across many species, which is
relatively conserved across mammalian species. IFNd and IFNz
(limitin) are the next type I IFNs to diverge within mammalian
IFNs and are only found in pigs and mice, respectively (7).
However, recent identification of a putative HuIFNd gene calls
this into question (11).

The last subtypes to diverge are the IFNas, IFNws, and IFNts.
These subtypes are thought to be exclusively found in placental
mammals and are usually situated between the IFNϵ and IFNb
genes within the type I IFN locus. IFNw and IFNt are closely
related, even though they possess different functions (7, 11). IFNt
is only found in placental tissues of ungulate species, is involved in
pregnancy, and may have arisen from an IFNw subtype (10, 13).
In contrast, IFNw is an antiviral and immunomodulatory
molecule, like IFNa, and functional copies have been identified
in humans and other animal groups including felines, pigs, cattle,
serotine bats, and others but are not present in canines or mice
(14). Notably, humans have only one IFNw, but there is evidence
that IFNw is still expanding and diversifying in many species,
including bats and pigs (15–17). Lastly, the genes encoding IFNa
are found in all placental mammals and form species-specific
clades, with some exceptions for closely related organisms (e.g.
chimpanzees, humans, and gorillas); a combination of gene
duplication and gene conversion events likely gave rise to the
expanded IFNa genes present in many mammals (6). Of note, a
recent study found that for some IFNa subtypes, such as
HuIFNa6, a8, a13, and a14, amino acid-altering variation was
more constrained in the human population, suggesting that they
might perform non-redundant functions in host responses (18).

As sequenced genomes of other species become available, the
phylogenetic clustering of some type I IFNsmay change. However,
the key point is that the multigene nature of type I IFNs is
conserved across many species. Both IFNa and IFNw subtypes
expanded independently and multiple times, suggesting that it is
advantageous for the host to possess a large repertoire of at least
several type I IFN subtypes. Unfortunately, the fact that type I
IFNs expanded multiple times complicates directly applying
results of IFN studies from animal models to clinical settings,
and caution is warranted in drawing conclusions about specific
human IFNa subtypes from studies of murine IFNa subtypes.
MOLECULAR MECHANISMS
UNDERLYING DISTINCT FUNCTIONS OF
TYPE I IFNS

Though type I IFNs possess many overlapping functions, it is
now appreciated that the individual subtypes have different
Frontiers in Immunology | www.frontiersin.org 3
potencies of their shared functions and some unique functions
in vitro. An important early example demonstrating this was the
finding that HuIFNb was 100-fold more potent than HuIFNa2
in inhibiting osteoclastogenesis through its ability to
preferentially induce the chemokine CXCL11 (19). Since this
observation, it is now appreciated that the pleiotropic activities
ascribed to different type I IFN subtypes are the product of
distinct patterns and kinetics of expression, as well as signaling
differences that arise from differential binding affinities and
susceptibility to negative feedback loops (20, 21). The ability of
the type I IFN receptor to have fine-tuned responses to many
ligands is likely advantageous considering the array of pathogens
that have co-evolved alongside humans, mice, and other animals.
Differential Dependence on IRF3 and IRF7
for Transcription
Before examining the signaling and functional properties of IFN
subtypes, it should be noted that type I IFNs are differentially
induced downstream of pattern recognition receptor (PRR)
signaling, except for IFNϵ, which is hormonally regulated (see
below). PRR signaling converges on the phosphorylation and
activation of the transcription factors IRF3 and IRF7, though
other IRFs can be involved in IFN-dependent antiviral responses
(22, 23). For most cell types IRF3 is constitutively expressed,
whereas IRF7 is induced downstream of type I IFN signaling to
then amplify and diversify the type I IFN response (22). The
exception to this rule is plasmacytoid dendritic cells (pDCs),
which constitutively express IRF7 and are thus poised to rapidly
secrete large amounts of type I IFN (24). The promoters of
specific type I IFN genes differ in their requirement of IRF3 or
IRF7 binding for maximal transcription. Thus, the temporal
regulation of IRFs dictates the expression of IFN subtypes.

Early in a response, IRF3 activation first induces transcription
of MuIFNb and MuIFNa4 via unique IRF3 binding sites within
their promoters (25–31). For the most part, the other MuIFNa
subtypes require both IRF3 and IRF7 for maximal transcription,
and so they depend on type I IFN-mediated upregulation of IRF7
(32–34). Similar to mice, IRF3 also initiates human type I IFN
responses by upregulating transcription of HuIFNb and
HuIFNa1, while the other HuIFNA genes require both IRF3
and IRF7 (35, 36). Altogether, these findings demonstrate that
for most cell types, activation of constitutive IRF3 by PRR
signaling initiates a first wave of HuIFNb and HuIFNa1 (or
MuIFNb and MuIFNa4 for mice). Subsequently, a second,
amplified wave of diverse IFNa subtypes follows that is IRF7-
dependent. As the ratio of IRF3 to IRF7 or other IRFs changes
over time, the repertoire of IFN subtypes expressed changes
as well.

There are several intriguing deviations from this paradigm.
First, the IFNb promoter has additional response elements that
make it responsive to NF-kB signaling through activating
transcription factor 2 (ATF-2) and c-Jun, which allows other
signaling pathways to augment IFNb production (29, 37, 38).
This unique promoter feature also permits IRF3-independent
basal expression of low amounts of IFNb in the absence of
infection, which can have significant impact on mounting
December 2020 | Volume 11 | Article 606874
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successful innate immune responses against a variety of
infections (39–47). IFNk may have somewhat restricted
expression, as it was named for its high expression in
keratinocytes; however, other cell types, including immune
cells and lung epithelial cells, can upregulate IFNk expression
(48–50). Further characterization is needed to determine which
cells are capable of expressing IFNk in different contexts. Lastly,
IFNϵ is the most notable exception to the IRF-mediated IFN
induction paradigm, as it is not regulated at all by PRR signaling
and IRF3/7. Instead, it is constitutively expressed in the
epithelium of reproductive organs and hormonally regulated,
and this is reflected in its unique promoter (51–53).

Differential Binding Affinity Determines
Signaling and Function
All type I IFNs bind to and signal through the heterodimeric
receptor IFNAR1 and IFNAR2 to activate canonical JAK/STAT
signaling pathways (4). A unique feature of type I IFN signaling
is that the signaling outcome can vary depending on the cell type,
specific ligand, and concentration of the type I IFN subtype. The
molecular mechanisms that underlie the plasticity of type I IFN
signaling have been extensively reviewed elsewhere, so only key
features will be outlined in this review (20, 54, 55).

In general, IFNAR2 is the primary ligand binding receptor
subunit and binds type I IFNs with high affinity (typically
nanomolar affinity); IFNAR1 is subsequently recruited to the
receptor-ligand complex and binds with relatively lower affinity
(approximately micromolar affinity) (54). HuIFNb has the
highest natural binding affinity to the type I IFN receptors
with picomolar affinity for IFNAR2 and nanomolar affinity for
IFNAR1, whereas HuIFNa2 possesses nanomolar affinity for
IFNAR2 and micromolar affinity for IFNAR1 (56–58). This
higher affinity interaction may enable IFNb to uniquely signal
through IFNAR1 in an IFNAR2-independent manner, but
further work is needed to corroborate this finding and to
determine if other receptors are involved in this phenomenon
(59, 60). Engineered IFNa2 and IFNw mutants that mimic the
range of affinities for the receptor complex have demonstrated
that type I IFN signaling outcomes can be directly linked to IFN
affinity to the receptor complex. Hence, type I IFN mutants that
acquire IFNb-like affinity acquire IFNb-like potency (61, 62).

In line with these findings for IFNa, IFNb, and IFNw, recent
work showed that HuIFNϵ and HuIFNk bound IFNAR2 with
particularly weak affinity and demonstrated approximately 1000-
fold decreased potency in ISGF3-mediated gene expression
compared to HuIFNa2, whereas their affinity for IFNAR1 was
comparable to other type I IFN subtypes (63). HuIFNϵ and
HuIFNk also bound the poxvirus antagonist B18R with weaker
affinity relative to the other IFN subtypes, perhaps suggesting a
fitness advantage for the host to have some weaker binding IFN
subtypes in order to avoid virus inhibition (63). In influenza A
virus (IAV) infection, HuIFNk, but not IFNa or IFNb, relied on
chromodomain helicase DNA binding protein 6 (CHD6) to
efficiently suppress viral replication (50). Moreover, induction
of CHD6 was not dependent on STAT1, but rather, IFNk
signaled through the mitogen-activated protein kinase (MAPK)
Frontiers in Immunology | www.frontiersin.org 4
p38 and the transcription factor c-Fos to mediate its antiviral
effects. Altogether, these findings suggest that in addition to
having unique expression patterns, IFNϵ and IFNk may possess
additional biochemical and signaling features that grant unique
properties in vivo.

Differential Sensitivity to Feedback Loops
The affinity of individual subtypes, as outlined above, is a key
component in determining the signaling outcome from IFNAR1/
2 engagement, but negative feedback loops are an additional level
of regulation and fine-tuning. IFNAR1/2 surface abundance is
typically quite low, and modulating the surface receptor
expression is one means of regulating type I IFN signaling
after type I IFN induction (64). Manipulation of a cell line’s
IFNAR expression demonstrated that the antiproliferative and
proapoptotic activities induced by HuIFNb are less sensitive to
decreased receptor levels than those induced by HuIFNa2 (65,
66). The physiological relevance of receptor expression
influencing type I IFN signaling is demonstrated in the
number of IFN-dependent mechanisms that downregulate
IFNAR1 and IFNAR2 levels. We will outline a few examples.

First, protein kinase D2 (PKD2) is a negative regulator
activated downstream of IFN signaling. It phosphorylates
IFNAR1, enabling interaction with a ubiquitin E3 ligase, and
subsequent ubiquitination leads to endocytosis of the IFN
signaling complex (67, 68). Endosomes with short-lived
receptor-ligand complexes formed by lower affinity IFNas are
more likely to be recycled to the cell surface; endosomes with
longer-lived complexes formed by higher affinity IFNb
ultimately fuse with the lysosome, but signaling can continue
to take place as trafficking progresses through the endosomal
compartment (69–72). Second, Suppressor of Cytokine Signaling
1 (SOCS1) can directly dampen the type I IFN response by
interacting with TYK2 to disrupt TYK2-STAT signaling, but it
also decreases surface levels of IFNAR1, which requires TYK2 for
stability at the cell surface (73). Lastly, ubiquitin-specific
peptidase 18 (USP18) can bind the cytoplasmic domain of
IFNAR2 and interfere with IFNAR1 recruitment and ternary
receptor complex formation without decreasing surface IFNAR2
levels (74, 75). The USP18-IFNAR2 interaction makes it so that
only higher affinity ligands such as IFNb are able to recruit
IFNAR1 into the receptor complex, making the cell less
responsive to weaker affinity type I IFNs (76, 77).

