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Abstract

Background: Deep learning enables accurate high-resolution mapping of cells and tissue structures that can serve as the foundation
of interpretable machine-learning models for computational pathology. However, generating adequate labels for these structures is a
critical barrier, given the time and effort required from pathologists.

Results: This article describes a novel collaborative framework for engaging crowds of medical students and pathologists to produce
quality labels for cell nuclei. We used this approach to produce the NuCLS dataset, containing >220,000 annotations of cell nuclei
in breast cancers. This builds on prior work labeling tissue regions to produce an integrated tissue region- and cell-level annotation
dataset for training that is the largest such resource for multi-scale analysis of breast cancer histology. This article presents data
and analysis results for single and multi-rater annotations from both non-experts and pathologists. We present a novel workflow
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that uses algorithmic suggestions to collect accurate segmentation data without the need for laborious manual tracing of nuclei.
Our results indicate that even noisy algorithmic suggestions do not adversely affect pathologist accuracy and can help non-experts
improve annotation quality. We also present a new approach for inferring truth from multiple raters and show that non-experts can
produce accurate annotations for visually distinctive classes.

Conclusions: This study is the most extensive systematic exploration of the large-scale use of wisdom-of-the-crowd approaches to
generate data for computational pathology applications.

Keywords: crowdsourcing, deep learning, nucleus segmentation, nucleus classification, breast cancer

Background
Motivation
Convolutional neural networks and other deep learning methods
have been at the heart of recent advances in medicine (see Supple-
mentary Table S1 for terminology) [1]. A key challenge in compu-
tational pathology is the scarcity of large-scale labeled datasets
for model training and validation [2–4]. Specifically, there is a
shortage of annotation data for delineating tissue regions and cel-
lular structures in histopathology. This information is critical for
training interpretable deep-learning models because they allow
the detection of entities that are understood by pathologists and
map to known diagnostic criteria [4–7]. These entities can then be
used to construct higher-order relational graphs that encode com-
plex spatial and hierarchical relationships within the tumor mi-
croenvironment, paving the way for the computationally driven
discovery of histopathologic biomarkers and biological associa-
tions [4, 8–13]. Data shortage is often attributed to the domain ex-
pertise required to produce annotation labels, with pathologists
spending years in residency and fellowship training [2, 14]. This
problem is exacerbated by the time constraints of clinical prac-
tice and the repetitive nature of annotation work. Manual tracing
of object boundaries is an incredibly demanding task, and there
is a pressing need to obtain these data using facilitated or as-
sisted annotation strategies [15]. By comparison, traditional an-
notation problems such as detecting people in natural images re-
quire almost no training and typically engage the general pub-
lic [15]. Moreover, unique problems often require new annotation
data, underscoring the need for scalable and reproducible anno-
tation workflows [16].

We address these issues using an assisted annotation method
that leverages the participation of non-pathologists (NPs), includ-
ing medical students and graduates. Medical students typically
have strong incentives to participate in annotation studies, with
increased reliance on research participation in residency selection
[17]. We describe adaptations to the data collection to improve
scalability and reduce effort. This work focuses on nucleus clas-
sification, localization, and segmentation (NuCLS) in whole-slide
scans of hematoxylin and eosin (H&E)-stained slides of breast
carcinoma from 18 institutions from The Cancer Genome At-
las (TCGA). Our annotation pipeline enables low-effort collection
of nucleus segmentation and classification data, paving the way
for systematic discovery of histopathologic-genomic associations
and morphological biomarkers of disease progression [4, 5, 8, 10,
11].

Related work
There has been growing interest in addressing data scarcity in
histopathology by either (i) scaling data generation or (ii) reduc-
ing reliance on manually labeled data using data synthesis tech-
niques such as generative adversarial networks [18–25]. While
there is a pressing need for both approaches, this work is meant to
fit into the broad context of scalable assisted manual data genera-
tion when expert annotation is expensive or difficult. Crowdsourc-

ing, the process of engaging a “crowd” of individuals to annotate
data, is critical to solving this problem. There exists a large body
of relevant work in crowdsourcing for medical image analysis [15,
26, 27]. Previously, we published a study and dataset using crowd-
sourcing of NPs for annotation of low-power regions in breast can-
cer [28]. Our approach was structured because we assigned differ-
ent tasks depending on the level of expertise and leveraged collab-
orative annotation to obtain data that are large in scale and high
in quality. Here, we significantly expand this idea by focusing on
the challenging problems of nucleus classification, localization,
and segmentation. This computer vision problem is a subject of
significant interest in computational pathology [29–31].

While the public release of data is only 1 aspect of our study, it is
essential to acknowledge related nucleus classification datasets.
Some of these datasets can be used in conjunction with ours and
include MoNuSAC, CoNSep, PanNuke, and Lizard [29, 30, 32–38].
Lizard, in particular, is a highly related dataset that was recently
published after we released NuCLS but focuses on colon cancer
instead [37]. Additionally, the US Food and Drug Administration is
leading an ongoing study to collect regulatory-grade annotations
of stromal tumor-infiltrating lymphocytes (sTILs) [39]. Unfortu-
nately, with few exceptions, most public computational pathology
datasets either are limited in scale, were generated through ex-
haustive annotation efforts by practicing pathologists, or do not
disclose or discuss data generation [2, 26, 30, 40]. Additionally, to
the best of our knowledge, most other works do not explore crowd-
sourcing as a data generation approach or systematically explore
interrater agreement for experts vs non-experts.

