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ABSTRACT
Motivation: Analysis of singe cell RNA sequencing (scRNA-seq) typically consists
of different steps including quality control, batch correction, clustering, cell
identification and characterization, and visualization. The amount of scRNA-seq
data is growing extremely fast, and novel algorithmic approaches improving
these steps are key to extract more biological information. Here, we introduce: (i) two
methods for automatic cell type identification (i.e., without expert curator) based
on a voting algorithm and a Hopfield classifier, (ii) a method for cell anomaly
quantification based on isolation forest, and (iii) a tool for the visualization
of cell phenotypic landscapes based on Hopfield energy-like functions. These new
approaches are integrated in a software platform that includes many other state-
of-the-art methodologies and provides a self-contained toolkit for scRNA-seq
analysis.
Results: We present a suite of software elements for the analysis of scRNA-seq
data. This Python-based open source software, Digital Cell Sorter (DCS), consists
in an extensive toolkit of methods for scRNA-seq analysis. We illustrate the
capability of the software using data from large datasets of peripheral blood
mononuclear cells (PBMC), as well as plasma cells of bone marrow samples from
healthy donors and multiple myeloma patients. We test the novel algorithms by
evaluating their ability to deconvolve cell mixtures and detect small numbers of
anomalous cells in PBMC data.
Availability: The DCS toolkit is available for download and installation through the
Python Package Index (PyPI). The software can be deployed using the Python import
function following installation. Source code is also available for download on
Zenodo: DOI 10.5281/zenodo.2533377.
Supplementary information: Supplemental Materials are available at PeerJ online.
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INTRODUCTION
Several platforms have emerged over the last decade for high-throughput RNA sequencing
at the single-cell resolution (Zheng et al., 2020). Obtaining biological insights from
single-cell data, however, requires complex computational analysis. Generally, the first
part of the analysis includes quality control (QC) of raw base call (BCL) files and alignment
of reads with the reference genome, followed by their quantification at the gene-level.
The second part of the analysis starts with additional QC procedures to filter out cells
with low library size and low number of unique genes sequenced, detect multiples
(i.e., two or more cells are captured instead of one), and remove cells with high
content of mitochondrial genes, which indicates broken cells (Ilicic et al., 2016). Data is
then normalized to ensure that the gene expression levels are comparable between
individual cells. Existing normalization methods (Ding, Zheng & Wang, 2017) have
different strengths and weaknesses. It is therefore important that scRNA-seq software
provides the flexibility to choose the best normalization strategy for a given dataset.
After normalization, the most variable genes’ largest principal components from
Principal Component Analysis (PCA) are often used for clustering and two-dimensional
visualization. After clustering, biological insight is obtained using different methods,
including differential expression, network analysis, enrichment analysis and cell type
annotation.

For users, it is most desirable to have an extensive toolkit in one software package.
Existing packages for scRNA-seq data include Cell ranger (Zheng et al., 2017), edgeR
(Robinson, McCarthy & Smyth, 2010), DESeg2 (Love, Huber & Anders, 2014), Seurat
(Stuart et al., 2019), Scanpy (Wolf, Angerer & Theis, 2018), but many others are
available. The advantages of an extensive set of methods under one open-source software
umbrella are smooth integration of the processing steps and control of the workflow.
For example, Seurat is a powerful package implemented in R with large data integration
capability and visualization, Scanpy is a Python-based software specifically designed
for efficient processing of large single-cell transcriptomics datasets. In addition,
commercial providers of single-cell platforms have developed software tools for low-level
processing and visualization (Eisenstein, 2020), focusing on the first part of the analysis,
that is, to generating the gene counts matrix.

Here, we join the ongoing effort to provide the community with user-friendly tools for
the second part of single-cell transcriptomics analysis, starting with pre-processing and
quality control and ending with cell type annotation, visualization, and analysis of the
annotated clusters. In addition to state-of-the-art methods, our Digital Cell Sorter
(DCS) platform introduces three new algorithms: (1) An enhanced version of our
recently-developed algorithm for the automatic annotation of cell types, polled DCS
(pDCS) (Domanskyi et al., 2019b), which uses a predefined set of markers to calculate a
voting score and annotate cell clusters with cell type information and its statistical
significance. The enhanced version of pDCS uses a marker-cell type matrix normalization
method to account for markers that are known to be unexpressed in certain cell types.
Also, in the new version, low quality scores are set to zero to reduce noise in cell type
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assignment. (2) A tool that provides a cell anomaly score using isolation forest, an
algorithm (Liu, Ting & Zhou, 2008) for anomaly detection. While clustering is based on
similarity, our cell anomaly score detects and quantifies the degree of heterogeneity within
each cluster and is important, for instance, in the analysis of scRNA-seq from cancer
samples. We also use this score to detect cells that are different than the majority of the
other cells in a dataset, like in the case of anomalous circulating cells in blood. (3) A second
algorithm for cell type identification based on Hopfield networks (Hopfield, 1982).
Hopfield networks allows for a direct mapping of associative memory patterns, in this case
patterns of gene expression, into dynamic attractor states of a recurrent neural network.
This method has been successfully used in the classification of cancer subtypes (Szedlak,
Paternostro & Piermarocchi, 2014; Maetschke & Ragan, 2014; Cantini & Caselle, 2019;
Udyavar et al., 2017; Conforte et al., 2020). In our algorithm, we use cell type markers
to define Hopfield attractors, and we let clusters of cells evolve to align with these
attractors. The Hopfield network is integrated with an underlying biological gene–gene
network, the Parsimonious Gene Correlation Network (PCN) (Care, Westhead &
Tooze, 2019), to retain only biologically significant edges. This allows us to obtain
interpretable information on the role of specific markers and their local connectivity in
defining the different cell types. The method also defines an energy-like function that
permits the visualization of the gene expression landscape and represents cell types as
valleys associated to the different cell type attractors.