Key Principles for Differential Activities
Altogether, differential expression, binding affinity to the
receptor, and downstream feedback loops enable IFNAR1/2 to
have graded responses to multiple ligands. Redundancy and
pleiotropy are key features of type I IFN responses. Essentially,
any type I IFN subtype can induce robust (or redundant)
properties, such as antiviral activity, even at low surface
receptor density. In contrast, tunable (or pleiotropic) functions,
like antiproliferative activity, are more heavily influenced by
affinity of the ligand, receptor density, and intracellular negative
regulators, and so higher affinity ligands, like IFNb, tend to be
more potent (21). However, as noted above, some type I IFN
December 2020 | Volume 11 | Article 606874
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subtypes may be able to signal through alternative pathways, in
spite of or, more likely, because of possessing lower binding
affinity. Understanding the molecular mechanisms underlying
differential signaling by IFNs is an active area of research and
how the differential activities of IFNa and IFNb impact disease
will be explored in the remaining sections.
INFECTIOUS DISEASES

Type I IFNs have been extensively studied in the context of
infectious diseases, and this body of work includes most of the
studies that have directly compared the functions of IFNa and
IFNb in vivo. In the following subsections we highlight key
findings from animal models and human studies that have
contributed to understanding the mechanisms of differential
properties of IFNa and IFNb in viral, bacterial, and
parasitic infections.

Viral Infections
The important role that viral infections have served in helping us
understand type I IFN biology cannot be understated. Viral
infections were key instruments in the discovery of the antiviral
properties of type I IFNs (1). It is now widely appreciated that
type I IFNs play a much larger role in coordinating protective
immunity beyond directly eliciting an antiviral state, including
their role in DCmaturation, augmenting antibody production by
B cells, and improving cytolytic T cell effector functions (5).
Intriguingly, type I IFNs can also play a detrimental role in
certain contexts, such as persistent viral infections. Given their
key roles in disease outcome, viral systems also include some of
the clearest examples of differential functions of IFNa and IFNb
in vivo (Table 1). The following viral models collectively
highlight that differential functions of IFNas and IFNb can
profoundly influence disease pathogenesis and that the
mechanisms underlying differential functions vary depending
on the biological context.

Lymphocytic Choriomeningitis Virus
Lymphocytic choriomeningitis virus (LCMV) is a nonlytic,
negative-strand RNA virus and a prototypic member of the
Arenaviridae family, which are causative agents of hemorrhagic
fevers in humans (100). The host genetics, viral strain, dose, and
inoculation route all have profound impacts on host responses
and disease outcome, and this remains true for the role of type I
IFN responses during LCMV pathogenesis (101). LCMV
infection serves as an excellent example of the pathogenic
potential of type I IFNs.

LCMV-Clone-13 (Cl-13), which differs from its parent strain
LCMV-Armstrong (Arm) by just three amino acids, causes a
persistent infection, whereas LCMV-Arm is acutely and
effectively cleared by immunocompetent mice (102). A clear
pathogenic role for type I IFNs during persistent LCMV-Cl-13
infection has been established (78, 79, 103–105). Loss of IFNAR1
caused increased viral loads early during infection but ultimately
restored splenic organization, decreased expression of the
Frontiers in Immunology | www.frontiersin.org 5
negative immune regulators IL-10 and programmed death-
ligand 1 (PD-L1), increased protective adaptive immune
responses, and accelerated clearance of persistent virus (78, 79,
105). While both LCMV-Arm and LCMV-Cl-13 infection led to
high IFNa levels in the serum, only LCMV-Cl-13 induced
significant serum IFNb (79). In a seminal study, Ng and
colleagues showed that the pathogenic activity of type I IFNs
in persistent LCMV infection could be ascribed to just one
subtype—IFNb. Using monoclonal antibody (mAb) blockade
and genetic deletion, they showed that IFNb was dispensable for
controlling early LCMV-Cl-13 viral loads, suggesting that IFNa
or other subtypes mediate these antiviral responses (80). Instead,
blockade of IFNb but not IFNa improved splenic architecture,
decreased infection of CD8a− DC, and enhanced antiviral T cell
responses that led to clearance of persistent virus, mimicking
many of the effects seen with IFNAR1 blockade. Altogether,
persistent LCMV-Cl-13 infection serves as an important example
that the type I IFN subtypes can have distinct properties in vivo
that have profound impacts on viral pathogenesis.

As discussed above, LCMV-Cl-13 infection causes persistent
infection in certain mouse strains (C57BL/6, BALB/C, C3H, or
SWR/J); however, LCMV-Cl-13 infection of other strains (NZB,
SJL/J, PL/J, NZO, or FVB/N mice) causes type I IFN- and CD8 T
cell-dependent severe vascular leakage and death by about 6–8
days post infection (dpi) (81, 82, 106, 107). NZB.Ifnar1−/− but
not NZB.Ifnb−/−mice were protected from LCMV-Cl-13 induced
lethal vascular leakage, suggesting that IFNb is dispensable for
the detrimental effects of type I IFN in this model and that other
subtypes like IFNamay drive this phenotype (81). However, this
is challenged by the fact that blockade of IFNb alone, pan-IFNa
(a1, a4, a5, a11, and a13) alone, or combined pan-IFNa/b did
not replicate the protection provided by anti-IFNAR1 treatment
in FVB/N mice (82). The inability of IFNb or IFNa blockade to
phenocopy IFNAR1 blockade could be due to dosing issues, as
the serum levels of IFNa were severely elevated (roughly 18-fold
over IFNb levels), involvement of IFNa subtypes not blocked by
the mAb, or involvement other type I IFN subtypes altogether
could be responsible for the lethal phenotype. Nevertheless, type
I IFNs are clearly important host determinants of lethal LCMV
infection, and the individual IFN subtype(s) responsible remains
an open question.

Chikungunya and West Nile Viruses
Chikungunya virus (CHIKV) is a mosquito-transmitted,
reemerging alphavirus that causes outbreaks of acute fever,
rash, polyarthritis, arthralgia, and myositis (108). West Nile
virus (WNV) is a mosquito-transmitted flavivirus that can
cause encephalitis in severe cases (109). It is helpful to
consider these models together because both models utilize a
peripheral route of infection by inoculating the footpad
subcutaneously (s.c.), and type I IFNs are essential for
controlling both CHIKV and WNV, as Ifnar1−/− mice rapidly
succumb to a severe, disseminated infection with either virus (83,
84, 88, 89). The collective evidence from these models suggest
that IFNa and IFNb play nonredundant protective roles.

Loss of IRF7, the master transcriptional regulator of IFNa
subtypes, in acute WNV infection increased lethality and viral
December 2020 | Volume 11 | Article 606874
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TABLE 1 | Summary of IFNa and IFNb functions in mouse models of viral infections.

Intervention Clinical Outcome Virological and Immune Characterization Refs.

Lymphocytic choriomeningitis virus Cl-13, i.v. (persistent infection)
Ifnar1-/- or aIFNAR1 mAb Improved splenic architecture V: ↑ viremia, ↑ tissue titers (early); ↓ viremia, ↓ tissues titers (late)

I: ↓ IL10 (serum), ↓ PD-L1 expression (splenic cells), ↑ Ag+ CD4 T (spleen)
(78–80)

aIFNa mAb ND V: ND (early); no D viremia, ↑ splenic titer (late) (80)

Ifnb-/- or aIFNb mAb Improved splenic architecture V: no D (early); ↓ viremia, ↓ tissue titers (late)
I: no D IL-10 (serum), no D PD-L1 expression (splenic cells),
↑ Ag+ CD4 T (spleen)

(80)

Lymphocytic choriomeningitis virus Cl-13, i.v. (lethal infection)
NZB.Ifnar1-/- or aIFNAR1 mAb (NZB) ↓ vascular leakage, ↓ lethality (0%) V: ↑ viremia that persists

I: ↓ CTL activity, ↓ lung infiltrate, ↓ BALF cytokines
(81)

NZB.Ifnb-/- No D lethality ND (81)

aIFNAR1 mAb (FVB/N or NZO) ↓ vascular leakage, ↓ lethality (0%) V: ↑ viremia that persists
I: ↑ platelet count

(82)

aIFNb mAb (FVB/N) No D lethality ND (82)

aIFNa mAb (FVB/N) No D lethality ND (82)

aIFNa and aIFNb mAbs co-treatment
(FVB/N)

No D lethality ND (82)

West Nile virus, s.c. (footpad)
Ifnar1-/- ↑ lethality (100%) V: ↑ viremia, ↑ tissue titers (83, 84)

Irf7-/- ↑ lethality (100%) V: ↑ viremia, ↑ tissue titers
I: ↓ serum IFNa, ↓ IFNa mRNA (cells)

(85, 86)

aIFNa mAb ↑ lethality ND (86)

aIFNb mAb or Ifnb-/- ↑ lethality (100%) V: ↑ viremia, ↑ tissue titers (some but not all tissues)
I: no D Ab responses, no D brain infiltrate

(86, 87)

Chikungunya virus, s.c. (footpad)
Ifnar1-/- ↑ lethality (100%) V: ↑ viremia, ↑ tissue titers (88, 89)

Irf7-/- ↑ foot swelling V: ↑ viremia, ↑ tissue titers
I: ↓ serum IFN, ↓ IFNa mRNA (tissue)

(90–91)

aIFNa mAb ↑ foot swelling V: ↑ viremia, ↑ tissue titers (90)

aIFNb mAb or Ifnb-/- ↑ foot swelling V: minimal D viremia and tissue titers
I: ↑ neutrophil infiltrate (foot)

(90)

Influenza A virus, PR/8/34 (H1N1), i.n.
B6.Mx1.Ifnar1-/- (functional Mx1 KI) ↑ lethality ND (92)

B6.Mx1.Ifnb-/- (functional Mx1 KI) ↑ lethality V: ↑ lung titer (92)

Vaccinia virus, i.n.
Ifnb-/- ↑ weight loss, ↑ lethality V: ↑ tissue titers (93)

Friend retrovirus, i.v.
Ifnar1-/- ND V: ↑ viremia, ↑ spleen titer

I: ↓ CD4 T%, ↓ CD8 T% (spleen)
(94)

Ifnb-/- ND V: no D viremia, ↑ splenic titer
I: ↓ CD4 T% (spleen)

(94)

rIFN a1, a4, a6, or a9
(B10.A×A.BY)F1

ND V: ↓ viremia, ↓ spleen titer (a1, a4, a9); no D titers (a6)
I: ↑ Ag+ CD8 T (a1 only), ↑ NK activation (a1, a4, a9)

(95)

rIFNa2, a5, or a11 (B6 or (B10.A×A.BY)F1) ND V: ↓ spleen titer (a11 only)
I: ↑ NK activation

(96)

Hepatitis B virus, hydrodynamic injection i.v.
rIFNa1, a2, a4, a5, a6, a9, or a11
(BALB/C)

ND V: ↓ viremia (a4, a5); no D viremia (a1, a2, a6, a11)
I: ↑ CTL and NK activity (a4, a5)

(97)

pIFNa, pIFNb (hydrodynamic i.v.) ND V: ↓ viremia (pIFNa > pIFNb)
I: ↑ liver ISG induction (pIFNa > pIFNb), no D T cell responses (pIFNa or
pIFNb)

(98)
Frontiers in Immunology | www.frontiersin.or
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The mouse genetic background is C57BL/6 unless otherwise specified.
↑, increased; ↓, decreased; D, change; aIFN, anti-IFN; Ag, antigen-specific; BALF, bronchoalveolar lavage fluid; CTL, cytotoxic lymphocyte (CD8 T cell); I, immune; i.n., intranasal; i.v.,
intravenous; ISG, interferon-regulated gene; KI, knock-in; mAb, monoclonal antibody; ND, no data; p, plasmid; r, recombinant; V, virological.
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loads in both peripheral and central nervous system (CNS)
tissues compared to WT animals (34, 85). Similarly, Irf7−/−

mice infected with CHIKV developed worse clinical disease
(foot swelling) and sustained high viral loads at the site of
infection and sites of dissemination (90–92). The poor clinical
outcome of Irf7−/− mice during WNV and CHIKV infection may
be the result of decreased IFNa activity in the serum (85, 86, 91,
92). This postulation is supported by the observation that Irf7−/−

mice produce little to no systemic IFNa activity when infected
with a number of viruses, including Dengue virus (DENV),
herpes simplex virus 1 (HSV-1), and encephalomyocarditis
virus (EMCV), and this loss of systemic IFNa activity
correlated with increased susceptibility to those infections (34,
110, 111). Pan-IFNamAb blockade closely mimicked the clinical
and virologic phenotype of Irf7−/− mice in CHIKV infection and
phenocopied the lethality observed in WNV infection (86, 90).
Altogether, these findings suggest that an important protective
function of IRF7 is the production and amplification of IFNa
responses and that IFNas are important for controlling viral
replication and dissemination.

