
fmicb-12-719000 August 23, 2021 Time: 14:52 # 1

REVIEW
published: 27 August 2021

doi: 10.3389/fmicb.2021.719000

Edited by:
Maria Elena Martino,

University of Padua, Italy

Reviewed by:
Filomena De Leo,

University of Messina, Italy
Sunil Kumar Deshmukh,

The Energy and Resources Institute
(TERI), India

*Correspondence:
Xiang-Yang Li

xyli1@gzu.edu.cn
Ge-Fei Hao

gefei_hao@foxmail.com

Specialty section:
This article was submitted to

Aquatic Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 03 June 2021
Accepted: 10 August 2021
Published: 27 August 2021

Citation:
Kumar V, Sarma VV,

Thambugala KM, Huang J-J, Li X-Y
and Hao G-F (2021) Ecology

and Evolution of Marine Fungi With
Their Adaptation to Climate Change.

Front. Microbiol. 12:719000.
doi: 10.3389/fmicb.2021.719000

Ecology and Evolution of Marine
Fungi With Their Adaptation to
Climate Change
Vinit Kumar1, V. Venkateswara Sarma2, Kasun M. Thambugala3, Jun-Jie Huang1,
Xiang-Yang Li1* and Ge-Fei Hao1*

1 State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide
and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou
University, Guiyang, China, 2 Department of Biotechnology, Pondicherry University, Puducherry, India, 3 Genetics
and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

Climate change agitates interactions between organisms and the environment and
forces them to adapt, migrate, get replaced by others, or extinct. Marine environments
are extremely sensitive to climate change that influences their ecological functions
and microbial community including fungi. Fungi from marine habitats are engaged and
adapted to perform diverse ecological functions in marine environments. Several studies
focus on how complex interactions with the surrounding environment affect fungal
evolution and their adaptation. However, a review addressing the adaptation of marine
fungi to climate change is still lacking. Here we have discussed the adaptations of fungi
in the marine environment with an example of Hortaea werneckii and Aspergillus terreus
which may help to reduce the risk of climate change impacts on marine environments
and organisms. We address the ecology and evolution of marine fungi and the effects of
climate change on them to explain the adaptation mechanism. A review of marine fungal
adaptations will show widespread effects on evolutionary biology and the mechanism
responsible for it.
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INTRODUCTION

Global climate change affects the environment through shifts in mean temperatures and climate
instability, along with other related changes such as ocean warming, stratification, acidification,
eutrophication, and increased atmospheric carbon dioxide. Due to global warming, the average
sea level is increasing by ∼3.2 mm per year (Stocker, 2014). Direct effects of climate change
may alter the behavior, physiological functioning, and demography of organisms living in these
environments (Hunter-Cevera et al., 2005). In marine environments, these alterations may affect
species interactions and trophic pathways by propagating climate signals from primary producers
to the degraders like marine fungi and affecting it in both bottom-up and top-down directions
(Doney et al., 2012; Cavicchioli et al., 2019).

Marine fungi belong to different taxonomic groups and can be found colonizing and adapting
to different substrates including driftwood, mangrove wood, roots, pneumatophores, seedlings,
leaves of mangrove plants, soils and sediments in marine environments, seawater, and dead
and decomposing animal substrata (Kohlmeyer and Kohlmeyer, 1979b; Hyde et al., 2000).
Several species from marine habitats such as coastal oligotrophic and upwelling waters, deep-sea
sediments, and sediments in anoxic zones have been reported (Damare and Raghukumar, 2008;
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Raghukumar, 2008; Gutiérrez et al., 2016; Lear et al., 2018).
While filamentous higher marine fungi predominantly occur in
coastal habitats such as mangroves and driftwood, the yeasts
occur in open seas and deep-sea habitats. Moreover, the recent
addition of molecular inputs has shown an increased discovery
of novel species of marine fungi (Dayarathne, 2020; Jones et al.,
2020; Devadatha et al., 2021). New species of Aureobasidium,
Cryptococcus, Candida, Exophiala, Malassezia, Rhodosporidium,
and Rhodotorula, have also been discovered from marine habitats
such as hydrothermal vents and sub-sea floors (Overy et al.,
2014; Grossart et al., 2016; Amend et al., 2019). Therefore, novel
habitats, substrates, and the environment will remarkably assist
in identifying new species that are adapted to them.