The different tools in the DCS platform can be combined for improved performance.
For instance, we show how to combine the methods in (1) (pDCS) and (2) (Hopfield
classifier) into a consensus annotation methodology that is more accurate compared to
the methods used separately. Finally, we provide examples of the capabilities of DCS and
its performance using data from large single cell transcriptomics datasets of peripheral
blood mononuclear cells (PBMC), and bone marrow samples from healthy and multiple
myeloma patients. Note that our cell annotation methods are knowledge-based classifiers,
since they rely on pre-existing knowledge from cell type markers and do not require
training data.

METHODS
Functionality overview and toolkit structure
DCS functionalities include: (i) pre-processing (handling of missing values, removing
all-zero genes and cells, converting gene index to a desired convention, normalization,
log-transforming); (ii) quality control and batch effects correction; (iii) cells anomaly
score quantification; (iv) dimensionality reduction and clustering; (v) cell type annotation;
(vi) visualization, and (vii) post-processing analysis.

We classify our tools into three categories: primary processing tools, data query tools,
and visualization tools. Primary processing tools consist of functions transforming input
files into valid tables and translating gene names to a desired convention, general data
pre-processing, dimensionality reduction, and clustering. Cell type identification and
anomaly score calculations are also included in the processing tools. Data query
Application Programming Interface (API) tools include functions for retrieving gene
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expression of one or many genes across all cells or in a subset of cells, extraction of
new marker genes characteristic of a cell cluster, and other query-type functionalities.
Visualization tools include two-dimensional projection, quality control histograms,
marker expression projections, marker expression summaries, gene expression heatmaps,
individual gene t-texts, cell types assignment matrices, cell types stacked barplots, anomaly
scores projections, pDCS null distribution histograms, new markers plots, Sankey
diagrams (a.k.a. river plot), and cell type markers summary diagrams.

The DCS package is implemented in Python 3 and compatible with a variety of modern
operating systems. The source code is deposited at https://github.com/sdomanskyi/
DigitalCellSorter. Each new DCS release is archived on Zenodo, and can be installed via
PyPI or GitHub, for example, by running command pip install DigitalCellSorter in user’s
terminal. The Sphinx-build interactive documentation is available at https://digital-cell-
sorter.readthedocs.io and as appendix of the Supplemental Materials. Tutorials and
detailed description of each module and function of DCS as well as installation instructions
for specific platforms are included in the documentation.

Cell type annotation
After unsupervised clustering, DCS automatically assigns clusters to cell types without
relying on an expert curator to interpret the data, or a training data with cells already
labeled. DCS uses all the information available in a knowledgebase of characteristic
markers for many cell types. While cell type identification by manual interpretation
generally provides good results, DCS assures that all the available information, including
the presence and absence of markers, is taken into account, and can automatically identify
cell types in very large datasets. Moreover, DCS provides statistical significance of the
assignments, labeling as unknown clusters for which there is not sufficient information
to make an assignment, and provides multiple labels with their associated scores when the
expression pattern is consistent with more than one cell type. In DCS, automatic cell type
annotation can be obtained using two methods: a voting algorithm and an Hopfield
recurrent network classifier.

Voting algorithm
The voting algorithm in DCS is based on an extensive revision of our polled Digital
Cell Sorter method (Domanskyi et al., 2019b). Prior information on cell markers is
encoded in a marker/cell type matrix Mkm where k is the cell type, and m is the marker
gene. The element Mkm = ± 1 if m is an expressed/not expressed marker of cell type k.
We will refer to these as positive and negative markers, respectively. Finally, if marker
m is not used in determining cell type k the corresponding element of M is zero.
We normalize M, separately for negative and positive markers, by the number of markers
expressed in each cell type and then by the number of cell types expressing each marker.
Thus, markers that are unique to a particular cell type will be automatically assigned a
large weight. By retaining markers inM that are expressed in a given dataset X, we obtain a
matrix ~M. In Fig. S1 (bottom) we show an example of ~M for a PBMC dataset (Zheng et al.