A few studies are of particular relevance to this article. A study
by Irshad et al. showed that non-experts, recruited through the
Figure Eight platform, can produce accurate nucleus detections
and segmentations in renal clear cell cancer but was limited to 10
whole-slide images [20]. Hou et al. explored the use of synthetic
data to produce nuclear segmentations [41]. While a significant
contribution, their work did not address classification, relied on
qualitative slide-level evaluations of results, and did not explore
how algorithmic bias affects data quality [22, 42]. The approach
we used involves click-based approval of annotations generated
by a deep-learning algorithm. This methodological aspect is not
the central focus of this article; it is only one of many approaches
for interactive segmentation and classification of nuclei explored
in past studies such as HistomicsML and NuClick [22, 42].

Our contributions
This work describes a scalable crowdsourcing approach that sys-
tematically engaged NPs and produced annotations for localiza-
tion, segmentation, and classification of nuclei in breast cancer.
Our workflow required minimal effort from pathologists and used
algorithmic suggestions to scale the annotation process and ob-
tain hybrid annotation datasets containing numerous segmenta-
tion boundaries without laborious manual tracing. We show that
algorithmic suggestions can improve the accuracy of NP annota-
tions and that NPs are reliable annotators of common cell types.
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In addition, we discuss a new constrained clustering method that
we developed for reliable truth inference in multi-rater datasets.
We also show how multi-rater data can ensure the quality of NP
annotations or replace expert supervision in some contexts. Fi-
nally, we note that downstream deep-learning modeling using the
NuCLS dataset is discussed in a related publication and is not the
focus of this article [43].

Data description
NuCLS is a large-scale multi-class dataset generated by engaging
crowds of medical students and pathologists. NuCLS is sourced
from the same images as the Breast Cancer Semantic Segmenta-
tion (BCSS) dataset [28]. Together, these datasets contain region-
and cell-level annotations and constitute, to our knowledge, the
most extensive resource for multi-scale analysis of breast cancer
slides. We obtained a total of 222,396 nucleus annotations, includ-
ing >125,000 single-rater annotations and 97,000 multi-rater an-
notations. A detailed description of the dataset creation protocol
is presented in the Methods section.

Analyses and Discussion
Structured crowdsourcing enables scalable data
collection
Pathologist time is limited and expensive, and relying solely on
pathologists for generating annotations can hinder the develop-
ment of state-of-the-art models based on convolutional neural
networks. In this study, we show that NPs can perform most of the
time-consuming annotation tasks and that pathologist involve-
ment can be limited to low-effort tasks that include:

� Training NPs and answering their questions (Fig. 1) [44].
� Qualitative scoring of NP annotations (Supplementary

Fig. S1).
� Low-power annotation of histologic regions (Supplementary

Fig. S2) [28].

We used a web-based annotation platform called HistomicsUI
for annotation, feedback, and quality review [45]. HistomicsUI pro-
vides a user interface with annotation tools and an API for pro-
grammatic querying and manipulating the centralized annota-
tion database. The NuCLS dataset includes annotations from 32
NPs and 7 pathologists in the USA, Egypt, Syria, Australia, and the
Maldives. We obtained 128,000 nucleus annotations from 3,944
fields of view (FOVs) and 125 patients with triple-negative breast
cancer. The annotations included bounding box placement, classi-
fication, and, for a sizable fraction of nuclei, segmentation bound-
aries. Half of these annotations underwent quality control correc-
tion based on feedback by a practicing pathologist.

Additionally, we obtained 3 multi-rater datasets containing
97,300 annotations, where the same FOV was annotated by multi-
ple participants (Figs 1B and 2). The collection of multi-rater data
enables quantitative evaluation of NP reliability, interrater vari-
ability, and the effect of algorithmic suggestions on NP accuracy.
Multi-rater annotations were not corrected by pathologists and
enabled an unbiased assessment of NP performance. Pathologist
annotations were also collected for a limited set of multi-rater
FOVs to evaluate NP accuracy.

NPs can reliably classify common cell types
The detection accuracy of NPs was moderately high (average pre-
cision = 0.68) and was similar to the detection accuracy of pathol-

ogists. Classification accuracy of NPs, on the other hand, was
only high for common nucleus classes (micro-average area un-
der receiver-operator characteristic curve [AUROC] = 0.93 [95%
CI, 0.92–0.94] vs macro-average AUROC = 0.75 [95% CI, 0.74–0.76])
and was higher when grouping by super-class (Fig. 3, Supplemen-
tary Fig. S3). We reported the same phenomenon in our previ-
ous work on crowdsourcing annotation of tissue regions [28]. In
addition, we observed moderate clustering by participant expe-
rience (Fig. 3D) and variability in classification accuracy among
NPs (Matthews correlation coefficient [MCC] = 60.7–84.2). This ob-
servation motivated our quality control procedures. Study coordi-
nators manually corrected missing or misclassified cells for the
single-rater dataset, and practicing pathologists supervised and
approved annotations. For the multi-rater datasets, we inferred a
singular label from pathologists (P-truth) and NPs (NP-label) using
an expectation-maximization framework that estimates reliabil-
ity values for each participant [46, 47].