Adaptations of marine fungi to climate change can be
understood through exploring the ecology and evolution of
marine fungi from such extreme habitats. Up to now, several
studies have reported ecology and evolution by utilizing
morphological and molecular techniques (Sarma and Jeewon,
2019). As a result, novel fungal lineages have been found,
based on a minimum of 3% nucleotide difference (Richards
et al., 2012). Major adaptation events by fungi have also been
explained, eventually providing new insight into the “white origin
of fungi” (Rédou et al., 2015; Naranjo-Ortiz and Gabaldón,
2019). These works are widely regarded as pioneering which
has led the experimental demonstrations on the ecology and
evolution of marine fungi to expand at an ever-increasing rate.
However, a comprehensive review of the adaptation of marine
fungi to climate change, through their ecology and evolution is
relatively rare.

We attempted to provide an overview of the adaptation of
marine fungi to climate change through the above-mentioned
topics. The importance of using molecular techniques to study
the ecology and evolution of marine fungi is also discussed
here. It may help scientists to improve current research practices
to understand the purpose of adaptation that is important for
evolution, where different ecological agents are expected to have
different purposes. It may also allow non-professionals to better
understand how marine fungi widen marine microbiological
horizons. Information on fungal halotolerant genes or genes
involved in adaptation to climatic changes will help in developing
transgenic plants which may tolerate conditions like high salinity
and high temperature.

ECOLOGY OF MARINE FUNGI:
CHALLENGES AND CONCERNS

Marine fungi play an important role in energy flow,
exopolysaccharide complexes synthesis, and nutrient recycling.
They intercede the cycling of dissolved organic matter and select
appropriate decomposing techniques, such as comminution,
non-enzymic chemical reactions, leaching, and volatilization
(Sinsabaugh, 2005; Gessner et al., 2010). They perform
denitrification in the hypoxic zones as reported from the
Arabian sea (Raghukumar, 2008). Some marine fungi and fungi-
like organisms degrade environmental pollutants in marine
environments, e.g., Thraustochytrids, isolated from chronically

polluted by oil spills in Goa, can degrade tar-balls (Raikar et al.,
2001; Raghukumar, 2008).

Marine fungi produce various extracellular degradative
enzymes, e.g., cellulases, ligninases, and xylanases (Raghukumar
et al., 2004; Chi et al., 2007; Bonugli-Santos et al., 2015). Some
enzymes are associated with nutrient-cycling in the deep-sea
and they may be utilized as potential indicators of nutrient
cycling processes, e.g., alkaline phosphatase in the deep sea
plays a significant role in the recovery of inorganic phosphate
by the catalysis of organic esters (Chróst, 1991). Fungi may
be engaged in the production of humic aggregates in deep-
sea sediments. The aggregate formation holds extracellular
enzymes close to the secreting organisms and thus protectors
and contributes to the overall sedimental nutrient cycling process
(Damare and Raghukumar, 2008). However, it is difficult to
comprehend the ecological functions of marine fungi (Gleason
et al., 2012). Established roles include plant and algal waste
degradation, chemical defense, pathogenicity, symbiosis, and
contribution to various holobiont populations (Gleason et al.,
2012; Balabanova et al., 2018). Following are some aspects of
marine fungal ecology through different culture-dependent and
culture-independent techniques.

Culture-Dependent Techniques
Conventional methods of culturing marine fungi include (1)
direct detection of fungal reproductive structures on natural
samples by observing using stereomicroscope followed by single
spore isolation, (2) culturing after surface sterilization of plant
leaves or soft animal tissues and particle plating, (3) Baiting
followed by culturing, and (4) dilution plating/direct plating
(Raghukumar et al., 2010). Many marine fungi have been detected
and cultured via direct detection and isolation (Kohlmeyer
and Kohlmeyer, 1979a; Hyde et al., 2000; Jones et al., 2009,
2015). Some marine fungi are recorded with a higher percentage
of occurrence with those encountered with ≥10% frequency
indicating the “core group” of fungi at that site (Sarma and
Hyde, 2001; Sridhar and Maria, 2006). Frequently occurring fungi
are primarily studied by utilizing culture-dependent approaches.
One such example can be seen from mangroves, where most
of the fungi documented to date have been obtained based
on culture-dependent methods (Sarma and Hyde, 2001). Using
this type of method guarantees identification according to
morphological, biochemical, or genetic characteristics (Jany and
Barbier, 2008). Marine fungi produce sporulating structures
such as ascomata, basidiomata, and conidia-bearing structures
(anamorphic stage) in/on the substrates in which they grow
actively in the form of hyphae. These substrates include
mangrove wood, allochthonous wood, lignocellulosic materials
such as coral, decaying leaves, macroalgae, cuttlebone of squids,
and exoskeletons of crustaceans.