Domanskyi et al. (2021), PeerJ, DOI 10.7717/peerj.10670 4/21

https://github.com/sdomanskyi/DigitalCellSorter
https://github.com/sdomanskyi/DigitalCellSorter
https://digital-cell-sorter.readthedocs.io
https://digital-cell-sorter.readthedocs.io
http://dx.doi.org/10.7717/peerj.10670#supplemental-information
http://dx.doi.org/10.7717/peerj.10670/supp-1
http://dx.doi.org/10.7717/peerj.10670
https://peerj.com/


(2017)), after gene filtering and normalization, with dark green (rose) corresponding to
unique positive (negative) markers.

We then build the marker/centroid matrix Ymc of the mean expression of marker m
across all cells in cluster c. For each markerm, we use Ymc to compute all cluster centroids’
z-scores Zmc. The z-score matrix Zmc is transformed into the matrix ~Zmc ¼ 1 if Zmc ≥ ζ

and ~Zmc ¼ 0 otherwise, for a given threshold ζ. The number of possible supporting
markers decreases by increasing the value of the cutoff ζ, and this parameter has to be
selected so that each cell type expected to be present in the dataset has a sufficient number
of markers. Figure S1 (top) shows Ymc, calculated for the PBMC dataset, with darker
blue corresponding to higher expression of markers, and stars denoting statistically
significant markers, that is, markers with z-score larger than ζ. We have varied the
parameter ζ in the range 0.1–1.5, and for the dataset in the figure, we chose ζ = 0.3. Finally,
we compute the matrix of voting scores for each type-cluster pair (k, c) according to
Vkc ¼

P
m
~Mkm~Zmc.

To quantify the statistical significance of the voting scores and make the final
assignment, we use a randomization method to calculate the statistical uncertainty
associated to each type-cluster pair (k, c). We randomize the clusters by preserving their
size and assigning to them cells randomly chosen from the whole dataset, and compute the
voting scores for each random configuration. This randomization is performed n = 104

times, recording the voting matrix Vkc for each configuration of random clusters. This
method accounts for cluster sizes, the overall gene expression distribution of the markers,
and imbalances in the number of markers per cell type in estimating the uncertainty.
The procedure provides distributions of voting resultsPkcðVkcÞ for a null model of random
clusters.

We determine the z-scores, Λkc, of the voting results Vkc in the null distribution
PkcðVkcÞ and assign the cell type according to Tc = argmaxk Λkc. All cells belonging to
cluster c are thus identified as cell type Tc. In the example of Fig. S1, we show in the top
panel how, after the cell type of each cluster has been assigned, we use green/red stars to
indicate supporting/contradicting markers. The labels assigned to clusters are indicated on
the left side of the top panel, and the total numbers of cell of each type and cluster are
shown in the right panel.

DCS also includes an algorithm that consists in a modification of the above voting
method, and is similar to a recently-proposed evidence-based cell-type identification
algorithm (Shao et al., 2020). In this modification, we divide the voting scores Vkc by the
maximum possible scores that each cell type could have if all positive makers and none of
the negative markers were expressed,

�kc ¼ Vkc=
X

m;Mkm . 0

Mkm: (1)

We then assign the cell type according to Tc = argmaxk Λkc. The main difference with
respect to the algorithm in Shao et al. (2020) is that we account for negative marker genes
as well as marker weights. Both annotation methods introduced in this section can be
combined to obtain a consensus score using the geometric mean of the corresponding Λkc.
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We remark that, in contrast to the previous version of our algorithm (Domanskyi et al.,
2019b), we now account for negative markers, that is, markers that should not be
significantly expressed, in the cell type assignment. The normalization procedure has been
modified accordingly. A marker can be in one of three states: supporting, contradicting,
or neither supporting nor contradicting. Moreover, to discard low quality score, we now
set the score to zero if the number of supporting markers is below 10% of all known
markers for a given cell type.

Hopfield knowledge-based classifier
Cell type assignment with this algorithm is based on the idea that gene expression for
different cell types can be represented as associative memories, and encoded as attractor
states of the signaling dynamics in an underlying gene network. If one starts with cells in a
cluster and let them evolve according to the dynamics defined by a set of interacting
memory patterns, the overlap of the cluster configuration with the attractors can be used
for cell type assignment.