In contrast with IFNa, the role of IFNb in vivo is more varied
and dependent on the biological context. Ifnb−/− mice are more
susceptible than WT mice to WNV infection, and this increased
lethality was accompanied with elevated viral burden in some but
not all tissues (87). Specifically, WT and Ifnb−/− mice similarly
controlled WNV replication in the spleen and serum, consistent
with IFNa subtypes dominating serum IFN activity. WNV did
replicate to a larger extent in the brain, spinal cord, and the draining
lymph in Ifnb−/−mice compared toWTmice (87). An antiviral role
for IFNb has also been described for vaccinia virus and IAV
infections (93, 94). In contrast to WNV infection, loss of IFNb
exacerbated CHIKV-induced disease but with minimal impact on
viral burden at the inoculation site or distant tissues, suggesting that
IFNbmay be important in restricting viral replication within certain
but not all tissues (90). Rather, the increased disease severity of
CHIKV-infected Ifnb−/− mice correlated with increased neutrophil
accumulation at the site of infection, and depletion of neutrophils in
Ifnb−/− mice reversed the disease exacerbation to WT levels.
Altogether, these data from CHIKV and WNV infections point to
the particular importance of IFNa subtypes in restricting viral
replication and spread and highlight that the primary role of
IFNb varies depending on the specific context.

Human Immunodeficiency Virus 1 and Friend
Retrovirus
Human immunodeficiency virus 1 (HIV-1) is a highly
pathogenic retrovirus that leads to acquired immunodeficiency
syndrome (AIDS). The relationship between type I IFNs and
HIV-1 pathogenesis is complex, and it is outside the scope of the
this review to cover all the protective and pathogenic functions,
which have been extensively reviewed elsewhere (112–114). The
purpose of reviewing HIV and Friend retrovirus (FV) infection is
not to delve into whether type I IFNs have a net protective
or pathogenic role, but rather, we seek to underscore that the
IFNa subtypes are not equivalent in their antiviral or
immunomodulatory properties in vivo.
Frontiers in Immunology | www.frontiersin.org 7
Harper and colleagues evaluated the mRNA expression of
specific IFNa subtypes in human pDCs following HIV-1
exposure (115). Intriguingly, they found an inverse relationship
between the subtypes induced and their antiviral potency.
HuIFNa1/13 and HuIFNa2 were highly expressed, but they
demonstrated weaker antiviral activity in vitro, whereas
HuIFNa6, a8, and a14 represented a smaller fraction of the
IFNa subtypes induced but demonstrated the highest antiviral
activity against HIV-1. Likewise, a study from Lavender and
colleagues showed that therapeutic administration of HuIFNa14
was more beneficial than administration of HuIFNa2 in
controlling HIV-1 replication in a humanized mouse model
(116). The efficacy of IFNa14 was associated with increased
ability to stimulate intrinsic immune responses including
expression of tetherin and Mx2 as well as a greater frequency
of TRAIL+ natural killer (NK) cells. Conversely, IFNa2 was
superior in increasing the frequency of CD8+ T cells. An
additional study used humanized mice that lack pDCs (Hu-
PBL mice) and do not express much endogenous type I IFN
during acute HIV-1 infection to study the impact of IFNa
subtypes. They performed a single hydrodynamic injection of
plasmid encoding different type I IFN subtypes (HuIFNa2, a6,
a8, a14, or b) into Hu-PBL mice prior to HIV-1 infection (117).
The authors found that all subtypes tested limited HIV-1
replication and prevented HIV-induced CD4+ T cell depletion
by 10 dpi, but only HuIFNa14- and HuIFNb-expressing mice
demonstrated this protective effect out to 40 dpi. Altogether these
findings demonstrate nonredundant functions of IFNa subtypes,
with HuIFNa14 emerging as an intriguing subtype for further
studies during HIV-1 infection.

Distinct properties of murine IFNa subtypes have also been
observed in FV infection, a commonly used murine retrovirus
model. A protective role for type I IFNs in controlling FV
infection in vivo was demonstrated with Ifnar1−/− and Ifnb−/−

mice both having increased viral loads in the spleen. However,
only Ifnar1−/− mice showed a significant increase in viremia (95).
These findings suggest that both IFNa and IFNb protect against
FV infection, but IFNa may be more important for controlling
systemic infection and dissemination. Different potencies among
IFNa subtypes have also been revealed. Ex vivo stimulation of
FV-specific CD8+ T cells demonstrated differential activities
among the IFNa subtypes. IFNa4, a6, and a9 had the
strongest effects on CD8+ T cells, including inhibiting
proliferation, stimulating cytokine production, and enhancing
cytotoxicity (118). Treatment of FV-infected mice with
MuIFNa1, a4, or a9, but not a6, significantly decreased viral
loads, and subtype effectiveness was associated with different
mechanisms (96). Only IFNa1 treatment correlated with
activated FV-specific CD8+ T cells in the spleen, whereas NK
cell activation was observed after treatment with all examined
IFNa subtypes. Another study demonstrated that prophylactic
administration of MuIFNa11, but not a2 or a5, significantly
reduced viral loads by activating NK cells and ultimately
provided long-term protection (6 weeks) (97). Together with
the HIV-1 studies, retroviruses have proven to be effective tools
for probing the diverse functions IFNa subtypes.
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Hepatitis B and Hepatitis C Viruses
Hepatitis B (HBV) and hepatitis C viruses (HCV) are drastically
distinct pathogens from a virological perspective—HBV is a
double-stranded DNA virus belonging to the Hepadnaviridae
family, whereas HCV is a positive-strand RNA virus and a
member of Flaviviridae. However, both viruses display tropism
for hepatocytes, and chronic infection with either virus can lead
to liver failure, cirrhosis, and hepatocellular carcinoma (119).
Beginning in the 1980s, derivatives of recombinant HuIFNa2
were used to treat chronic HBV and HCV, but treatment was
successful in a limited subset of patients and severe side effects
were common [reviewed in reference (120)]. These issues have
led to the phasing out of type I IFN-based therapeutics in favor of
direct-acting antiviral drugs (120). Though HuIFNa2-based
therapeutics are the only approved type I IFN therapies for
HCV or HBV treatment, pilot studies of IFNb therapy in IFNa-
nonresponding HBV or HCV patients suggest some beneficial
effects of IFNb as well (121–123). These findings suggest that
other IFN subtypes in addition to IFNa2 may offer protective
effects against hepatitis viruses.

Indeed, one study with the HBV hydrodynamic injection
model demonstrated that prophylactic treatment with MuIFNa4
or a5 was more effective than other IFNa subtypes in decreasing
HBV replication in vivo, and both a4 or a5 also increased
effector NK and CD8+ T cell frequencies in the liver and
spleen (98). Hydrodynamic injection of plasmids expressing
MuIFNa4, a5, or combined a4 and a5 was more effective
than treatment with the respective recombinant proteins,
highlighting the importance of long-lasting endogenous IFNa
expression in the liver during HBV infection. Another study
directly showed differential effects of IFNa4 and IFNb in the
hydrodynamic injection HBV model (99). Co-injection of a
plasmid encoding MuIFNa4 with HBV DNA decreased HBV
serummarkers, elevated liver ISG expression, and reduced HBV+

cells in the liver, whereas co-injection of an IFNb-expressing
plasmid demonstrated weaker inhibition of HBV and
surprisingly led to a transient increase in HBV+ hepatocytes.
This increase in HBV+ hepatocytes was not observed if the IFNb
plasmid was injected 14 dpi instead of co-injected with HBV
(99). Even as the currently approved type I IFN therapies are
being phased out of clinical use, these findings add to the
accumulating evidence of distinct potencies and functions of
IFNa and IFNb subtypes in mouse models of relevant
human pathogens.

IFNw Subtype Differences
IFNw is understudied compared to IFNa/b subtypes likely
because mice lack a functional IFNw, but there is much in
vitro evidence that it signals and functions similarly to IFNa/b
(61, 124). Humans have only one IFNw subtype, but several
species possess an expansion of IFNw genes (15–17, 125, 126). A
number of these IFNw subtypes have been cloned from several
species and have been demonstrated to be functional type I IFNs
(127–129). Just as there is growing appreciation that expanded
IFNa subtypes provide an evolutionary advantage beyond
redundancy, it stands to reason that the expansion of IFNw
genes likewise imparts a fitness advantage for those species.
Frontiers in Immunology | www.frontiersin.org 8
Indeed, a recent study compared two different IFNw subtypes
from Rousettus aegyptiacus bats and found that IFNw9 displayed
more effective antiviral activity against several RNA viruses in
vitro compared to IFNw4 (130). Additionally, differences in
expression and activity of porcine IFNw subtypes have also
been demonstrated, with IFNw7 demonstrating the best
antiviral activity in vitro (131). Several of these animals with
expanded IFNw subtypes represent important reservoirs and
transmitters of relevant human pathogens, so IFNw functional
studies may provide valuable information on understanding the
interactions between pathogens and their natural hosts.

Remarks on Viral Infections
When type I IFNs act on the proper cell type at the opportune
time, they can induce an antiviral state, promote apoptosis of
virally infected cells, coordinate recruitment of immune cells,
enhance activation of antigen-presenting cells, and augment
protective B and T cell responses. Not all IFNs are equal in their
ability to induce these protective effects, and exploring this idea in
vivo is an active area of research. Studies from infection with
LCMV,WNV, and CHIKV have made it evident that endogenous
IFNa subtypes are particularly important for limiting viremia and
viral spread, likely due to their abundant activity in the serum in a
number of viral infections. In peripheral tissues, IFNas and IFNb
can exert important antiviral or immunomodulatory activity.
Whether a particular subtype emerges as more important than
others is likely going to depend on its biochemical properties, the
cellular tropism of the virus, the source and magnitude of its
induction, how long its expression is sustained, and the specific
cell types responding to IFN.

If type I IFN signaling is sustained too long, immunosuppression
and viral persistence can occur through the upregulation of negative
immune regulators, like IL-10 and PD-L1. LCMV infection is a
good example of this scenario, and strikingly, IFNb was critical in
promoting many detrimental features of type I IFN signaling in this
model. We did not have space to discuss the growing evidence that
type I IFNs can promote tissue damage during acute viral infections
by promoting excessive inflammation and cell death [discussed in
references (132, 133)]. This has been observed for mouse strains
highly susceptible to influenza or coronavirus infection (134–136).
The mechanisms responsible for these detrimental effects of type I
IFN are an active area of research, but initial observations suggest
that excessive or delayed IFN induction may play a role. It is also
unknown whether specific IFN subtypes are responsible for these
effects. Future studies exploring this possibility could have an
important impact on human disease.