Culture-dependent approaches are a powerful tool with
benefits in manipulating individual isolates, elucidating
physiological properties, metabolic interactions among
microorganisms and the surroundings, and accordingly
provide statistics for their potential ecological roles in ecosystems
(Otlewska et al., 2014).
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Nonetheless, there are some drawbacks when using culture-
dependent methods, e.g., culture-dependent approaches allow
the isolation of only a small portion of the overall fungal diversity
in an environment (Schabereiter-Gurtner et al., 2001; Jeewon
and Hyde, 2007). Many metabolically active strains occur in the
environment in the state of anabiosis, being viable but non-
culturable (VBNC) and these are left out from being documented
(Salma et al., 2013; Otlewska et al., 2014; Schottroff et al., 2018).
Therefore, most of the fungal strains in environmental samples
cannot be cultured and the culture-dependent methods provide
only limited information on the biodiversity of microorganisms
from that area (Poli et al., 2017). Moreover, culture-dependent
methods are time-consuming due to long culture periods and
elaborate culture techniques (Jany and Barbier, 2008; Stefani
et al., 2015). To overcome these limitations, culture-independent
approaches have recently been developed to explore and access
the uncultured microbial community (Overy et al., 2019).

Culture-Independent Techniques
Culture-independent techniques describe taxa more
comprehensively than culture-dependent techniques. They
are primarily focused on the use of next-generation sequencing
(NGS), which along with phylogenetic data offers phenomenal
evidence on relationships of species (Raimundo et al., 2018). It
plays an important role in exploring marine fungal ecology,
nutrient cycling, stress responses, and ecological niche
construction (Dupont et al., 2007). NGS technologies have
allowed unexplored marine ecosystems to be examined, e.g.,
hydrothermal vents, Mid-Atlantic Ridge, South Atlantic Ocean,
where Ascomycota and Basidiomycota members were dominant,
with various new phylotypes (Xu et al., 2017). High throughput
sequencing (HTS) study of sediment samples from high Arctic
fjord revealed 113 fungal OTUs by using ITS region, defined
with a 97% sequence similarity cut-off (Zhang et al., 2015;
Rämä et al., 2017).

Besides, genomic sequencing of model organisms from
natural communities elucidates their biodiversity that promotes
ecological structure, evolution events, taxonomic interactions,
life history, and physiological biodiversity. For example,
genomic sequencing-based characterization of a shared genomic
element (nucleotide transporter) between Rozella allomycis
and endoparasitic Microsporidia suggests that they share a
common ancestor and Rozella leads a host-dependent lifestyle,
where it depends on the host for essential metabolic genes
(James et al., 2013).

Studies comparing culture-dependent and NGS techniques
revealed wide variations in fungal community composition
(Romão et al., 2017). Where, the culture-based approach reported
low and variable levels of the species while the NGS methods
(ITS1/ITS4 primers) revealed that the whole fungal population
included Purpureocillium lilacinum in one study (Romão et al.,
2017). Ecological roles of the dark matter fungi (DMF) in organic
matter cycling have also been studied through environmental
DNA sequences (SSU) (Grossart et al., 2016). DMFs are parasitic
and saprophytic, they have not been cultured before and are
missing from the taxonomy of the fungi.