Hopfield networks (Hopfield, 1982) are the simplest models of associative memories
and are defined using N Boolean variables σi(t) evolving at integer time steps t. In our case
these variables are associated with the expression of each gene. The initial state of each
node (gene) takes one of two values, σi(t) = ±1 (over/underexpressed), based on the
statistical significance of the average marker expression in each cluster, determined as a
z-score above a threshold ζ = 0.3 across all clusters. In the canonical Hopfield model, a
coupling matrix is constructed to store a set of p independent Boolean patterns jmi ¼ �1
as point attractors, where i = 0,1,…,N − 1 is the node index and m = 0,1,…,p − 1 is the
pattern index. In the algorithm implemented in DCS, we build attractors ~jmi using our
normalized marker cell type matrix, ~M, detailed above. The negative elements of this
matrix are set to zero, thus negative markers are not used in this method. The coupling
matrix Jij defines the strength and sign of the signal sent from node j to node i and is
defined by

Jij ¼
Aij

N

X
mn

~jmi Q�1
� �

mn
~jnj ; (2)

where

Qmn ¼ 1
N

X
i

~jmi
~jni ; (3)

is a matrix that reduces the effects of correlation in the attractors (Amit, Gutfreund &
Sompolinsky, 1985a, 1985b), and Aij is the adjacency matrix of the underlying biological
gene-gene interaction network. DCS currently uses a generic gene correlation network,
the Parsimonious Gene Correlation Network (PCN) (Huang et al., 2018), which can be
easily replaced with other gene networks. The underlying network defined by Aij effectively
reduces interactions between the nodes of the Hopfield neural network to retain only
biologically-justified gene-gene interactions.
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The total field at node i at time t is given by

hiðtÞ ¼
X
j

JijsjðtÞ þ hi
ext; (4)

and the dynamical update rule is given by

siðt þ 1Þ ¼ þ1 with probability ð1þ e�2hiðtÞ=TÞ�1

�1 otherwise
;

�
(5)

where T is an effective temperature representing noise (not a physical temperature).
Biologically, this noise represents the effect of different kinds of biochemical fluctuations
in cells. Additionally, any node in the network that is being turned off, that is, the local
field on a given node is such that it would switch from +1 to −1, is instead set to 0.
This simple modification to the dynamical rule above makes the signaling dynamics
dependent not only on the neighboring genes, but also on the gene state at the previous
step, and the network becomes more diluted during the evolution. Moreover, this way
of updating the system is asymmetric since it affects only genes that switch from +1 to −1,
and not, for instance, nodes that stay from -1 to −1. This modified Hopfield dynamics
has been recently proposed by Cantini & Caselle (2019), and we have found, like they
did, that this rule greatly improves the convergence of the classifier. This modification is
useful because nodes correctly overexpressed in the input and associated to a +1 get
sometimes switched to −1 only due to the stochastic nature of the algorithm. Removing
these nodes avoids the amplification of these wrong switches in the following updating
steps.

The rule of σ update, Eq. (5), may be implemented in various ways. The following
choices of update schemes were previously described in Domanskyi et al. (2019a).
Specifically, the synchronous scheme updates the state of all the nodes in the system at
every time step, but this is sensible only if the simulated system has a central pacemaker
coordinating the activity of all nodes. A more appropriate choice for decentralized
systems is the asynchronous scheme, in which the state of a randomly chosen subset of
nodes is updated at each time step. Here, we use the asynchronous scheme with update
probability for each node that linearly increases from 0.025 to 0.5 in the course 100 time
steps, after which it is kept constant.

The overlap of the state vector σi(t) with the mth pattern in one of the attractor states is
given by

mmðtÞ ¼ 1
N

X
i;n

siðtÞ~jni Q�1
� �

nm
; (6)

where − 1≤ mm(t) ≤ + 1. This overlap is similar to the one defined in Domanskyi et al.
(2019a). The overlap measures the similarity between the gene expression of the different
attractors and the simulated gene expression, and mm(t) = + 1 means that there is perfect
agreement between the simulated expression and attractor pattern m. For each cluster
we assign the cell type corresponding to the maximum non-negative overlap with the
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attractor states at the last time point. If for a given cluster there are no non-negative
overlaps with any of the attractor states, then a “Unassigned” label is assigned.
The stochastic nature of evolution of Hopfield network may lead to slightly different
dynamics between independent realization, therefore the simulation is repeated multiple
times and the most frequently assigned cell type is selected as a label for each cluster.
Second, third, and other most frequent cells types are also recorded into the score matrix
with their corresponding frequencies.

The two methods for cell assignment in the previous section and the Hopfield classifier
can be combined in different ways to obtain a consensus approach using the geometric
averages of the corresponding score matrices. All combination options are detailed in the
DCS documentation.