Bacterial Infections
Type I IFNs can play a pathogenic or protective role during
bacterial infection depending on the pathogen. The mechanisms
underlying the beneficial or detrimental roles during bacterial
infection remain poorly understood and warrant further study.
Below we explore some of the properties of type I IFNs during
models of bacterial infections (Table 2). However, compared to
the examples from viral infections, few of these studies directly
compare the functions of IFNa and IFNb. We draw attention to
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a few instances in which specific subtypes have been examined
and highlight areas where this may be an interesting avenue
to explore.

Mycobacterium Tuberculosis
Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis
and represents a global health burden. This intracellular
pathogen primarily infects the lungs, and it can enter latency if
it is not eliminated, persisting in granulomas (154). The actions
of type I IFNs during Mtb infections are complex, and there are
numerous examples of contradictory findings. Overall, there is
strong evidence that type I IFNs are detrimental to the host, but
depending on the timing of IFN induction, the bacterial strain,
and host genetics, IFNs may occasionally benefit the host during
infection [reviewed in reference (155)].
Frontiers in Immunology | www.frontiersin.org 9
Numerous studies have shown a type I IFN-inducible
transcriptional profile in blood isolated from patients with
active tuberculosis, but this signature is typically absent in
patients with latent infection or patients who have undergone
successful treatment (156–158). Concordantly, infection with
hypervirulent Mtb laboratory strains showed increased
recruitment of type I IFN-producing pDCs and classical DCs
and elevated expression of IFNa or IFNb in the lung, depending
on the study (138, 139, 159–162). Multiple studies with human
and mouse models have shown that type I IFNs are associated
with impaired IFNg-mediated antibacterial effects, decreased
expression of IL-1a and IL-1b, decreased production of
prostaglandin E2 (PGE2), and upregulation of IL-10 (138–142,
159, 162–165). Type I IFNs are also associated with increased cell
death of macrophages and increased recruitment of myeloid cells
TABLE 2 | Summary of IFNa and IFNb functions in mouse models of bacterial infections.

Intervention Clinical Outcome Bacterial Load and Immune Characterization Refs.

Mycobacterium tuberculosis (Mtb)
129.Ifnar1-/- Mtb (H37Rv) ↓ lethality B: ↓ lung titer

I: ↓ iNOS expression (lung), ↓ IL-1b, IL-1a, IL-6 (lung)
(137)

129.Ifnar1-/- Mtb (HN878) ↓ lethality B: ↓ lung titer (138)

Ifnar1-/- or B6.Sst1S.Ifnar1-/-

Mtb (Erdman)
↓ lethality B: ↓ lung titer

I: ↓ IL-1Ra (lung), ↑ functional IL-1b activity (lung)
(139, 140)

Ifnar1-/- Mtb (H37Rv) ND B: ↓ lung titer
I: ↑ IL-1a, IL-1b expression (lung myeloid cells in vivo), ↑ PGE2 in BALF

(141, 142)

Poly-ICLC (i.n.), Mtb (H37Rv) ↑ lethality, ↑ lung necrosis IFNAR1 B: ↑ lung titer (acute, chronic)
I: ↑ CD11b+F4/80+GR1int infiltrate (lung)

(142, 143)

Salmonella enterica serovar Typhimurium
Ifnar1-/- adult (i.v.) ↓ lethality B: ↓ spleen CFU

I: ↑ Mj freq. (spleen), ↓ Mj cell death (spleen)
(144)

Ifnb-/- adult (oral) ↓ lethality B: ↓ liver CFU
I: ↓ IL-10 mRNA, ↑ CXCL2 mRNA, ↑ MPO activity (small bowel)

(145)

Streptococci spp.
Ifnar1-/- S. pyogenes, s.c. ↑ lethality B: ND

I: ↑ neutrophil infiltrate (lung)
(146)

129.Ifnar1-/- (adult)
Group B, type V, i.p.

↑ lethality B: ↑ blood and kidney CFU (147)

Ifnb-/- (adult) Group B, type V, i.p. ↑ lethality B: ND
I: ↓ TNFa and IFNg induction by peritoneal Mj (ex vivo)

(147)

129.Ifnar1-/- S. pneumoniae,
i.v. or i.c.

↑ lethality B: ↑ blood CFU (i.v. and i.c. routes) (147)

Ifnar1-/- S. pneumoniae, i.n. or i.p. ND B: ↑ blood CFU (i.n. route), no D viremia (i.p. route)
I: ↑ lung permeability, ↓ tight junction mRNA (lung)

(148)

rIFNb (i.n.), S. pneumoniae, i.n. ↓ lethality B: ↓ blood CFU (148)

AdIFNa (i.n.), S. pneumoniae, i.n. ↓ lethality B: ↓ lung, ↓ spleen CFU
I: ↓ neutrophil and Mj infiltrate (lung), ↓ BALF TNFa, IL-1b, and CXCL10

(149)

Listeria monocytogenes
Ifnar1-/- (various routes) ↓ lethality B: ↓ liver, ↓ spleen CFU

I: ↓ TRAIL expression (spleen), ↓ apoptosis (spleen), ↑ serum IL-12p70,
↓ serum TNFa and IL-6

(150–151)

Irf3-/- (i.v.) ↓ lethality B: ↓ liver, ↓ spleen CFU
I: ↓ IFNb induction in Mj (ex vivo), ↓ apoptosis (spleen)

(152)
December 2020 | Volume 11 | Art
The mouse genetic background is C57BL/6 unless otherwise specified.
↑, increased; ↓, decreased; D, change; Ad, adenoviral vector expression; B, bacterial load; BALF, bronchoalveolar lavage fluid; CFU, colony forming unit; dep., dependent; freq., frequency
I, immune; i.c., intracranial; i.v., intravenous; Mj, macrophage; MPO, myeloperoxidase; ND, no data; Poly-ICLC, polyinosinic-polycytidylic acid stabilized with poly-L-lysine; s.c.,
subcutaneous; spp., species.
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permissive to Mtb infection (137, 143). Limited work has
addressed the pathogenic potential of individual type I IFNs,
but one recent study found that in vitro blockade of IFNa
(subtypes unspecified), but not IFNb blockade, significantly
decreased intracellular Mtb bacterial load in a macrophage cell
line (166). It remains to be determined if a similar effect could be
observed in vivo.

Despite all of the evidence pointing to detrimental effects of
type I IFNs in Mtb infection, type I IFNs may play a beneficial
role in particular circumstances. First, several case reports have
suggested that coadministration of IFNa with antimycobacterial
therapy decreased bacterial burden in individuals who failed to
respond to antimycobacterial therapy alone (167–170). However,
these studies were employed before the pathogenic effects of type
I IFNs were appreciated, and the mechanisms driving the
apparent protection remain elusive. Second, in agreement with
the findings that the detrimental effects of type I IFNs are largely
due to inhibition of IFNg, type I IFNs appear to be protective in
contexts of IFNg deficiency. Mice lacking both type I and type II
IFN receptors displayed increased mortality and pathology
compared to mice lacking only the type II IFN receptor in Mtb
infection (171, 172). Mechanistically, type I IFNs may dampen
recruitment of Mtb-permissible macrophages and suppress
macrophages from entering an alternative activation state. In
accord with these mice studies, administration of IFNa2b
combined with antimycobacterial chemotherapy had beneficial
effects in Mtb-infected children with underlying IFNg signaling
deficiencies (173, 174). It is unclear whether IFNb can induce
these effects as well. Further head-to-head comparison studies of
IFNa and IFNb are needed to determine if this protective effect
of type I IFNs is unique to IFNa.

Type I IFNs may also benefit the host in infection with less
virulent Mycobacterium strains, such as the bacille Calmette-
Guérin (BCG) vaccine derived from M. bovis (175, 176).
Administration of IFNa at the time of BCG vaccination (s.c.)
in mice followed by intramuscular IFNa boosts (subtype not
disclosed) promoted production of IFNg, tumor necrosis factor
(TNF), and IL-12, thus slightly increasing the protection seen
upon re-challenge with Mtb intranasal (i.n.) compared to
immunization with BCG alone (175). Moreover, the bacterial
ESX-1 secretion system promotes type I IFN induction, and its
recombinant expression in the BCG vaccine better protected
against Mtb infection than other versions of the vaccine (176–
179). In vitro data also highlight the complexity of type I
IFN functions, as pretreatment of permissible cells with
IFN before Mycobacterium infection can promote bacterial
growth or increase immune activation, depending on
the cell type and bacterial strain (180, 181). Thus, type I IFNs
may play a protective role in vaccination with weaker
Mycobacterium strains.

Salmonella enterica Serovar Typhimurium
Salmonella is a common, pathogenic genus of bacteria that
causes acute gastroenteritis. Type I IFNs largely play a
pathogenic role in Salmonella infection by promoting
necroptosis and suppressing protective innate cell recruitment
Frontiers in Immunology | www.frontiersin.org
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and proinflammatory responses. Deletion of IFNAR1 increased
survival of adult mice infected (i.v.) with S. enterica serovar
Typhimurium (S. Typhimurium) and decreased splenic
bacterial loads (144). Additionally, splenic macrophages in
Ifnar1−/− mice were resistant to S. Typhimurium-induced
necroptosis ex vivo, and a follow-up mechanistic study
further determined that type I IFN signaling impaired
antioxidative stress responses to S. Typhimurium infection of
bone marrow-derived macrophages (144, 182). IFNb may be
the dominant type I IFN subtype driving this necroptosis
phenotype, as blockade of IFNb, but not IFNa, prevented
necroptosis and enhanced survival of bone marrow-derived
macrophages during S. Typhimurium infection in vitro (144). It
is unclear how many IFNa subtypes the antibody used blocks
(clone: RMMA-1), so it is premature to rule out a contribution
of IFNa. A role for IFNb was further demonstrated in a
separate study which showed that Ifnb−/− mice were more
resistant to oral infection of S. Typhimurium, which was
characterized by decreased bacterial burden, dampened
expression of IL-10, and increased levels of CXCL2 and
myeloperoxidase activity in the liver (145). Altogether, these
findings suggest that IFNb may play a detrimental role in S.
Typhimurium infection by negatively regulating protective
immune responses, but further studies are needed to rule out
the involvement of other type I IFN subtypes.