When pathologist supervision is not an option, multi-rater
datasets need to have annotations from a sufficient number of
NPs to infer reliable data. We used the annotations we obtained
to perform simulations to estimate the accuracy of inferred NP-
labels with fewer numbers of participating NPs (Fig. 3E). The
inferred NP-label accuracy increased up to 6 NPs per FOV, af-
ter which there were diminishing returns. Our simulations also
showed that stromal nuclei require more NPs per FOV than tu-
mor nuclei or sTILs.

Minimal-effort collection of nucleus
segmentation data
Many nucleus detection and segmentation algorithms were de-
veloped using conventional image analysis methods before the
widespread adoption of convolutional neural networks. These
algorithms have little or no dependence on annotations, and
while they may not be as accurate as convolutional neural net-
works, they can correctly segment a significant fraction of nu-
clei. We used simple nucleus segmentation heuristics, combined
with low-power region annotations from the BCSS dataset, to ob-
tain bootstrapped annotation suggestions for nuclei (Supplemen-
tary Fig. S2) [28]. The suggestions were refined using a well-known
deep-learning model (Mask R-CNN) as a function approximator
trained on the bootstrapped suggestions. This procedure allowed
poor-quality bootstrapped suggestions in 1 FOV to be smoothed
by better suggestions in other FOVs (Supplementary Fig. S4, Sup-
plementary Table S2) and is analogous to fitting a regression line
to noisy data [18, 48]. This model was applied to the FOVs to gen-
erate refined suggestions shown to participants when annotating
the single-rater dataset and the Evaluation dataset (the primary
multi-rater dataset) [44]. Two additional multi-rater datasets were
obtained as controls:

� Bootstrap control: participants were shown unrefined boot-
strapped suggestions.

� Unbiased control: participants were not shown any sugges-
tions. This dataset was the first multi-rater dataset to be an-
notated.

Accurate suggestions can be confirmed during annotation with
a single click, reducing effort and providing valuable nucleus
boundaries that can aid the development of segmentation mod-
els. Participants can annotate nuclei that have poor suggestions
using bounding boxes. Bounding box annotation requires more
effort than clicking a suggestion but less effort than the manual
tracing of nuclear boundaries [15]. We obtained a substantial pro-
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Figure 1: Dataset annotation and quality control procedure. A. Nucleus classes annotated. B. Annotation procedure and resulting datasets. Two
approaches were used to obtain nucleus labels from non-pathologists (NPs). (Top) The first approach focused on breadth, collecting single-rater
annotations over a large number of FOVs to obtain the majority of data in this study. NPs were given feedback on their annotations, and 2 study
coordinators corrected and standardized all single-rater NP annotations on the basis of input from a senior pathologist. (Bottom) The second approach
evaluated interrater reliability and agreement, obtaining annotations from multiple NPs for a smaller set of shared FOVs. Annotations were also
obtained from pathologists for these FOVs to measure NP reliability. The procedure for inferring a single set of labels from multiple participants is
described in Fig. 2. We distinguished between inferred non-pathologist labels (NP-labels) and inferred pathologist truth (P-truth) for clarity. Three
multi-rater datasets were obtained: an Evaluation dataset, which is the primary multi-rater dataset, as well as Bootstrap and Unbiased experimental
controls to measure the value of algorithmic suggestions. In all datasets except the Unbiased control, participants were shown algorithmic
suggestions for nucleus boundaries and classes. They were directed to click nuclei with correct boundary suggestions and annotate other nuclei with
bounding boxes. The pipeline to obtain algorithmic suggestions consisted of 2 steps: (i) Using image processing to obtain bootstrapped suggestions
(Bootstrap control); (ii) Training a Mask R-CNN deep-learning model to refine the bootstrapped suggestions (single-rater and Evaluation datasets).

Figure 2: Inference from multi-rater datasets. The purpose of this step was to infer the nucleus locations and classifications from multi-rater data. A.
The first step involved agglomerative hierarchical clustering of bounding boxes using intersection-over-union (IOU) as a similarity measure. We
imposed a constraint during clustering that prevents merging annotations where a single participant has annotated overlapping nuclei. Participant
intention was preserved by demoting annotations from the same participant to the next node (Step 5, arrow). After clustering was complete, a
threshold IOU value was used to obtain the final clusters (Step 5, black nodes). Within each cluster, the medoid bounding box was chosen as an anchor
proposal. The result was a set of anchors with corresponding clustered annotations. When a participant did not match to an anchor, it was considered
a conscious decision not to annotate a nucleus at that location. B. Once anchors were obtained, an expectation-maximization procedure was used to
estimate (i) which anchors represent actual nuclei and (ii) which classes to assign these anchors. The expectation-maximization procedure estimates
and accounts for the reliability of each participant for each classification. Expectation-maximization was performed separately for NPs and
pathologists. C. Grouping of nucleus classes. Consistent with standard practice in object detection, nuclei were grouped, on the basis of clinical
reasoning, into 5 classes and 3 super-classes.
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Figure 3: Accuracy of participant annotations. A. Detection precision-recall comparing annotations to inferred P-truth. Junior pathologists tend to
have similar precision but higher recall than senior pathologists, possibly reflecting the time constraints of pathologists. PPV: positive predictive value.
B. Classification ROC for classes and super-classes. The overall classification accuracy of inferred NP-labels was high. However, class-balanced
accuracy (macro-average) is notably lower because NPs are less reliable annotators of uncommon classes. FPR: false-positive rate. C. Confusion
between pathologist annotations and inferred P-truth. D. Multidimensional scaling (MDS) analysis of interrater classification agreement. Some
clustering by participant experience (blue ellipse) highlights the importance of modeling reliability during label inference. E. A simulation was used to
measure how redundancy affects the classification accuracy of inferred NP-labels. While keeping the total number of NPs constant, we randomly kept
annotations for a variable number of NPs per FOV. Accuracy in these simulations was class-dependent, with stromal nuclei requiring more
redundancy for accurate inference. Each simulation is represented by one notched box plot, where notches correspond to the bootstrapped 95%
interval around the median, and the whiskers extend for 1.5x the interquartile range.