Hopfield landscapes visualization
The Hopfield model introduced in the previous section can be used to define a
quasi-energy function

E ¼ � 1
2

X
i;j

siJijsj; (7)

where σi is the Boolean variable describing gene up or down regulation, and the matrix
J is defined using Eq. (2). Eq. (7) defines a Lyapunov function for the signaling dynamics
in the gene network and allows us to build a Hopfield landscape in which the attractor
states, that is, the different cell types, are the minima of a complex multi-dimensional
phenotypic landscape. The quasi-energy in Eq. (7) can be defined with or without the
matrices Aij and Qmν, and using different normalizations for the jmi . Therefore, our DCS
software allows for different options for the landscape representation. This landscape
can be explicitly visualized by starting at the equilibrium points corresponding to the
attractor configurations and adding noise to sample their basins of attraction. The points
sampled can then be represented in a 2D plot using principal components projections
(Szedlak et al., 2017; Maetschke & Ragan, 2014; Fard et al., 2016; Taherian Fard & Ragan,
2017). An example of output from this DCS visualization tool is in Fig. 1, where the Aij was
used (and not the Qmν) and the jmi were normalized as in the table ~M (See Fig. S2 for a
landscape with Qmν). The figure shows the visualization of the phenotypic landscape of
14 different hematopoietic cell types, where the coordinates are the first two largest
principal components of the point attractors, and the colors and contour lines reflect the
Hopfield quasi-energy function of Eq. (7). These attractors were built using markers from
Newman et al. (2015), modified to merge subtypes of B cells, CD4 T cells, NK cells,
Macrophages, Dendritic cells and Mast cells, and their position in the landscape are
indicated by stars. This visualization effectively uses the Hopfield quasi-energy to represent
the matching/mismatching with the attractors in all dimensions. Note how for some
cell types the basins of attraction are closer to each other than for others, and sometimes
they overlap. For instance, Mast Cells, Eosinophils, and Plasma cells have overlapping
basins, well separated from other cell types such as T cells or Macrophages.
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Additional considerations and analyses on Hopfield attractors and the role of the Qmatrix
are discussed in Supplemental Materials (Figs. S2 and S3).

Cell anomaly quantification
This module implements an algorithm that quantifies cell anomaly, that is, how much cells
are different from other cells within the same dataset or within one or more clusters.
Anomaly detection and can be interpreted as the opposite of clustering, which is based on
similarity measures. The module for the quantification of anomaly is based on the Isolation
Forest anomaly detection algorithm (Liu, Ting & Zhou, 2008, 2012).

The Isolation Forest algorithm isolates cells by randomly selecting a gene and a split
value for its expression value. A schematic illustration of the algorithm is shown in Fig. 2.
For the sake of illustration, consider a genome with two genes A and B only (along the two
axes in Fig. 2A). Random partitioning is illustrated by the vertical and horizontal lines
labeled with s1,…,9. At each step the cells are partitioned in two sets by choosing one of the
two genes and a random threshold for the chosen gene’s expression. For a typical (blue)
cell (Fig. 2A), the number of steps necessary to isolate the cell is larger than for an

Figure 1 Hopfield attractor landscape visualization. The points are colored according to their Hopfield
quasi-energy, Eq. (7). Full-size DOI: 10.7717/peerj.10670/fig-1
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anomalous cell (red). This recursive partitioning can be described by a tree, as shown
in Fig. 2B, where each internal node contains a gene and a threshold value that were used
in that partitioning, whereas leaf nodes are the isolated cells. The partitioning is carried out
until all cells are isolated, that is, no further partition is possible. The cell anomaly
algorithm has a training and an evaluation stage. In the training stage, an ensemble of
n = 100 isolation trees, called isolation forest, is generated using random sub-samples of
ψ = 256 cells from the original dataset. Next, in the evaluation stage, for each cell i in
the dataset, or in a subset of cells of interest, and for each tree j in the forest, a path
length hij is derived by counting the number of edges from the root node of the tree to the
node where the cell is isolated by following genes and thresholds stored in tree j.
To compute anomaly score of cell i, path lengths hij obtained from all n trees in the
isolation forest are averaged and normalized according to

si ¼ �
P

j hij

cðcÞn ; (8)

where c(ψ) is a normalization factor that accounts for the sub-sampling size ψ, giving a
single score for the cell i, or a measure of anomaly. The algorithm’s pseudocode, and details
about normalization factor, special conditions in the anomaly score computation and
optimal selection of n and ψ are discussed in the original publication of the anomaly
detection algorithm (Liu, Ting & Zhou, 2008). When a forest of random trees collectively
results in shorter branches for particular cells, they are likely anomalous cells. Cell anomaly

Figure 2 Schematics of how the isolation forest algorithm quantifies cell anomaly. In this example we
consider only two genes A and B. One of these two genes is randomly selected and data is partitioned
based on a random threshold applied to the chosen gene’s expression (vertical and horizontal lines
labeled with s1,…,9). Common cells, for example, c6 in (A), will be isolated with a larger number of
partitions compared to anomalous cells, for example, c10. (B) Tree representation of the algorithm, where
each internal node contains a gene and a threshold and represents a partition of the cells. Random
partitioning produces shorter branches for anomalous cells (red) compared to common cells (blue).

Full-size DOI: 10.7717/peerj.10670/fig-2
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can be used to rank cells from more anomalous to less anomalous. Then the top-ranked
cells can be further analyzed to investigate the biological difference from the other cells
in the dataset. This module can be useful to identify small numbers of cells that may not be
otherwise separated into a distinct cluster.