Listeria monocytogenes
Listeria monocytogenes is an intracellular, pathogenic bacteria
that causes sepsis and meningitis in immunocompromised and
pregnant individuals (183). Many groups have shown that type I
IFN signaling is detrimental to the host in systemic L.
monocytogenes infection, but not in all routes of infection
(150–153, 184, 185). Despite the important role that type I
IFNs play in L. monocytogenes pathogenesis, the contribution
of individual subtypes remains unknown. Irf3−/− mice displayed
increased resistance to L. monocytogenes infection (60%
survival), which almost phenocopied the resistance seen in
Ifnar1−/− mice (80% survival) (152). Additionally, C57BL/6ByJ
mice, which have a polymorphism in Irf3 causing inefficient
splicing of its mRNA, demonstrated reduced IFNb induction and
increased resistance to Mtb infection (186). These observations
may suggest an important role for IFNb in susceptibility to L.
monocytogenes infection. However, these studies did not assess
IFNa induction, and characterization of Ifnb−/− mice is needed
to confirm this hypothesis. Mechanistically, loss of type I IFN
attenuated Listeria-induced cell death in myeloid cells and
lymphocytes in vivo and ex vivo (150, 152, 187, 188). Antigen-
stimulated T cells were more sensitive to lysteriolysin O (LLO)-
induced apoptosis after exposure to IFNa compared to cells only
treated with LLO (150). Thus, a role for IFNa subtypes should
not be discounted. Altogether, it is impossible to draw firm
conclusions about the roles of individual type I IFNs in L.
monocytogenes infection with the currently available
information. Studies that specifically block IFNa or IFNb in
Listeria infection might yield important insight into the
functions of type I IFN subtypes.
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Streptococci Species
Streptococci species often colonize mucosal surfaces and skin of
healthy individuals without causing disease, but they can cause a
variety of serious diseases in immunocompromised individuals
or newborns (189). Type I IFNs appear to play a protective role
during infection with a variety of Streptococci species (146–149).

S. pneumoniae, an alpha-hemolytic species commonly known
as pneumococcus, is an opportunistic pathogen that colonizes
the mucosal surfaces of the upper respiratory tract and is a
leading bacterial cause of otitis media, pneumonia, sepsis, and
meningitis (190). Type I IFNs play a beneficial role during
pneumococcal infection, though the route of infection matters
(147, 148). Loss of IFNAR1 increased lung permeability by
decreasing tight junction protein expression, which is
consistent with increased bacterial titer in the blood if S.
pneumoniae was inoculated via an i.n. route but not via an
intraperitoneal (i.p.) route (148). IFNb played a role in mediating
these protective effects because pre-treatment of mice with
recombinant IFNb i.n. significantly increased survival
following S. pneumoniae challenge and decreased blood
bacterial titer. However, IFNa subtypes likely provide
beneficial effects as well since a separate study showed that
prophylactic or therapeutic administration (i.n.) of an
adenoviral vector expressing IFNa enhanced survival after
pneumococcal infection and decreased lung and spleen
bacterial burden (149). It is unclear which IFNa subtype was
used in this study, so more work is needed to determine if some
IFNa subtypes are more potent than others.

A protective role of type I IFNs was also demonstrated in
infection with the beta-hemolytic species S. pyogenes (group A
streptococcus, GAS) and S. agalactiae (group B streptococcus,
GBS) (146, 147). In GBS i.v. challenge, IFNb transcript was more
robustly induced in the spleen compared to IFNa4, and Ifnb−/−

mice demonstrated increased lethality compared to WT mice
(147). Additionally, in vitro GBS infection poorly activated
peritoneal macrophages from Ifnar1−/− or Ifnb−/− mice
compared to WT controls, suggesting that IFNb may function
to augment macrophage antibacterial properties. However,
carefully controlled experiments need to be performed in order
to determine if IFNb is directly modulating macrophage
activation or if IFNb acts indirectly by influencing bacterial
loads. The role of specific subtypes was not evaluated in GAS
infection; however, macrophages and DCs were found to induce
IFNb downstream of unique pathways. Macrophages required
IRF3, STING, TBK1, MyD88, and stimulation with streptococcal
DNA, whereas DCs depended on MyD88, IRF5, and
streptococcal RNA (146). It might be interesting to evaluate
Irf3−/−, Irf5−/−, and Ifnb−/− mice in S. pyogenes infection to
determine if the cellular source of IFN affects pathogenesis.
Additionally, better characterization of the IFNa subtypes
induced and their role in GAS and GBS is needed.

Remarks on Bacterial Infections
Similar to viral infections, type I IFNs can be either detrimental
or beneficial to the host during bacterial infections, depending on
the specific pathogen. The mechanisms underlying these
divergent outcomes share many features with viral infections.
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The ability of type I IFNs to regulate cell death, suppress
protective IFNg responses, and/or upregulate IL-10 can
account for the detrimental functions of type I IFNs during
Mtb, Salmonella, and L. monocytogenes infection. These activities
are reminiscent of the type I IFN-driven increases in IL-10 and
PD-L1 observed in LCMV, as well as the increased cell death
observed in acute influenza infection (132, 135). Even though a
detrimental role for type I IFNs is well documented in Mtb
infection, in special contexts type I IFNs may be able to serve a
protective function. Of particular interest is the possibility of type
I IFN serving as an adjuvant with certain, less virulent
Mycobacterium vaccination strains. As is the case with some
viral infections, the timing, magnitude, and cellular source of
type I IFNs underlie these distinct outcomes. In the future it will
be interesting to explore if these divergent phenomena are also
due to differential induction or functions of type I IFN subtypes.

There are also examples of type I IFNs having a protective role
in bacterial infections, such as with several Streptococcus species.
This net beneficial effect may reflect many of the functions
commonly observed in viral infections, such as coordinating
protective immune cell recruitment and activation and
promoting the right level of inflammation needed to clear the
bacterial infection. The exact mechanisms underlying these
protective effects are understood at a very general level and
questions remain. Which cells do IFNs signal on to mediate these
protective effects? What ISGs are responsible for mediating
protection, and are they different from those acting in viral
infections? Importantly, do specific type I IFN subtypes drive
particular protective functions? We are only beginning to grasp
how type I IFNs contribute to protective antibacterial immune
responses, and there are many interesting avenues to explore
relevant to human health.

Parasitic Infections
Parasites include single-cellular protozoa (e.g. Plasmodium and
Leishmania species) and multicellular helminths, which include
flatworms (e.g. Schistosoma species) and roundworms (e.g.
Ascaris species) (191–194). Previously, parasite-host interaction
studies have not investigated the functions of type I IFNs, but
recent studies in malaria have identified both protective and
pathogenic properties of IFNa/b [reviewed in references (195,
196)]. Below we explore the roles of IFNa and IFNb during
Plasmodium infection, the causative agent of malaria (Table 3).

Plasmodium Overview
Malaria initially presents as a wide variety of symptoms,
including periodic fever, chills, headache, malaise, and muscle
and joint aches, but as disease progresses severe anemia, blood
acidosis, splenomegaly, acute respiratory distress syndrome, and
spread to the brain are possible, which can be fatal (210). Infected
mosquitoes transmit Plasmodium sporozoites to humans during
a blood meal. The sporozoites initially infect hepatocytes, where
they replicate as merozoites (liver stage), and eventually,
merozoites enter the blood stream to infect red blood cells,
where they begin asexual reproduction (blood stage) (191).
Symptoms in humans usually begin developing several days
after release of parasites into the blood. P. falciparum and
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P. vivax are the most common species responsible for malaria
disease in humans, and several Plasmodium species (P. berghei,
P. yoelii, P. chabaudi, and P. vinckei) infect rodents and
recapitulate various stages of human disease (210).

Liver-Stage Malaria
Two important studies recently revealed a protective role for type
I IFNs in controlling liver-stage Plasmodium infection. First,
Liehl and colleagues showed that all of the early upregulated
genes in the liver from mice infected with P. berghei (ANKA)
were classified as IFN-stimulated genes or linked to the type I
IFN signaling pathway (197). Similarly, Miller et al. also
uncovered an early type I IFN signature in the liver of mice
infected with P. yoelii (Py17XNL) (198). Upon global IFNAR1
deficiency or conditional deletion of IFNAR1 on hepatocytes
(Albumin-Cre), mice failed to control parasite replication in the
liver (197, 198). These studies suggest that type I IFN signaling
protects against malaria infection by controlling early parasite
Frontiers in Immunology | www.frontiersin.org 12
replication in the liver. Further characterization revealed that
Irf3−/− mice, but not Irf7−/− mice, showed a similar early increase
in liver parasite burden as Ifnar1−/− mice following P. yoelii
(Py17XNL) infection (198). This is consistent with the
observation that Irf3−/− mice demonstrated a more severe
decrease in early liver ISG induction compared to Irf7−/− mice
following P. berghei (ANKA) infection (197). Given that IRF3 is a
key regulator of IFNb induction, these findings could suggest
that endogenous IFNb is more important than IFNa subtypes
for controlling parasite burden in liver stage malaria. Additional
studies are needed to confirm this hypothesis.

Blood-Stage Malaria
There is conflicting evidence for whether type I IFNs have a net
beneficial or detrimental effect during the blood stage of malaria.
Evidence for a protective role is as follows. First, treatment of
mice with recombinant hybrid HuIFNa1/a8, which has activity
on murine cells, concurrent with P. yoelii (265 BY) infection
TABLE 3 | Summary of IFNa and IFNb functions in mouse models of malaria infection.

Intervention Clinical Outcome Bacterial Load and Immune Characterization Refs.

Liver-stage
Ifnar1-/- P. berghei (ANKA)
(early time points)

ND P: ↑ parasitemia, ↑ liver titer
I: ↓ ISG induction (liver)

(197)

Irf3-/- P. berghei (ANKA)
(early time points)

ND P: ↑ liver titer
I: ↓ ISG induction (liver)

(197)

Irf7-/- P. berghei (ANKA)
(early time points)

ND P: ND
I: ↓ ISG induction (liver)

(197)

Ifnar1-/- P. yoelii (Py17XNL) ND P: ↑ liver titer (bioluminescence)
I: ↓ NKT cells (liver); no D NK, CD4, and CD8 T cells (liver)

(198)

Irf3-/- P. yoelii (Py17XNL) ND P: ↑ liver titer (bioluminescence) (198)

Irf7-/- P. yoelii (Py17XNL) ND P: no D liver titer (bioluminescence) (198)

Blood-stage
Ifnar1-/- P. chabaudi ND P: ↓ parasitemia

I: ↑ serum IFNg
(199)

Irf7-/- P. chabaudi ND P: ↓ parasitemia
I: ↑ serum IFNg, ↑ IFNg+ CD4 T freq. (spleen)

(199)

Ifnar1-/- P. yoelii (Py17XNL) ND P: ↓ parasitemia (late)
I: ↑ serum Ab titer, ↑ Tfh cells and GC B cells (spleen)

(200)

rIFNa (18 hpi, i.v.), lethal P. yoelii (YM) ↓ lethality (0%) P: ↓ parasitemia (201)

rIFNa1/a8 (i.p.), P. yoelii (265 BY) ND P: ↓ parasitemia
I: no D RBC count, ↓ reticulocytosis

(202)

rIFNa1/a8 (i.p.), P. yoelii (Py17XNL) ND P: ↓ parasitemia (early); trend ↑ parasitemia (late) (202)

Cerebral-stage
Ifnar1-/- P. berghei (ANKA) ↓ lethality (0%);

↓ cerebral hemorrhage
P: ↓ parasitemia (variable); ↓ brain titer
I: ↑ serum IFNg, ↑ IFNg+ CD4 T (brain, liver, spleen); ↓ CD8 T infiltrate (brain),
↓ BBB leakage

(199, 203–207)

Irf3-/- Irf7-/- P. berghei (ANKA) ↓ lethality (0%) P: ND (203)

Irf7-/- P. berghei (ANKA) ↓ lethality P: ↓ parasitemia, no D brain titer
I: ↓ CD8 T infiltrate (brain)

(199)

rIFNb (i.p.), P. berghei (ANKA) ↓ lethality P: ND
I: ↓ BBB leakage, ↓ CXCL9 (brain), ↑ CXCL10 (brain), ↓ T cell infiltrate (brain)

(208)

rIFNa1/a8 (i.p.), P. berghei (ANKA) ↓ lethality P: ↓ parasitemia, ↓ brain titer
I: ↓ Mj, neutrophil, CD4 T, and CD8 T infiltrate (brain)

(209)
December 2020 | Volume 11
The mouse genetic background is C57BL/6 unless otherwise specified.
↑, increased; ↓, decreased; D, change; Ab, antibody; BBB, blood brain barrier; freq., frequency; GC, germinal center; hpi, hours post infection; I, immune; i.p., intraperitoneal; i.v.,
intravenous; LN, lymph node; Mj, macrophage; ND, no data; P, parasite; RBC, red blood cell; Tfh, T follicular helper.
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decreased early parasitemia, and the authors proposed that this
was due to IFNa-dependent inhibition of reticulocyte (immature
red blood cell) development, as opposed to direct anti-
plasmodium effects (202, 211). Moreover, deletion of
inflammasome components or some intracellular PRR sensing
components decreased parasitemia and increased resistance to
lethal P. yoelii infection through alleviation of SOCS1-mediated
suppression of type I IFN responses (201, 212).