portion of nucleus boundaries through clicks: 41.7 ± 17.3% for the
Evaluation dataset and 36.6% for the single-rater dataset (Fig. 4,
Supplementary Fig. S5). The resultant hybrid dataset contained
a mixture of bounding boxes and accurate segmentation bound-
aries (Evaluation dataset Dice coefficient = 85.0 ± 5.9). We argue
that it is easier to handle hybrid datasets at the level of algorithm
development than to have participants trace missing boundaries
or correct imprecise ones. We evaluate the bias of using these sug-
gestions in the following section.

Algorithmic suggestions improve classification
accuracy
There was value in providing the participants with suggestions for
nuclear class, which included suggestions directly inherited from
BCSS region annotations, as well as high-power refined sugges-
tions produced by Mask R-CNN (Fig. 4). Pathologists had substan-
tial self-agreement when annotating FOVs with or without refined
suggestions (κ = 87.4 ± 7.9). NPs also had high self-agreement but
were more impressionable when presented with suggestions (κ
= 74.0 ± 12.6). This was, however, associated with a reduction in
bias in their annotations; refined suggestions improved the clas-

sification accuracy of inferred NP-labels (AUROC = 0.95 [95% CI,
0.94–0.96] vs 0.92 [95% CI, 0.90–0.93], P < 0.001). This observation
is consistent with Marzahl et al., who reported similar findings in
a crowdsourcing study using bovine cytology slides [27].

Region-based class suggestions for nuclei were, overall, more
concordant with the corrected single-rater annotations compared
to Mask R-CNN refined (high-power) nucleus suggestions (MCC
= 67.6 vs 52.7) (Supplementary Fig. S4, Supplementary Table S2).
Nonetheless, high-power nucleus suggestions were more accurate
for 24.8% of FOVs and had a higher recall for sTILs (96.8 vs 76.6)
[4, 11]. This result makes sense because stromal regions often
contain scattered sTILs and a region-based approach to labeling
would incorrectly mark these as stromal nuclei (e.g., see Supple-
mentary Fig. S6) [28, 49]. Hence, the value of low- and high-power
classification suggestions is context-dependent.

Exploring nucleus detection and classification
trade-offs
Naturally, there is some variability in the judgments made by par-
ticipants about nuclear locations and classes and the accuracy of
suggested boundaries. We study the process of inferring a single
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Figure 4: Effect of algorithmic suggestions on annotation abundance and accuracy. We compared annotations from the Evaluation dataset and
controls to measure the effect of suggestions and Mask R-CNN refinement on the acquisition of nucleus segmentation data and the accuracy of
annotations. A. Example annotations from a single participant. Algorithmic suggestions allow the collection of accurate nucleus segmentations
without added effort. Yellow points indicate clicks to approve suggestions. B. The number of segmented nuclei clicked is significantly higher for the
Evaluation dataset than for the Bootstrap control, indicating that refinement improves suggestion quality. C. Accuracy of algorithmic segmentation
suggestions. The comparison is made against a limited set of manually traced segmentation boundaries obtained from 1 senior pathologist (SP).
Suggestions that were determined to be correct by the expectation-maximization procedure had significantly more accurate segmentation
boundaries. D. Self-agreement for annotations in the presence or absence of algorithmic suggestions. The agreement is substantial for non-pathologist
(NP) and pathologist (P) groups, indicating that algorithmic suggestions do not affect classification decisions adversely. Pathologists have higher
self-agreement and are less impressionable than NPs. E. ROC curves for the classification accuracy of inferred NP-label, using inferred P-truth as our
reference. ∗∗P < 0.01; ∗∗∗P < 0.001.

truth from multi-rater datasets and discuss the effect of various
parameters. There is a trade-off between the number of nucleus
anchor proposals and interrater agreement (Fig. 5). The cluster-
ing IOU threshold that defines the minimum acceptable overlap
between any 2 annotations substantially affected the number of
anchor proposals. We found that an IOU threshold of 0.25 de-
tects most nuclei with adequate pathologist classification agree-
ment (1,238 nuclei, α = 55.5). We imposed a constraint to pre-
vent annotations from the same participant from mapping to the
same cluster—this improved detection of touching nuclei when
the number of pathologists was limited (Fig. 5B).

Nucleus detection was a more significant source of discordance
among participants than nucleus classification (Fig. 3, Supple-
mentary Figs S7 and S8). Some nucleus classes were easier to
detect than others. sTILs were the easiest to detect, likely ow-
ing to their hyperchromicity and tendency to aggregate; 53.3% of
sTILs were detected by ≥16 NPs (Supplementary Fig. S9). Fibrob-
lasts were demonstrably harder to detect (only 21.4% were de-
tected by ≥16 NPs), likely because of their relative sparsity and

lighter nuclear staining. Lymphocytes and plasma cells, which of-
ten co-aggregate in lymphoplasmacytic clusters, were a source of
interrater discordance for pathologists and NPs [4, 50]. This discor-
dance may stem from variable degrees of reliance on low-power
vs high-power morphologic features. Interrater agreement for nu-
clear classification was high and significantly improved when
classes were grouped into clinically salient super-classes (α = 66.1
[pathologists] and 60.3 [NPs]; Fig. 5).