Quality control
Figure S3 shows an example of output from the quality control module. Count depth,
that is, number of reads per gene, and gene counts, that is, number of non-zero genes
per cell, are evaluated for each cell. Cell with count depths and gene counts that are below
50% of the median of their respective distributions are tagged as low quality. The quality
control parameters defaults can be overwritten by a software user, as different datasets
may require adjustment of the cutoffs.

The DCS quality control procedure also accounts for the fraction of mitochondrial
genes expressed in each cell, as shown in Fig. S3C. The fraction of mitochondrial genes
cutoff is chosen at the abscissa interception with a line that passes through the median of
the distribution and median plus 1.5 standard deviations. The list of human mitochondrial
genes is taken directly from MitoCarta2.0: an updated inventory of mammalian
mitochondrial proteins (Calvo, Clauser & Mootha, 2016).

The integration of DCS with other algorithms for batch correction, clustering,
dimensionality reduction and other visualization tools is detailed in the Supplemental
Materials (Figs. S4–S7).

RESULTS
Cell identification in mixtures
We compared the performance of our previous pDCS method (Domanskyi et al., 2019b),
with the new Hopfield classifier and the consensus annotation classifier described in
Voting algorithm. To evaluate the algorithms’ performance, we randomly generated
100 mixtures of pure cell types, representing a gold standard, and evaluated the algorithms
based on their automatic annotation. As gold standard, we used data from CD14
monocytes, CD19 B cells, CD34 cells, CD4 memory T cells, CD4 naive T cells, CD4
regulatory T cells, CD4 helper T cells, CD8 cytotoxic T cells, CD8 naive cytotoxic T cells
and CD56 NK cells from a FACS-sorted PBMC dataset (Zheng et al., 2017), in addition to
endothelial (SRS2397417, SRS4181127, SRS4181128, SRS4181129, SRS4181130) and
epithelial cells (SRS2769050, SRS2769051) annotated in the PanglaoDB database (Franzén,
Gan & Björkegren, 2019). The total number of cells used was 98,752, 53% of which are
T cells. Each independent synthetic mixture contains on average 5,000 cells, chosen
randomly from the 16 cell types listed above in random fractions. As the algorithms uses
prior knowledge in the form of marker genes, we tested the algorithms using two marker
genes tables: (i) CD Marker Handbook containing 11 main cell types and covering all
16 cell-types and sub-types present in the gold standard set (BD Biosciences, 2020), and
(ii) CIBERSORT LM22 (Newman et al., 2015), modified to merge subsets of B cells, T cells,
NK cells, Macrophages, Dendritic cells and Granulocytes. Marker table (ii) does not
have marker information for CD34 cells, Endothelial cells or Epithelial cells, which are
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25.6% of all the cells. To quantify each method’s performance we calculated a multi-class
weighted F1 score, excluding unassigned cells, and took the median value over 100
independent random mixtures. We also calculated the median of the fraction of cells
that had cell type unassigned for the same random mixtures. The results are shown in
Table 1. Note how, for both marker tables, the new Hopfield classifier performed better
than the original pDCS method and that the consensus annotation outperformed all other
methods.

A particular case of cell identification in a mixture is shown in Fig. 3. This figure shows
how the platform can be used to analyze complex mixtures involving different tissues.
Here we combined scRNA-seq data from: (1) CD138+/CD38+ cells from bone marrow
samples obtained from hip replacement surgery (Ledergor et al., 2018) and (2) PBMC
(Zheng et al., 2017). The samples from (1) are dominated by plasma cells due to the
CD138+/CD38+ pre-selection by flow cytometry, while plasma cells should be relatively
rare in the PBMC sample. We therefore expect our algorithm to label most of the cells
from (1) as plasma cells, and identify other cell types in the cells coming from (2).
Figure 3A shows the t-SNE layout of the mixture of 8,448 CD138/+CD38+ cells and
1,000 PBMCs randomly selected cells from the PBMC dataset, after QC and batch effect
correction. Clusters annotated with cell type information are shown in Fig. 3B and the
relative size of the clusters are shown in Fig. 3C, including cells that did not pass QC.
Annotation was obtained using the CIBERSORT LM22 list as knowledge-base. Note how
in this particular case the algorithm correctly identified 96% of the cells from (1) that
passed QC as “Plasma cells”, while most of the remaining was assigned to “Monocytes”.
Cells from (2) were mostly identified as T cells, which is the dominant cell type expected
in dataset (2). The Sankey plot in panel (D) shows on the left side the clusters with
their label and on the right side the batches from datasets (1) (labeled by “hip”) and (2).
The thickness of the lines is proportional to the number of cells in the corresponding
cluster-batch pair. Note how most of the cells from dataset (1) are linked to clusters labeled
either as plasma cells or failed QC.