Other studies have demonstrated that type I IFNs might play
a detrimental role during blood-stage malaria. First, a group
showed that Ifnar1−/− and Irf7−/− mice better controlled
parasitemia in non-lethal P. chabaudi infection compared to
WT controls (199). Additionally, Sebina and colleagues showed
that IFNAR1 deletion in P. yoelii (Py17XNL) infection increased
pathogen-specific antibody titers and decreased parasitemia late
in infection (17–21 dpi) (200). Mechanistically, type I IFN
signaled on DCs to limit their activation of T follicular helper
cells in an inducible T cell co-stimulator (ICOS) signaling-
dependent manner, and this interaction ultimately influenced
downstream germinal center B cell responses (200). However, it
should be noted that IFNAR1 deletion in the Sebina et al. study
also trended toward increased parasitemia early in infection (6–
11 dpi), suggesting that these findings are not completely
incongruous with the studies that found a protective role for
type I IFNs. Altogether, type I IFNs might be detrimental in the
blood stage malaria by impeding humoral immunity later in
infection, but the Plasmodium strain and timing of IFN action
may influence the overall effect of type I IFNs on disease
outcome. It would be interesting to determine if this effect is
dependent on certain type I IFN subtypes.

Cerebral Malaria
Similar to the blood stage, the role of type I IFNs during cerebral
malaria remains controversial. Several independent groups have
demonstrated that Ifnar1−/− mice are either completely or
partially protected from lethal experimental cerebral malaria
(P. berghei ANKA sporozoite infection), demonstrating a net
pathogenic effect for type I IFNs in this context (199, 203–207).
Loss of type I IFN signaling may increase IFNg-producing CD4+

T cells, reduce pathogenic CD8+ T cell recruitment and/or
activation in the brain, improve DC priming of CD4+ T cell
responses, or some combination thereof (199, 204–207). Irf7−/−

mice only partially recapitulated the decreased brain pathology
and protection from P. berghei (ANKA) lethality observed in
Ifnar1−/− mice, but loss of IRF7 perfectly phenocopied the
decreased parasitemia observed in Ifnar1−/− mice (199). These
findings may suggest IFNas are more important in promoting
parasitemia, whereas IFNb and IFNa might both contribute to
brain pathology, but specific antibody blockade of type I IFN
subtypes would confirm this hypothesis.

Paradoxically, a few groups have shown that systemically
administering either recombinant IFNb or hybrid IFNa1/a8
concurrently with infection alleviated cerebral malaria (P.
berghei ANKA) (208, 209). Both IFN treatments reduced
parasite burden in the brain and decreased infiltrating CD8+

T cells in the brain compared to control mice, but only IFNa1/
Frontiers in Immunology | www.frontiersin.org 13
a8 treatment decreased blood parasitemia (208, 209). A more
recent study identified receptor transporter protein 4 (RTP4)
as a positive regulator of type I IFN responses, and Rtp4−/−

mice were completely protected from P. berghei (ANKA)
lethality and brain pathology (213). This protection in
Rtp4−/− mice correlated with increased type I IFN responses
in microglia isolated from the brain, suggesting a protective
role for IFNs, but blockade of type I IFN signaling in Rtp4−/−

mice is needed to confirm a causal link (213). Overall, an issue
of magnitude and timing of IFN response might underlie
these apparent discrepancies with the protective phenotypes
of Ifnar1−/− mice (discussed below). Indeed, antibody
blockade of IFNAR1 as late as 5 dpi was almost as protective
as Ifnar1−/− mice, suggesting that the detrimental effects of
type I IFNs occurred during priming of adaptive immune
responses (199).

Remarks on Parasitic Infections
It is clear that the role of type I IFNs in malaria is complex and
depends on the stage of Plasmodium life cycle. Type I IFNs seem
to play a protective role during the liver stage, but there are
contradictory findings from various models of blood-stage and
cerebral malaria. Perhaps infection with some strains of
Plasmodium yields suboptimal type I IFN production very
early in infection, ultimately leading to delayed and higher
levels later in infection when parasite burden is not effectively
controlled. Proper intervention at either step would benefit the
host, and this could explain why loss of IFN signaling or
exogenous IFN treatment can both be protective. The
contribution of individual IFN subtypes remains unclear,
though divergent phenotypes in Irf3−/− and Irf7−/− mice
suggest this could be an interesting question to explore.
Importantly, genetic variants in IFNAR1 have been associated
with either greater or lower risk of severe malaria disease (205,
214–217). The impact of each genetic variant on IFNAR1
expression and function still need to be determined, but these
findings suggest that type I IFNs are important regulators of
malaria disease in humans.

Overall, parasitic pathogens are biologically very diverse, so
data from other parasitic infection models are needed to begin
drawing broad conclusions. A recent study demonstrated that
the TLR4-IRF1-IFNb axis played a protective role in mice
infected with Leishmania infantum by dampening proinflammatory
pathways and IFNg production by CD4+ T cells (218). RNA
sequencing analysis of human samples revealed that upregulation
of TLR4 and type I IFN pathways was associated with
asymptomatic individuals compared to patients with visceral
leishmaniasis (218). Another group found that Ifnar1−/− mice
were more susceptible to Toxoplasma gondii infection (219). It
would be interesting to know if IFNs are generally more important
in single-cellular parasitic infections. That said, the multicellular
helminth Schistosoma mansoni can induce a systemic type I IFN
signature in mice and activate TLR3 in DCs in vitro, suggesting
that a role for type I IFNs in parasitic worm infections is certainly
possible (220, 221). Continued work to delineate the cellular
sources and functions of type I IFNs in malaria and other
December 2020 | Volume 11 | Article 606874
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parasitic diseases may reveal novel opportunities for therapeutic
intervention and help uncover novel functions of type I IFNs.

CANCER

The majority of reports from animal models and the clinic
demonstrate that type I IFNs play an important protective role
in enhancing anti-tumor immune responses and restricting
tumor growth [reviewed in (222, 223)]. However, similar to
persistent viral infections, the functions of type I IFNs in cancer
can change throughout disease course, and there is evidence that,
in certain contexts, IFN might act as a barrier to efficacious
checkpoint-blockade therapy [reviewed in (224)]. Below we
discuss the actions of endogenous IFNa/b and IFN-based
therapies in animal models and clinical studies (Figure 2).
Frontiers in Immunology | www.frontiersin.org 14
Animal Studies: Endogenous Type I IFN
Activity
An early study showed that mice transplanted with human
tumors and treated with neutralizing antibodies to type I IFNs
demonstrated exacerbated tumor growth and metastasis
compared to controls, suggesting a protective role for
endogenous type I IFN activity (225). Since this finding, we
now know that endogenous type I IFN can mediate tumor
rejection through signaling on immune cells or tumor cells.

A seminal paper showed that type I IFN signaling on host
hematopoietic cells was crucial for development of anti-tumor
immune responses (226). Using conditional IFNAR1 deletion,
bone marrow chimeras, and adoptive transfer experiments, a
number of studies have shown that type I IFN signaling on
several types of immune cells is important for immunity in
FIGURE 2 | Summary of the Properties of IFNa and IFNb in cancer and autoimmunity. Type I IFNs display both unique and overlapping properties in various disease
states. In cancer, depending on the tumor and degree of metastases, both IFNa and IFNb can contribute to tumor rejection by directly limiting tumor cell proliferation
(depicted) but also through modulation of antitumor immune responses (not depicted). In certain cases, type I IFNs can induce PD-L1 expression on tumor cells,
suppressing immune-mediated killing of the tumor. The factors that cause type I IFNs to exert detrimental effects remain poorly understood. In T1D, there is evidence
that IFNa subtypes play an important role in pathogenesis. Forced expression of IFNa by pancreatic b-cells accelerated the onset and severity of T1D in a mouse
model, and patients receiving IFNa therapy for treatment of other diseases have a higher incidence of T1D. Similarly, immune complex-driven activation of pDCs
induces robust IFNa production, which may participate in initiation of SLE. Finally, IFNb-derived therapeutics have well-established efficacy for treating MS patients.
Though still largely debated, the mechanism of protection mediated by IFNb is complex and possibly includes limiting cytokine production from pathogenic CD4+ T
cells and augmenting IL-10 production in a number of cell types. b-cell, pancreatic b-cell; DC, dendritic cell; IL, interleukin; Mj, macrophage; MS, multiple sclerosis;
pDC, plasmacytoid dendritic cell; Rx, prescription drug; SLE, systemic lupus erythematosus; T1D, type I diabetes.
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cancer. For instance, type I IFN signaling on DCs, but not
granulocytes or macrophages, was required for rejection of
highly immunogenic tumors (227). Additionally, Itgax-Cre+

Ifnar1fl/fl (CD11c-Cre) mice showed diminished cross
presentation by DCs to CD8+ T cells, which likely contributed
to their failed tumor rejection (227, 228). In an NK cell sensitive
tumor model, endogenous type I IFN was required for NK cell-
mediated tumor rejection and homeostasis (229).

Other studies have shown that type I IFN signaling on tumor
stromal cells may be important for controlling tumor burden. In
vivo, both IFNa and IFNb have antiangiogenic activity via
signaling on vascular endothelial cells to downregulate growth
factors such as vascular endothelial growth factor (230, 231).
Stromal cells such as mesenchymal stem cells may play a role in
controlling tumor growth by producing IFNa in order to
enhance NK and CD8+ T cell responses (232). However,
extended low level IFN signaling on tumor cells may render
them resistant to apoptosis and immune-mediated killing (233,
234). These differences highlight the complexities of type I IFN
actions and the need to delineate cell-type specific IFN signaling
and consequent gene regulation.