Methods
Data sources
The scanned diagnostic slides we used were generated by the
TCGA Research Network (https://www.cancer.gov/tcga). They
were obtained from 125 patients with breast cancer (1 slide per pa-
tient). Specifically, we chose to focus on all carcinoma of unspec-
ified type cases that were triple-negative. The designation of his-
tologic and genomic subtypes was based on public TCGA clinical
records [28]. All slides were stained with H&E and were formalin-

https://www.cancer.gov/tcga
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Figure 5: Effect of clustering on detection and interrater agreement. A. Stricter IOU thresholds reduce the number of anchor proposals generated by
clustering but increase agreement. A threshold of 0.25 provides more anchor proposals with negligible difference in agreement from the 0.5 threshold.
The shaded region indicates that by design, there are no anchor proposals with <2 clustered annotations. B. The clustering constraint prevents
annotations from the same participant from being assigned to the same anchor, preserving participant intention when annotating overlapping nuclei.
This results in better detection of overlapping nuclei during clustering (upper panel) and also affects the inferred P-truth for anchors (bottom panel).
C. Interrater classification agreement among pathologists for tested clustering thresholds. D. Pairwise interrater classification agreement (Cohen κ) at
0.25 IOU threshold. ∗∗P < 0.01; ∗∗∗P < 0.001.

fixed and paraffin-embedded. The scanned slides were accessed
using the Digital Slide Archive repository [45].

Region annotations were obtained from BCSS, a previous
crowdsourcing study that we conducted [28]. Regions of interest
(ROIs), 1 mm2 in size, were assigned to participants by difficulty
level. All region annotations were corrected and approved by a
practicing pathologist. These region annotations were used to ob-
tain nucleus class suggestions as described below. Region classes
included tumor, stroma, lymphocytic infiltrate, plasmacytic infil-
trate, necrosis/debris, and other uncommon regions.

Algorithmic suggestions
The process for generating algorithmic suggestions is summa-
rized in Supplementary Fig. S2 and involves the following steps:

Heuristic nucleus segmentation
We used simple image processing heuristics to obtain noisy nu-
cleus segmentations [31]. Images were analyzed at scan magnifi-
cation (40×) with the following steps: (i) H&E stain unmixing us-
ing the Macenko method [51]. (ii) Gaussian smoothing followed by
global Otsu thresholding to identify foreground nuclei pixels [52].

This step was done for each region class separately to increase
robustness. We used a variance of 2 pixels for lymphocyte-rich
regions and 5 pixels for other regions. (iii) Connected-component
analysis split the nuclei pixel mask using 8-connectivity and a 3
× 3 structuring element [53]. (iv) We computed the Euclidean dis-
tance from every nucleus pixel to the nearest background pixel
and found the peak local maxima using a minimum distance of
10 [54]. (v) A watershed segmentation algorithm split the con-
nected components from Step 3 into individual nuclei using the
local maxima from Step 4 as markers [55, 56]. (vi) Any object <300
pixels in area was removed.

Bootstrapping noisy training data
Region annotations were used to assign a noisy class to each seg-
mented nucleus. This decision was based on the observation that
although tissue regions usually contain multiple cell types, there
is often a single predominant cell type: tumor regions/tumor cells,
stromal regions/fibroblasts, lymphocytic infiltrate/lymphocytes,
plasmacytic infiltrate/plasma cells, other regions/other cells. One
exception to this direct mapping is stromal regions, which contain
a large number of sTILs in addition to fibroblasts. Within stromal
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regions, a nucleus was considered a fibroblast if it had a spindle-
like shape with an aspect ratio between 0.4 and 0.55 and circular-
ity between 0.7 and 0.8.

Mask R-CNN refinement of bootstrapped suggestions
A Mask R-CNN model with a Resnet50 backbone was used as a
function approximator to refine the bootstrapped nucleus sugges-
tions. This model was trained using randomly cropped 128 × 128
tiles where the number of nuclei was limited to 30. Supplemen-
tary Table S3 includes other hyperparameters.

FOV sampling procedure
ROI locations were carried over from the BCSS dataset. ROIs were
manually selected by a physician (M.A.), who served as a study
coordinator for both the BCSS and NuCLS projects, and approved
by a senior pathologist (H.E.). These ROIs were then tiled into non-
overlapping potential FOVs, which were automatically selected for
inclusion in our study on the basis of predefined stratified sam-
pling criteria. A total of 16.7% of FOVs were sampled such that the
majority of refined suggestions were a single class, e.g., almost all
suggestions are tumor. In addition, 16.7% were sampled to favor
FOVs with 2 almost equally represented classes, e.g., many tumor
and fibroblast suggestions. Finally, 16.7% of FOVs were sampled
to favor discordance between the bootstrapped suggestions and
Mask R-CNN–refined suggestions, e.g., a stromal region with sTILs.
The remaining 50% of FOVs were randomly sampled from the fol-
lowing pool, with the intent of favoring the annotation of difficult
nuclei: (i) the bottom 5% of FOVs containing high numbers of nu-
clei with low Mask R-CNN confidence; (ii) and the top 5% of FOVs
containing extreme size detections, presumably clumped nuclei.