Performance with different marker lists
Since our voting and Hopfield-based algorithms depend on a list of marker genes, we have
studied the dependance of cell type assignment on different lists of markers by comparing
the labels assigned to a gold standard. In addition to the CIBERSORT and the CD
Marker Handbook introduced above, we created a new list of markers obtained by

Table 1 Performance of annotation methods evaluated using mixtures of pure cell type populations.
Median multi-class F1 and percentage of unassigned cells (U) using two lists of markers as knowledge-
base.

Method pDCS Hopfield Consensus

Metric F1 U (%) F1 U (%) F1 U (%)

CD Marker 0.836 6.0 0.867 16.7 0.947 21.6

CIBERSORT 0.740 6.6 0.942 22.3 0.944 22.6
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differential expression analysis of data from a large recently-published single-cell study
(Han et al., 2020), and we also used a manually-curated list of cell-type markers from
PanglaoDB (Franzén, Gan & Björkegren, 2019). These cell marker lists differ in the
number of markers per cell type, presence/absence of negative markers, and overlap of
markers across cell types. More importantly, these lists are based on different labels, often
corresponding to different degrees of type/subtype refinement. As a gold standard we used
a set of 68,579 PBMC cells from Zheng et al. (2017). Figure 4 shows Sankey plots
connecting cells annotated using the consensus annotation and one of the markers list
(on the left side of each plot) with the annotation in the gold standard (right side of

Figure 3 (A) Mixture of 8,448 CD138+CD38+ cells and 1,000 PBMCs on a t-SNE layout. Batch
effects arising from different datasets, labeled by different colors, were removed with COMBAT.
(B) Same layout as in (A) with clusters annotations. (C) Relative fractions of the annotated cell
types, including cells that failed QC requirements. Such cells are excluded from plots in (A) and
(B). (D) River plot showing labeled categories, from (B) and (C), and their memberships for each
of the batches. Full-size DOI: 10.7717/peerj.10670/fig-3
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each plot). This visualization allows for a direct comparison of cells labeled using different
degrees of type/sub-type refinement. The plot also explicitly indicates cells that were
labeled as “Unassigned” and cells that did not pass QC. Overall, a comparison among these
four plots indicates that the annotation is quite consistent.

Validation of anomaly detection
We have designed an in silico experiment to validate and demonstrate the utility of the cell
anomaly score introduced in Cell anomaly quantification. The experiment mimics a
scenario in which a small number of circulating endothelial cells are present in peripheral
blood, and evaluates the algorithm on its ability to detect these cells using their anomaly
score. We selected 1,637 cells (T cells and Monocytes of PBMC) from SRS3363004

Figure 4 Sankey diagrams for 68,579 PBMC annotated cells (taken as gold standard, Zheng et al.
(2017)) using marker gene information from: (A) CIBERSORT LM22, (B) CD Marker Handbook,
(C) HCL peripheral blood samples, (D) PanglaoDB. The plots connect cells annotated using our
consensus annotation with one of the four marker lists (on the left side of each plot) with the annotation
in the gold standard (right side of each plot). Full-size DOI: 10.7717/peerj.10670/fig-4
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(GSM3169075) and 70 endothelial cells from SRS3822686 (GSM3402081) to mimic the
presence of cells that are rare in blood. Both datasets were annotated in PanglaoDB and
have been sequenced using Illumina HiSeq 2500 and 10× Chromium. The two datasets
have similar sequencing depth, median number of expressed genes per cell and fraction
of good quality cells, as detailed in Table S1.

We combined 1,637 PBMC and 20 endothelial cells randomly chosen out of the
total 70. We then calculated the anomaly score of each cell after DCS normalization.
The normalization and anomaly score calculation was repeated 100 times, each time
with new randomly chosen 20 cells out of the 70 available cells. Receiver operating
characteristic (ROC) curves were calculated for each of the 100 realizations with the cell
anomaly rank as threshold. The average ROC curve is shown in Fig. 5A. The AUC is 0.929,

Figure 5 ROC curves based on the anomaly score rank for 20 cells mixed in a set 1,637 PBMCs.
The panels show average ROC from 100 random realizations (solid line) and a random model (dased
line): (A) endothelial cells, (B) Merkel cell carcinoma cells, (C) Kaposi’s sarcoma cells, and (D) bone
marrow T cells. Full-size DOI: 10.7717/peerj.10670/fig-5
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indicating that the anomaly score can efficiently identify cells of a phenotype different than
the majority of the other cells in the dataset. Next, instead of normal endothelial cells we
used Merkel cell carcinoma cells (from SRA749327, SRS3693909) resulting in AUC of
100-fold average ROC 0.951, Fig. 5B, and Kaposi’s sarcoma cells (from SRA843432,
SRS4322341) resulting in AUC of 100-fold average ROC 0.844, Fig. 5C. As a negative
control, we replaced the 70 endothelial cells with 928 T cells from a bone marrow sample
(from SRS3805245, GSM3396161) sequenced using Illumina HiSeq 3000 and 10×
chromium, but otherwise very similar to the endothelial cells in sequencing depth and
median number of expressed genes per cell. As before, we chose 20 out of the 928 T cells
and combined them with 1637 blood cells. The ROC curve averaged over 100 random
realizations average is shown in Fig. 5, curve (D). The AUC is 0.594, indicating that cells of
similar phenotype get similar score despite being sequenced in different experiments.
We have also used 5 and 10 cells instead of 20 in a set of additional in silico experiments
to verify that the resulting AUC values are similar to the experiments with 20 cells detailed
above.