Limited studies have directly compared the endogenous
functions of individual IFNa/b subtypes in cancer models, but
there have been a few studies conducted with IFNb-deficient
mice. Ifnb−/− mice showed expedited tumor growth, enhanced
angiogenesis, and increased neutrophil infiltration to the tumor
compared to WT mice (235–238). These findings demonstrate
that endogenous IFNb is important for the host anti-tumor
response, but the specific signaling pathways downstream of
IFNb and cell types mediating these effects remain unclear. The
direct contributions of endogenous IFNa remain uninvestigated,
so much work is needed to fully characterize the contribution of
endogenous IFN in tumor rejection.
Animal Studies: Type I IFN-Based
Therapies
The possibility that IFNs might be therapeutically useful in
cancer was first shown in the early 1970s, when crude
preparations of were administered to mice with syngeneic
tumors increased their survival compared to untreated mice
(239, 240). IFN therapies have been quite effective against
hematological cancers, including hairy cell leukemia and
chronic myelogenous leukemia but vary in efficacy against
solid tumors, such as melanoma [reviewed in (222, 223, 241,
242)]. Below we discuss various therapeutic strategies derived
from either IFNa or IFNb subtypes. Collectively, these studies
show that IFNa and IFNb are able to promote a similar range of
immunomodulatory and antitumor effects, so studies that
directly compare the activities of IFNas and IFNb are needed
to discern if there are bona fide differential properties.
IFNa-Based Therapies
Derivatives of IFNa2b have long been used in the clinic, but
toxicity issues are associated with systemic administration and
persistent use. Consequently, many groups have sought ways to
Frontiers in Immunology | www.frontiersin.org 15
increase IFNa expression with more precision. An influential
study developed RNA-lipoplexes encoding neoantigens or
endogenous self-antigens, which yielded rapid and robust
IFNa production by macrophages and DCs (IFNb induction
was not determined) (243). Importantly, these RNA-lipoplex
vaccines were able to mediate rejection of several different types
of aggressive tumors in mice (243). Another group developed a
method to genetically modify human hematopoietic stem cells
(HSCs) to express HuIFNa2b, but only in differentiated
monocytes (244). The engineered HSCs were able to
repopulate immunodeficient mice and effectively inhibit
tumor progression in a murine breast cancer model (244).
AcTakines (Activity-on-Target), which are optimized
cytokines that only act on cells for which they are targeted,
represent another interesting alternative to traditional IFN
therapies. Indeed, CD20-targeted IFNa2b-derived AcTaferon
reduced lymphoma and melanoma tumors engineered to
express CD20 (245, 246). Increasing tumor cell production of
IFNa is another approach, and a very recent study
demonstrated that IFNa subtypes are not all equal in their
antitumor properties. B16 melanoma cells were engineered to
overexpress IFNa2, a4, a5, a6, or a9, but only IFNa2- and a9-
expressing tumors were effectively controlled in an adaptive-
immunity dependent manner (247). Other studies have used a
variety of genetic engineering methods to augment IFNa
production in the tumor microenvironment and improve
antitumor immunity (248–251).
IFNb-Based Therapies
Derivatives of IFNa2 have been the focus of most IFN-based
therapies, but several studies have explored the effect of IFNb
during various models of cancer. IFNb treatment of
transformed human mammary epithelial cells in vitro led to a
less aggressive state (252). Another group showed that treating
mice with an anti-tumor antibody fused to IFNb increased
clearance of antibody-resistant tumor cells by increasing cross
presentation by tumor-infiltrating DCs and activation of CD8+

T cells (253). Unfortunately, this treatment also upregulated the
inhibitory molecule PD-L1 on tumor cells, but this negative
effect was overcome with co-administration of anti-PD-L1
antibody (253). Another group transduced induced pluripotent
stem cell (iPSC)-derived myeloid cells with an IFNb-encoding
lentivirus to treat disseminated gastric cancer (254). When
injected into immunocompromised mice, the modified myeloid
cells accumulated in the tumors and inhibited growth of the
peritoneally disseminated cancer (254). Lastly, intratumoral
injection of an mRNA encoding a fusion protein consisting of
IFNb and the ectodomain of transforming growth factor-b
receptor II enhanced DC activation of CD8+ T cells in vitro and
promoted rejection of the TC-1 tumor cell line in vivo (255).

Human Studies
The antitumor and immunomodulatory effects of IFNa therapy
have been demonstrated in the treatment of a variety of cancers,
and here we present a few representatives. IFNa-derived
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therapies are the only approved adjuvant therapies in melanoma
patients after surgical resection, and immunomodulatory actions,
such as increased tumor-infiltrating cells and decreased
circulating T-regulatory cells, are key mechanisms of action
[reviewed in reference (242)]. After being replaced with tyrosine
kinase inhibitors like imatinib, interest in IFNa-based therapy has
recently reemerged for treatment of chronic myeloid leukemia
(CML) [reviewed in reference (241)]. This is because there is
evidence that IFNa therapy is able to target and sensitize the rare
CML stem cell population to subsequent killing by chemotherapy,
whereas imatinib is more effective against more differentiated
CML progenitors (256, 257). Lastly, an analysis of matched
primary breast cancer tumors and bone metastases revealed that
primary tumor cells expressed IRF7, whereas metastases
consistently demonstrated downregulation of IRF7 expression
(258). This may suggest that IRF7-mediated IFNa production
in primary tumors is an important factor for limiting metastases,
but further studies are needed to determine if this is an IFNa-
specific effect or if there is also a role for IFNb. Fewer clinical
studies have been conducted with IFNb-derived therapies, but
there is evidence that IFNb also plays a protective role in tumor
rejection. Increased IFNb mRNA expression significantly
correlated with improved survival in patients with triple-
negative breast cancer, though the mechanism is undetermined
(252). In vitro studies have shown that IFNb is more potent in
inducing apoptosis in melanoma cells compared to IFNa (259).
The relevance of this differential potency has yet to be extensively
explored in vivo.

Detrimental Effects of Type I IFNs
in Cancer
Despite all the evidence that type I IFNs can facilitate protective
antitumor immune responses, IFNs can also impede cancer
therapies. We provide just a few mechanistic examples.
Persistent type II IFN signaling on tumors can result in PD-
L1-dependent and PD-L1-independent resistance to immune
checkpoint blockade, and the authors identified a role for type
I IFNs in maintaining PD-L1-independent resistance (233).
Radiation and chemotherapy stimulate immune-mediated
destruction of tumor cells partly through induction of type I
IFNs (260–264). However, recent work showed that conditional
deletion of IFNAR1 on tumor cells enhanced responsiveness
to radiation therapy through increased susceptibility to CD8+

T cell-mediated killing (265). Lastly, oncolytic viruses can
preferentially kill cancer cells, but tumor responsiveness to
type I IFN activity confers resistance to this therapeutic
method. One study showed that IFNa and IFNb differ in
their ability to confer resistance to oncolytic virus treatment
in vitro. Exogenous IFNb more effectively prevented oncolysis
of human head and neck squamous cell carcinoma cells by
vesicular stomatitis virus compared to IFNa, but differential
effects were not observed for normal keratinocytes or endothelial
cells (266).

Remarks on Cancer Studies
Collectively, this large body of cancer studies has shown that the
roles of type I IFNs are complex and likely context specific. The
Frontiers in Immunology | www.frontiersin.org 16
extensive use of IFNa-derived therapies to treat a number of
cancers in the clinic has greatly increased our understanding of
the range of IFNa properties in vivo. Cancer models are uniquely
advantageous for studying protective immunomodulatory effects
of IFNs compared to infection models because pathogen load is
not a confounding factor. Despite the large body of work
suggesting the benefits of type I IFN signaling in cancer, the
actions of specific IFN subtypes, for the most part, remain
undefined. The beneficial effects of indirect activators of type I
IFNs, such as the RNA-lipoplexes (discussed above) or STING
agonists, may be due to their ability to induce multiple IFN
subtypes with either overlapping or unique functions (222, 244).
The heterogeneity of cancer makes it all the more important to
appropriately stratify patients to ensure a beneficial effect
of treatment.
AUTOIMMUNITY

Type I IFNs have emerged as critical mediators of autoimmunity.
Patients with a variety of autoimmune diseases display serum
type I IFN signatures, and IFN treatments for other diseases have
correlated with the development of autoimmunity. These
observations have led to the assumption that type I IFNs may
contribute to autoimmunity pathogenesis. However, IFNb-
derived therapeutics have been used to treat multiple sclerosis,
highlighting that caution is warranted in attempting to
summarize the mechanisms of autoimmune disorders. Below
we outline the current understanding of the roles of IFNa and
IFNb during systemic lupus erythematosus, type 1 diabetes, and
multiple sclerosis (Figure 2). This is not an exhaustive analysis of
autoimmune disorders, and active research is exploring the
function of type I IFNs in other disorders, such as rheumatoid
arthritis and Sjögren’s syndrome (267, 268).

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is an autoimmune disease
that affects organs such as the skin, joints, kidneys, and CNS (269).
A type I IFN gene signature in the blood of SLE patients is well
established (270–272). Additionally, a number of genetic risk
factors for SLE are associated with type I IFN production or
signaling, including IRF5, IRF7, IRAK1, and TYK2 [reviewed in
reference (273)]. The majority of patients (70–80%) develop anti-
nuclear autoantibodies (ANA), which form immune complexes
with extracellular nucleic acids and induce production of type I
IFN, especially IFNa, by pDCs (274). Type I IFNs promote disease
by signaling on a variety of immune cells, including DCs, B cells,
and T cells (275–277). It has been shown that IFNa or IFNb
treatment in vitro induced different transcriptional programs in
DCs, with IFNa-primed DCs demonstrating increased phagocytic
uptake of apoptotic cells and nucleic acids (278). Given the
prevalence of IFNa in the serum of SLE patients and role of
pathogenic responses to nucleic acids, the impact of IFNa versus
IFNb on DC activation in the context of SLE might be an
interesting topic to interrogate.

A recent study from Klarquist et al. sought to dissect the effect
of type I IFN signaling on CD4+ T cells and B cells on the
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development of T follicular helper cells, germinal center B cells,
and plasmablasts. They found that IFN signaling decreased the
threshold for B cell receptor signaling, increased MHC-II
expression, and promoted germinal center B cell function, thus
lowering the threshold for autoreactive B cell activation (276).
They also found that type I IFN protected T follicular helper cells
from NK cell-mediated death, thus further promoting B cell
responses (276). Other studies suggest that IFNa may further
drive SLE by increasing production of multiple TNF family
members, such as BAFF and APRIL, which promote B cell
survival and can drive SLE pathogenesis (279–281). Due to the
apparent pathogenic role of IFNa during SLE, attempts have
been made to neutralize type I IFNs in SLE patients (282–287).
Both anti-IFNa and, more recently, anti-IFNAR1 therapies have
been tested (282–287). Both treatment strategies showed
disparate efficacy in patients, so further work is needed to
clarify if this type of therapeutic intervention would be
beneficial for patients. It might be that IFNa only plays a key
role in the initiation and early stages of disease, so the disease
stage may be important in stratifying patients [reviewed in
reference (288)].

Type 1 Diabetes
Type 1 diabetes (T1D) is a chronic, autoimmune disease caused
by the immune-mediated destruction of pancreatic b-cells that
leads to insulin deficiency and hyperglycemia (289). A blood
type I IFN signature in T1D patients precedes the development
of autoantibodies and disease (290–293). One study detected a
significant increase in expression of IFNa subtypes, but not
IFNb, in postmortem pancreas specimens from T1D patients
compared to control subjects (290). Moreover, many genetic
polymorphisms associated with T1D are involved in the type I
IFN response such as MDA5 and TYK2 (294–296). Altogether,
these findings suggest a detrimental role for type I IFNs in T1D.
A role for type I IFNs in the development of T1D is supported
in animal models. An early study showed that forced
constitutive IFNa expression by pancreatic b-cells in mice
resulted in hypoinsulinemic diabetes and pancreatic
inflammation (297). Additionally, non-obese diabetic (NOD)
mice, a common model for T1D, showed elevated IFN-
inducible transcripts in the pancreatic islets prior to disease
onset, and treatment of young NOD mice with anti-IFNAR1
mAb delayed the onset and decreased the occurrence of T1D
(298, 299). Collectively, these findings suggest that type I IFN
signaling, especially in the pancreas, may play a key role in
initiating T1D.