Annotation procedure and data management
The annotation protocol used is provided in the Supplementary
Material. We asked the participants to annotate the single-rater
dataset first because this also acted as their de facto training. Par-
ticipants were blinded to the multi-rater dataset name to avoid
biasing them. The Unbiased control was annotated first for the
same reason. A summary of the data management procedure is
provided below.

HistomicsUI
We used the Digital Slide Archive, a web-based data manage-
ment tool, to assign slides and annotation tasks (digitalslidear
chive.github.io) [45]. HistomicsUI, the associated annotation in-
terface, was used for creating, correcting, and reviewing anno-
tations. Using a centralized set-up avoids participants installing
software and simplifies the dissemination of images, control
over view/edit permissions, monitoring progress, and collect-
ing results. The annotation process is illustrated in this video:
https://www.youtube.com/watch?v=HTvLMyKYyGs. The process
of pathologist review of annotations is illustrated in Supplemen-
tary Fig. S1.

HistomicsTK Application Programming Interface
The HistomicsTK Restful API was used to manage data, users,
and annotations programmatically. This includes uploading
algorithmic suggestions, downloading participant annotations,
and scalable correction of systematic annotation errors where
appropriate.

Obtaining labels from multi-rater datasets
Obtaining anchor proposals
We implemented a constrained agglomerative hierarchical clus-
tering process to obtain anchor proposals (Fig. 2A). The algorithm
is summarized in Supplementary Fig. S10. In order to have a single
frame of reference for comparison, annotations from all partici-
pants and for all multi-rater datasets were clustered. After clus-
tering, we used 2 rules to decide which anchor proposals corre-
sponded to actual nuclei (for each multi-rater dataset indepen-
dently): (i) ≥2 pathologists must detect a nucleus and (ii) the in-
ferred P-truth must concur that the anchor is a nucleus.

Inference of NP-labels and P-truth
We used the expectation-maximization framework described by
Dawid and Skene [46, 47, 57]. Each participant was assigned an
initial quality score of 0.7, and 70 expectation-maximization iter-
ations were performed. As illustrated in Fig. 2B, undetected was
considered a nucleus class for P-truth/NP-label inference. The
same process was used to infer whether the boundary of an algo-
rithmic suggestion was accurate. In effect, the segmentation ac-
curacy was modeled as a binary variable (clicked vs not clicked),
and the expectation-maximization procedure was applied to infer
its value.

Class grouping
We defined 2 levels of grouping for nuclei classes as illustrated
in Fig. 2C. This was done for both the single-rater and multi-rater
dataset annotations. Aggregate expectation-maximization proba-
bility was calculated by summing probabilities across subsets.

Participant agreement
Overall interrater agreement was measured using the Krippen-
dorff α-statistic, implemented in Python by Santiago Castro and
Thomas Grill [58–60]. This statistic was chosen because of its
ability to handle missing values [61]. Pairwise interrater agree-
ment was measured using the Cohen κ-statistic [62]. Likewise,
self-agreement was measured using Cohen κ. All of these mea-
sures range from −1 (perfect disagreement) to +1 (perfect agree-
ment). A κ (or α) value of zero represents agreement that is ex-
pected by random chance. We used thresholds set by Fleiss for
defining slight, fair, moderate, substantial, and near-perfect agree-
ment [61].

Annotation redundancy simulations
We performed simulations to measure the effect of the number of
NPs assigned to each FOV on the accuracy of NP-label inference
(Fig. 3E). We kept the total number of NPs constant at 18 and ran-
domly removed annotations to obtain a desired number of NPs per
FOV. No constraints were placed on how many FOVs any single NP
had. This simulated the realistic scenario where participants can
annotate as many FOVs as they want, and our decision-making fo-
cuses on FOV assignment. For each random realization, we calcu-
lated the inferred NP-labels using expectation-maximization and
measured accuracy against the static P-truth. This process was
repeated for 1,000 random realizations per configuration.

Software
Data management, machine learning models, and plotting were
all implemented using Python 3+. Pytorch and Tensorflow li-
braries were used for various deep-learning experiments. Scikit-
learn, Scikit-image, OpenCV, HistomicsTK, Scipy, Numpy, and Pan-

http://digitalslidearchive.github.io
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das libraries were used for matrix and image-processing opera-
tions. Openslide library and HistomicsTK API were used for inter-
action with whole-slide images.

Statistical tests
The Mann-Whitney U test was used for unpaired comparisons.
The Wilcoxon signed-rank test was used for paired comparisons.
Confidence bounds for the AUROC values were obtained by boot-
strap sampling with replacement using 1,000 trials [63, 64]. AU-
ROC values are presented with 95% CI.

Conclusion
In summary, we have described a scalable crowdsourcing ap-
proach that benefits from the participation of NPs to reduce
pathologist effort and enables minimal-effort collection of seg-
mentation boundaries. We systematically examined aspects re-
lated to the interrater agreement and truth inference. There are
important limitations and opportunities to improve on our work.
Our results suggest that the participation of NPs can help address
the scarcity of pathologists’ availability, especially for repetitive
annotation tasks. This benefit, however, is restricted to annotating
predominant and visually distinctive patterns. Naturally, pathol-
ogist input—and possibly full-scale annotation effort—would be
needed to supplement uncommon and challenging classes that
require greater expertise. Some nuclear classes may be challeng-
ing to annotate in H&E-stained slides reliably and would be sub-
ject to considerable interrater variability even among practicing
pathologists. In these settings, and where resources allow, im-
munohistochemical stains may be used as a more objective form
of ground truth [65].