Next-generation sequencing methods such as Illumina,
Ion Torrent, and Pyrosequencing, are mostly used (Schlaeppi
et al., 2016; Sanka Loganathachetti et al., 2017; Lendemer et al.,
2019). Due to low cost, fast speed, and lack of cloning step in
examining fungal diversity, Pyrosequencing was a preferred
method (Lim et al., 2010). In a single run, it generates millions
of short reads (300–500 nt) with a low error rate (Margulies
et al., 2005; Buée et al., 2009). Despite this, it was discontinued
in 2013, due to its non-competitiveness. In addition, the
Illumina sequencing technology is widely used; though, it yields
shorter reads than pyrosequencing, as this is improving rapidly
(Snyder et al., 2010). In comparison to other NGS technologies,
Illumina has a vast amount of sequencing depth. Further, Ion
Torrent uses semiconductors, resulting in a higher number of
sequence reads and faster processing times. It is being used to
investigate fungal populations in mangrove and deep-sea soil
compartments, where, Aspergillus, Penicillium, red-pigmented
basidiomycetous yeasts, psychrotrophic fungi, and other
uncultured deep-sea taxa were discovered (Nagano et al., 2017;
Sanka Loganathachetti et al., 2017).

Large sequence reads are generated by technologies like
PacBio, allowing complete lengths of barcode genes to be accessed
(Kyaschenko et al., 2017; Tedersoo et al., 2017). It has been
effectively used for the investigation of fungi metabarcoding.
Despite this, researchers have been hesitant to use this approach
due to its poor throughput, high error rate, and ever-changing
bioinformatics methods (Tedersoo et al., 2017). However,
advances in data processing algorithms applied to NGS data have
reduced sequencing data preferences error rate, rendering them
more accurate (Edgar, 2013).

Molecular methods such as DNA metabarcoding, in addition
to NGS methods, allow to identify significantly greater taxonomic
biodiversity within the samples (Stat et al., 2017). However, for
effective fungal identification, the error rate is still too high (Li
et al., 2019). Amplified rDNA restriction analysis, amplified
ribosomal intergenic spacer analysis, denaturing gradient
gel electrophoresis (DGGE), temporal temperature gradient
gel electrophoresis (TTGE) and single-strand conformation
polymorphism are some of the other techniques that can be used
(Pang and Mitchell, 2005; Jany and Barbier, 2008). For example,
DGGE was used to investigate fungal diversity in coastal areas
where Ascomycota, Basidiomycota, Chytridiomycota, and novel
environmental fungal clades predominated (Gao et al., 2010;
Cury et al., 2011). However, since most research focuses on non-
fungal microbial diversity, only a handful of these approaches
have been used in the study of marine habitats (Raghukumar,
2008). As a result, the scope for using culture-independent
approaches in marine habitats is enormous, and it holds great
promise for revealing heretofore unknown fungal diversity
(Raghukumar, 2017).

TAXONOMY AND EVOLUTION OF
MARINE FUNGI

Fungi transitioned multiple times from marine to terrestrial
environments, and vice versa (Amend et al., 2019). Numerous
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reports have recommended that fungi with plants were the
first eukaryotes to inhabit the land, with mycorrhizal symbioses
allowing this to happen (Lutzoni et al., 2018). Fungi inhabited
land during the Cambrian to Ordovician periods, according
to molecular dating (542–488.3 and 488.3–443.7 Mya) (Pisani
et al., 2004; Dunn, 2011; Figure 1). The members in phylum
Glomeromycota play a pivotal role in this colonization process
(Hyde et al., 2017; Lutzoni et al., 2018). This has led to the
theory that Glomeromycota members who lived in symbiotic
relationships with cyanobacteria or algae eventually were
symbionts of early land plants (Schüßler, 2002).

Studies proposed that marine ascomycetes diverged from
many independent migrations of terrestrial and freshwater
lineages to the sea (Jones et al., 2019). Where, bituniciates
ascomycetes prefer tropical mangrove environments and
unitunicates prefer temperate oceanic climates (Sharpe et al.,
2015). Several freshwaters and terrestrial fungal genera, such
as Anthostomella, Didymella, Leptosphaeria, Lophiostoma,
Massarina, Mycosphaerella, Passeriniella, Phaeosphaeria,
Phomatospora, Saccardoella, Savoryella, and Trematosphaeria,
have marine members, indicating various land-sea transitions
(Kohlmeyer and Kohlmeyer, 1979a; Hyde et al., 2000;
Vijaykrishna et al., 2006; Jones et al., 2009; Suetrong et al.,
2009; Sakayaroj et al., 2011).