To emphasize the difference between anomaly detection and clustering, we have
quantified how close anomalous cells are to clusters of other cells. First we analyzed the
normal PBMC cells to identify two clusters, L and M, with 1,231 lymphoid cells and 407
myeloid cells, respectively. Then, we combined the PBMC cells with 20 randomly chosen
endothelial cells, hereon denoted as cluster O, and we normalized and projected the
expression data on the principal components. Next, we calculated the inter- and
intra-cluster euclidean distance for the clusters L, M and O, and derived the Silhouette
scores for each of the clusters (defined as the difference between the nearest inter-cluster
distance and intra-cluster distance, divided by the larger of the two) and the average
Silhouette score across all cell in clusters L, M and O. Repeating this procedure 100 times,
each time selecting a new set of cells O, we calculated the average measures, summarized
in Table S2. The table has four sections where the small cluster O corresponds to the
four cases in Fig. 5. The analysis shows that the O clusters always have to lowest silhouette
score, indicating that clustering algorithms based on an euclidean distance will not
separate the cells in O from the L and M cells.

DISCUSSION
We have introduced DCS, a platform for the analysis of single cells transcriptomics that
includes new methodologies for cell type identification, anomaly quantification, and
visualization. The platform incorporates numerous state-of-the-art algorithms and
provides a user-friendly pipeline, starting with pre-processing and quality control, and
ending with cell type annotation and downstream analysis of the annotated data. DCS is an
open source software that leverages on scikit-learn, scipy, numpy, pandas and other
powerful python libraries and is optimized for an efficient processing of large data sets.
We have provided examples showing implementations and functionalities, and more
technical details are included in the software documentation. Overall, we expect that
this platform will be highly valuable for the bioinformatics research community.
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More specifically, the novel methodologies introduced in the platform are: (1) an
enhanced version of our method for the automatic annotation of hematological cell
types (pDCS). This new version uses a normalization method that accounts for markers
that are known to be always unexpressed in certain cell types. (2) A tool to quantify the
anomaly of cells based on isolation forest, a machine learning algorithm for anomaly
detection. This algorithm detects cells that are different than the majority of other cells in a
dataset, but that do not cluster together. (3) A new method for cell type identification
based on a Hopfield network classifier. This method represents different cell types as
attractors of the signaling dynamics in a gene network. A measured cell’s expression
evolves according to this model, and its label is assigned by the attractor is converging into.
We have shown how to combine different algorithms in our toolkit to obtain a consensus
score for the cell annotation. DCS includes extensive visualization tools, including a
tool for visualizing Hopfield’s landscapes, in which cell types are represented as minima
of an energy-like function representing the cellular phenotypic landscape.

The automatic identification of cell types is an important component in the analysis of
single cell data (Abdelaal et al., 2019). The performance of cell type annotation on
FACS-sorted single cell was significantly improved when the enhanced pDCS algorithm
was combined with the Hopfield classifier. This improvement is due to the fact that the
Hopfield classifier labels as “unknown” all the gene expression patterns that do not
converge to any of the attractors, reducing the chance of mislabeling. We have also found
that a pre-existing biological network can be used to improve cell type identification.
The network was integrated in our approach by retaining only edges in the Hopfield
network that are present in a non-specific biological network (Care, Westhead & Tooze,
2019). We have demonstrated that different marker lists result in a consistent cell type
annotation. Negative markers in addition to positive markers leads to better performance
in the cell classification.

The anomaly detection module of DCS ranks cells from more anomalous to less
anomalous and visualizes the results. To validate and demonstrate the utility of the cell
anomaly score, we have presented in silico experiments that mimic a scenario in which
a small number of anomalous cells are present in peripheral blood. We evaluated the
algorithm on its ability to detect these cells from single cell transcriptomics data using
their anomaly score. As anomalous cells we used normal endothelial cells, carcinoma cells,
and sarcoma cells, mixed into PBMCs. We combined all PBMC and a small number of
anomalous cells, normalized the mixed dataset and calculated the cell anomaly score.
The AUC of the average ROC (cell anomaly rank used as threshold) curve for all three
synthetic mixtures was high, indicating that the anomaly score could be useful to detect
these unexpected cells in single cell transcriptomics datasets.

Future extensions of the platform will include the integration of markers lists for
more cell types, and pre-existing networks that are tissue or disease specific. For instance,
in the case of single cell data from cancer samples, the number of mutations can be so large
that signaling networks can undergo significant rewiring, modifying the attractor
landscape.
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