We chose to engage medical students and graduates with the
presumption that familiarity with basic histology would help
in acquiring higher-quality data. Whether this presumption was
warranted or whether it was possible to engage a broader pool of
participants was not investigated. On a related note, while we ob-
served differences based on pathologist expertise, this was not our
focus. We expect to address related questions such as the value
of fellowship specialization in future work. Also, we did not mea-
sure the time it took participants to create annotations; we relied
on the safe assumption that certain annotation types evidently
take less time and effort than others.

Another limitation is that the initial bootstrapped nuclear
boundaries were generated using classical image-processing
methods, which tend to underperform where nuclei are highly
clumped/touching or have very faint staining. This theoretically
introduces some bias in our dataset, with an overrepresentation
of simpler nuclear boundaries. Future work could investigate the
use of transfer learning or unsupervised convolutional neural net-
work approaches to generate more accurate algorithmic sugges-
tions. Similarly, we used Mask R-CNN as a function approximator
to refine our algorithmic suggestions. Future research can explore
other deep-learning architectures that may improve refinement
and result in better algorithmic suggestions.

We focused our annotation efforts on nucleus detection, as
opposed to whole cells. Nuclei have distinct staining (H&E) and
boundaries, potentially reducing the interrater variability associ-
ated with the detection of cell boundaries. Finally, we would point
out that dataset curation is context-dependent and likely differs
depending on the problem. Nevertheless, we trust that most of
our conclusions have broad implications for other histopathology
annotation efforts.

Availability of Source Code and
Requirements
Project name: NuCLS
Project home page: github.com/PathologyDataScience/NuCLS
Operating system: Platform independent
Programming language: Python
Other requirements: We used the tensorflow implementation by
Matterport Inc. to train the Mask R-CNN tensorflow model used
for generating the algorithmic suggestions, along with a set of
scripts available on GitHub at: https://github.com/PathologyDa
taScience/Mask_RCNN/. We used the Digital Slide Archive for
whole-slide image and data management (available at: https://gi
thub.com/DigitalSlideArchive/digital_slide_archive) and its asso-
ciated annotation user interface HistomicsUI (available at: https:
//github.com/DigitalSlideArchive/HistomicsUI), as well as the an-
notation and image-processing library HistomicsTK (available at:
https://github.com/DigitalSlideArchive/HistomicsTK).
License: The NuCLS codebase is licensed with a CC0 1.0 license
(dataset) and the MIT license.
Restrictions to use by non-academics: Both the CC0 1.0 li-
cense (dataset) and the MIT license (codebase) allow for non-
commercial use. License terms can be reviewed for details.
Registration: RRID:SCR_021888; Biotools ID: nucls

Data Availability
The NuCLS dataset is available at the NuCLS website. The BCSS
dataset, which helped contribute to the algorithmic suggestions,
is available for download from: https://github.com/PathologyDa
taScience/BCSS and can be viewed at a demo instance of the Dig-
ital Slide Archive at: https://demo.kitware.com/histomicstk/histo
micstk#?image=5bbdee62e629140048d01b0d. Both the BCSS and
NuCLS datasets are available under a CC0 1.0 license. Snapshots
of our code and other data further supporting this work are openly
available in the GigaScience repository, GigaDB [66].

Additional Files
Supplementary Table S1: Definitions and abbreviations used. A
white paper from the Digital Pathology Association can be con-
sulted for an expanded list of relevant concepts [2].
Supplementary Table S2: Accuracy of algorithmic suggestions.
The accuracy is measured against the corrected single-rater
dataset. Mask R-CNN refinement of the bootstrapped algorithmic
suggestions results in better detection suggestions. Low-power
region-based classification was more accurate than Mask R-CNN–
derived classes. Note, however, that this was FOV-dependent, and
there were some FOVs in which the Mask R-CNN prediction was
better than relying on low-power regions for classification
Supplementary Table S3: Hyperparameters used for Mask R-CNN
model training.
Supplementary Figure S1: Use of review galleries for scalable re-
view of single-rater annotations. Single-rater annotations were
corrected by 2 study coordinators, in consultation with a senior
pathologist. The pathologist was provided with a mosaic review
gallery showing a bird’s eye view of each FOV, with and with-
out annotations, and at high and low power. The pathologist was
asked to assign a per-FOV quality assessment. If the pathologist
wanted further context, they could click on the FOV and pan
around the full whole-slide image. They were also able to pro-
vide brief comments to be addressed by the coordinators, e.g.,