LCMV can be employed as a viral model of T1D, in which
mice transgenically express LCMV glycoprotein (GP) under the
control of the rat insulin promoter (Rip-LCMV) (300).
Development of Rip-LCMV T1D is dependent on type I IFN
(301, 302). Recent work showed that anti-IFNAR1 mAb
treatment reduced blood glucose to normal levels and
prevented destruction of pancreatic islets (302). Importantly,
they also showed that pan-IFNa (a1, a4, a5, a11, and a13) mAb
blockade, but not IFNb blockade, was able to recapitulate the
anti-IFNAR1 phenotype, demonstrating a distinct role for IFNa
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subtypes in promoting pathogenesis in the Rip-LCMV T1D
model. A similar detrimental role for IFNa is suggested in
human disease. IFNa therapy for HCV in individuals
genetically predisposed to T1D induced or exacerbated the
development of T1D (303). Moreover, a recent study showed
that a subset of AIRE-deficient patients who developed
autoantibodies specific for IFNa, especially IFN-a1/13, IFN-
a5, and IFN-a14, were less likely to develop T1D, whereas
patients who failed to generate these antibodies developed T1D
(304). Altogether, animal and human studies suggest a
detrimental role of type I IFNs in T1D, and IFNa subtypes
appear to play a dominant role in disease development
and pathogenesis.

Multiple Sclerosis
Multiple sclerosis (MS) is a chronic, autoimmune disease of the
CNS in which immune cells target and destroy the myelin sheath
surrounding neurons, leading to neurodegeneration (305).
Similar to other autoimmune conditions, MS patients can
show a serum type I IFN signature, but this signature is
relatively low when compared to SLE patients (306, 307).
However, in strong contrast to SLE and T1D, type I IFNs, do
not appear to play a detrimental role. In fact, IFNb was the first
FDA-approved therapy for MS (308–311). However, due to its
flu-like side effects and the availability of more effective
treatments, it is no longer the preferred therapy for MS
patients (312). Even though IFNb treatment is currently less
preferred in clinical use, animal models and clinical studies
(discussed below) have revealed important insight into the
properties of IFNb in vivo.

In Vitro and Animal Studies
Experimental autoimmune encephalomyelitis (EAE), a mouse
model of MS, has provided mechanistic insight into the
protective actions of IFNb (313). Mice lacking IFNb, IFNAR1,
or IRF7 showed exacerbated clinical EAE compared to WT mice,
perhaps due to greater T cell infiltration and increased
proinflammatory cytokine production in the CNS (314–316).
Unexpectedly, mice that lack IRF3 showed significantly lessened
clinical disease compared to WT mice, and this seemed to be due
to a cell-intrinsic defect in the development of T helper type 17
(TH17) cells (317). Indeed, TH17 versus TH1 skewing can
drastically influence the impact of IFNb treatment in EAE.
IFNb treatment was effective in reducing EAE severity in TH1-
induced EAE but worsened disease in TH17-induced EAE (318).
Thus, depending on the skewing of the T helper responses and
method of induction of EAE, IFNb may be protective
or pathogenic.

Many cell types respond to IFNb therapy in EAE. Deletion of
Ifnar1 on myeloid cells including macrophages, monocytes,
granulocytes, and microglia, but not neuroectodermal cells,
resulted in increased severity of EAE symptoms, suggesting
that IFNb mediates its protective effects, in part, by acting on
these cells (315). Mice treated with TLR3 or TLR7 agonists
display reduced disease severity associated with increased type
I IFN production by pDCs and other antigen presenting cells
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(319, 320). Other reports have also suggested that IFNb signaling
on T cells curbs their pathogenicity (321, 322). Furthermore, type
I IFN signaling on conventional DCs limited their migration to
the CNS and prevented their activation of TH17 cells during EAE
(323, 324). The tissue resident antigen presenting cells in the
CNS, microglia, may also play a role in the type I IFN response
during EAE. Type I IFN signaling on microglia promoted
clearance of myelin debris by increasing their phagocytic
activity (325, 326). Finally, a study identified a role for type I
IFN signaling on astrocytes to suppress CNS inflammation
during EAE (327).

Clearly IFNb is able to induce protective effects during EAE,
and a recent report demonstrated that sustained low-dose IFNa1
delivery via an adeno-associated viral system prevented the onset
of disease in EAE (328). This therapeutic effect was associated
with regulatory T cell expansion, and myelin-specific effector T
cells displayed reduced proliferative capacity, decreased
proinflammatory cytokine production, and increased
expression of IL-10 and PD-1 (programmed cell death protein
1) (328). Another study showed that a systemic high dose of
MuIFNa11 was able to initially delay EAE in mice but ultimately
caused significant toxicity and mortality; however, when IFNa
activity was targeted to DCs (Clec9A-targeted AcTaferon), they
found efficient protection from EAE (329). These findings
suggest that IFNb might not be unique in its ability to confer
protection in EAE, but more work is needed to determine what
factors cause IFNa treatments to yield detrimental effects or
protective effects.

Human Studies
IFNb was the first FDA-approved therapy for MS (308–311).
However, due to its flu-like side effects and the availability of
more effective treatments, it is no longer the preferred therapy for
MS patients (312). Observations from patients suggest that IFNb
therapy likely acts through multiple mechanisms, such as
influencing immune cell recruitment and activation. First,
IFNb treatment correlated with decreased new brain lesions
and increased soluble VCAM-1 in patient serum, suggesting
that modulating immune cell entry to the CNS is one potential
mechanism of IFNb therapy (330). In addition to impacting cell
recruitment, IFNb treatment may also regulate survival of
immune cells since an increase in proapoptotic genes was
observed in peripheral immune cells isolated from IFNb-
treated patients (331, 332).

Pathogenic TH1 and/or TH17 cells likely play an important
role in MS, and IFNb therapy may limit the proliferation of
pathogenic T cells and modulate their cytokine production (332,
333). IFNb therapy is likely more effective in individuals with a
TH1 driven disease, since high serum IL-17F levels correlated
with a poor response to IFNb therapy (318). A number of cell
types are likely involved in protective IFNb treatment. For
example, IFNb treatment of MS patients can induce IL-10
production by myeloid cells, but treatment can also suppress
production of granulocyte-macrophage colony-stimulating
factor (GM-CSF), IFNg, and TNF by effector T cells (334–340).
Additionally, in patients that responded to IFNb therapy,
treatment induced T regulatory cells that produced IL-10 and
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expressed PD-L1 (341, 342). Altogether, the protective
mechanisms that underlie IFNb therapeutic effects likely
involve direct or indirect actions on effecter T cells. A better
understanding of these mechanisms would likely reveal
important information about the functional capacity of IFNb
in vivo.

Remarks on Autoimmune Studies
A large proportion of patients with SLE or T1D show a type I IFN
signature in their blood, and many studies have shown that type I
IFNs promote pathogenesis in these autoimmune disorders. There
is strong evidence implicating the IFNa subtypes in initiation and
progression of SLE and T1D, but at this time, a role for IFNb cannot
be entirely ruled out—direct functional comparisons of IFNa versus
IFNb would be needed to draw that conclusion. Altogether, the
specific pathogenic functions of type I IFNs during autoimmune
disorders are likely tissue specific. A recent study performed gene-
expression profiling of structural cells from 12 different tissues and
found that the responses of the cells to stimuli were tissue-specific,
thus identifying the stroma as an important regulator of tissue-
specific immune responses (343). While there is clear evidence that
type I IFNs can modulate pathogenic autoimmune responses, it is
important to know how systemic IFNa activity might promote cell-
type specific effects in diseased versus nondiseased tissues in
disorders like T1D that target a particular tissue, but also in
diseases like SLE that have multi-organ effects.

In contrast, blood fromMS patients do not display as robust a
type I IFN signature as SLE or T1D patients, and many studies
have demonstrated that IFNb treatment has therapeutic
properties in animal models of MS and in affected individuals.
The protective functions of IFNb are complex and likely include
modulating immune cell recruitment and activation directly
through action on immune cells and indirectly through action
on brain resident cells. The functions of IFNas in MS are less
clear. There might be conditions, such as very low doses or when
targeted to a specific cell type, in which IFNa subtypes are also
protective. Careful comparison of IFNb versus IFNa dose
responses in EAE might uncover novel mechanisms for
differential functions among type I IFNs in vivo.
CONCLUDING REMARKS

Whether type I IFNs have a net beneficial or detrimental effect on
disease outcome depends on a variety of factors including the
timing and magnitude of induction relative to disease onset, the
duration of expression, the specific subtypes induced, the cell types
responding, and likely other factors. Progress is needed in
understanding the spatiotemporal induction of the various type
I IFN subtypes in vivo, as well as the cell types responsible for type
I IFN production. A lack of tools to differentiate between different
subtypes has hindered progress in this area. Quantitative reverse
transcription polymerase chain reaction has been a useful
technique for quantifying specific IFN subtypes, and single-
molecule array (Simoa) digital ELISA technology was
demonstrated to detect IFN in blood with high sensitivity (344).
However, there is a need for licensed antibodies against individual
December 2020 | Volume 11 | Article 606874

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fox et al. Unique Functions of IFNa/b
subtypes that are able to neutralize in animal models and reliably
stain tissue sections to more accurately determine the timing of
expression at the tissue level.

Transcriptomic approaches have successfully differentiated type
I and type III ISG signatures in organoid cultures (345). Because the
effects of type I IFN are pleiotropic, there is a need to delineate the
ISGs responsible for the protective and pathogenic functions of type
I IFN subtypes in a given context and to understand how cell-type
specificity might affect expression of those genes. A recent report
profiled gene-expression networks of fibroblasts, endothelial, and
epithelial cells isolated from multiple tissues and revealed tissue-
specific signaling networks (343). A similar approach or spatial
transcriptomics, which yields gene expression profiles in intact
tissue sections, would be powerful tools to unravel the cell type-
specific responses to different type I IFN subtypes in vivo (346).

Lastly, given that many type I IFN subtypes have expanded
independently after mammalian speciation, there is a great need
for tools to allow the study of human type I IFN subtypes in
animal models. Immune-humanized mice and hybrid IFNAR
(HyBNAR) mice, which transgenically encode variants of
IFNAR1/2 that contain the human extracellular domains fused
to the transmembrane and cytoplasmic segments of murine
IFNAR, have both been used to study HuIFN in mice (347).
These two systems are helpful in contexts where immune cells are
the predominant sources of and responders to type I IFN or in
studies administering exogenous HuIFN, but they do not permit
loss-of-function studies, exclude the impact of endogenous IFN
expression by stromal cells, and IFNAR1/2 transgenes are likely
more highly expressed than endogenous IFNAR1/2. Overall, a
concerted effort to address this lack of tools will go a long way
toward increasing our ability to directly compare the expression
Frontiers in Immunology | www.frontiersin.org 19
and functions of distinct type I IFN subtypes, which will
undoubtedly generate new strategies to augment or dampen the
type I IFN pathway for biomedical purposes.
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