http://github.com/PathologyDataScience/NuCLS
https://github.com/PathologyDataScience/Mask_RCNN/
https://github.com/DigitalSlideArchive/digital_slide_archive
https://github.com/DigitalSlideArchive/HistomicsUI
https://github.com/DigitalSlideArchive/HistomicsTK
https://scicrunch.org/scicrunch/Resources/record/nlx_144509-1/SCR_021888/resolver
https://github.com/PathologyDataScience/BCSS
https://demo.kitware.com/histomicstk/histomicstk#?image=5bbdee62e629140048d01b0d
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“change all to tumor.” A demo is provided at the following video:
https://youtu.be/Plh39obBg_0.
Supplementary Figure S2: Process for obtaining algorithmic sug-
gestions for scalable assisted annotation. Nucleus segmentation
boundaries were derived using image-processing heuristics at a
high magnification. Low-power region annotations from the BCSS
dataset, approved by a practicing pathologist, were then used to
assign an initial class to nuclei. This combination of noisy nu-
clear segmentation boundaries and region-derived classifications
are the bootstrapped suggestions. These noisy algorithmic sugges-
tions were the basis for annotating the Bootstrap control multi-
rater dataset. A Mask R-CNN model was then used as a function
approximator to smooth out some of the noise in the bootstrapped
suggestions. Participants were able to view these refined sugges-
tions, along with low-power region annotations, when annotating
the single-rater and Evaluation datasets.
Supplementary Figure S3: Super-class accuracy of participant an-
notations and inferred NP-labels (Evaluation dataset). The accu-
racy is measured against the inferred P-truth.
Supplementary Figure S4: Accuracy of algorithmic suggestions
(single-rater dataset). The accuracy is measured against the cor-
rected single-rater dataset. A. Per-FOV detection accuracy of al-
gorithmic data at the 2 stages of obtaining algorithmic sugges-
tions; i.e., how well do the suggestions correspond to real nuclei?
Mask R-CNN refinement significantly improves suggestion accu-
racy. B. Number of Mask R-CNN–refined suggestions that corre-
spond to a segmentation (i.e., were clicked) or a bounding box.
C. Concordance between suggested classes and classes assigned
by participants. Region-based suggestions were, broadly speaking,
more concordant with the true classes, but nucleus suggestions
had a higher recall for sTILs. D. Comparison of the classification
accuracy (MCC) of low-power region class and high-power Mask
R-CNN–derived nucleus class. Numbers are normalized column-
wise, i.e., represent percentages of true nuclei of a particular class.
Note how region-based and nucleus-based suggestions have dis-
parate accuracies for different FOVs and classes. Hence, there was
value in providing the participants with both forms of suggestion.
Supplementary Figure S5: Abundance and segmentation accu-
racy of clicked algorithmic suggestions (multi-rater datasets). A.
Proportion of nuclei in the FOV that were inferred to have good
segmentation. Circle size represents the number of nuclei in that
FOV. The proportion is notably higher for the Evaluation dataset
than the Bootstrap control. B. Accuracy of algorithmic segmenta-
tion boundaries for nuclei that were inferred to have accurate seg-
mentation boundaries in both the Evaluation dataset and Boot-
strap control. The comparison is made against manual segmen-
tations obtained for the same nuclei from 1 senior pathologist.
Most clicked algorithmic segmentations were very accurate and
have a Dice coefficient >0.8. The accuracy was slightly higher for
Mask R-CNN–refined suggestions.
Supplementary Figure S6: Annotation procedure on HistomicsUI.
A, B. Participants were shown suggestions for nucleus segmenta-
tion boundaries, as well as 2 types of classification suggestions:
low-power region suggestions and high-power nucleus classifica-
tion suggestions. The FOV shown here is almost entirely present in
a stromal region but contains multiple scattered sTILs that were
not dense enough to be captured as a sTILs “region.” C. Partici-
pants’ annotations were either points/clicks, for accurate segmen-
tations, or bounding boxes. They picked the color/class of their an-
notations beforehand and were told to simply ignore any inaccu-
rate suggestions. Participants were able to turn the suggestions off
for a clear view of the underlying tissue. D. Participant annotations
and algorithmic suggestions were ingested into a database and

processed to provide cleaned up data, which were then pushed
for viewing on HistomicsUI for correction and review.
Supplementary Figure S7: Confusion matrix of participant anno-
tations (Evaluation dataset). A. Confusion of annotations placed
by the participants, putting aside detection. Here, we ask the ques-
tion, if a participant places an annotation that they call tumor, and
it matches a true nucleus, what is the class of that nucleus? By
definition, there are no “ambiguous” true nuclei. B. For each true
nucleus, how many of the participants detected it, and if so, what
class did they assign? Note that because truth inference takes par-
ticipant reliability into account, the inferred P-truth does not have
to correspond to the most commonly assigned class. Empty en-
tries are values <1.
Supplementary Figure S8: Sample poor annotation data excluded
during the single-rater dataset correction process. Despite having
received initial training and feedback, the NP who generated these
annotations was confused about what is a nucleus and frequently
considered chromatin clumps or artifacts to be nuclei (arrows).
This underlines the need for quality control.
Supplementary Figure S9: Ease of detection of various nucleus
classes (Evaluation dataset). If we know for a fact that this is, say, a
lymphocyte, how many participants detected it, even if they called
it something else?. True class is the inferred P-truth. The color cod-
ing used is explained in panel B. A. Nuclei counts, broken down by
class and the number of matched participants. B. Ease of detection
of nuclei by true class. Interpreting, e.g., the blue curve proceeds
as follows: 100% of lymphocytes were detected by ≥3 pathologists,
∼80% were detected by 4 pathologists, and so on.
Supplementary Figure S10: Algorithm for obtaining anchor pro-
posals through constrained agglomerative clustering. We cluster
bounding boxes from participants to get the anchor proposals cor-
responding to potential nucleus locations. Note that the threshold
we use for maximum linkage, t∗, is influential in determining how
many anchors we get. We make sure that annotations from the
same participant do not end up in the same cluster by creating
sets of “do-not-link” bounding boxes. The final anchor proposals
are the anchor medoids; using medoids ensures that the box an-
chor proposals correspond to real nucleus boundaries.
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