Furthermore, Chytridiomycota and Rozellomycota (syn.
Cryptomycota) are both marine early-diverging lineages.
Chytridiomycota is flagellated fungi that diverged around
750 Mya (Chang et al., 2015). In terrestrial fungi that produce
non-motile spores, the existence of flagellated zoospores was
eventually lost (Sekimoto et al., 2011). Chytrids are parasitic
organisms that infest phytoplankton and cyanobacteria. They
may be saprobes or necrotrophs (Planktothrix) found mainly
in nearshore and sediment samples (Comeau et al., 2016; Agha
et al., 2018). Rozellomycota, on the other hand, has been found in
anoxic marine environments, with an estimated divergence time
between 408 and 1078 Mya (Grossart et al., 2016; Li et al., 2016;
Tedersoo et al., 2018). Rozellomycota includes Rozella species as
well as LKM-11 cluster sequences distributed in anoxic, aquatic,
and marine habitats (Raghukumar, 2017).

What role do early diverging fungi play in the evolution
of marine fungi, and what contribution do they make to
the evolutionary system? The ARM (Aphelidomycota, Rozella,
Microsporidia) clade includes early diverging communities
such as Rozellomycota, Chytridiomycota, Mucoromycota, and
Microsporidia, which are also pathogens of various other
eukaryotes, such as amoebae, algae, and other fungi (James and
Berbee, 2012; Tedersoo et al., 2018). The ARM clade can be
dated back to the adaptation to intracellular parasitism (Corsaro
et al., 2014). Aphelids, on the other hand, have more transitional
characteristics than fungi and represent an earlier lineage in the
holomycotan clade (Corsaro et al., 2014; Karpov et al., 2017).
Since these classes have marine members, Aphelidiomycota
(Pseudaphelidium), Chytridiomycota, and Rozellomycota would
be important in understanding the evolution of marine fungi in
the future (Comeau et al., 2016; Hassett and Gradinger, 2016;
Karpov et al., 2017; Jones et al., 2019). However, they suffer from
insufficient taxon sampling (Tedersoo et al., 2018).

ARM clade has a sister group called the Mycetaen fungi,
which evolved between 760 Mya–1.06 Bya (Gingras et al., 2011;
Beraldi-Campesi, 2013; Raghukumar, 2017; Jones et al., 2019).
The Holomycota is the reference to both groups (1.108 Bya)
(Jones, 2011; Raghukumar, 2017; Tedersoo et al., 2018). Mycetaen
fungi and Metazoa (Animalia) are members of the Opisthokonta
Division (1.240–1.481 Bya) and share a common ancestor that
split during the Neoproterozoic era (Cohen et al., 2009; Parfrey
et al., 2011; Doglioni et al., 2016; Tedersoo et al., 2018). The
division of extant fungi and metazoans from a single ancestor
is estimated in the early and mid-Neoproterozoic (Berney and
Pawlowski, 2006; Sharpe et al., 2015). Whereas the age of the last
eukaryotic common ancestor (LECA) is estimated to be between
1007 (943–1102) and 1898 (1655–2094) Mya (Eme et al., 2017;
Figure 1).

During the Neoproterozoic era, salinity dropped with major
cooling events, resulting in glaciations, and allowing dissolved
oxygen (O2) into the ocean (Knauth, 2005). The Precambrian was
responsible for increasing O2 accumulation in the atmosphere
before the Neoproterozoic, but eukaryotes had only started to
evolve during this period (Knauth, 2005; Doglioni et al., 2016).
The key concern was the amount of dissolved oxygen in the water,
which improved during Neoproterozoic. Based on divergence
time analyses, the origin of fungi dates to 888 and 966 Mya,
where Blastocladiomycota, Chytridiomycota, and Rozellomycota
diverged around 750 Mya, indicating that early development of
fungi occurred in the aquatic habitat (Sanderson et al., 2004;
Chang et al., 2015; Tedersoo et al., 2018). However, this raises
a debate about whether marine fungi originated from marine or
freshwater habitats. To answer, we want to mention a few points,
(1) salinity decreased in Neoproterozoic and O2 levels increased;
(2) in the Precambrian era there was an increasing atmospheric
level of O2, with atmospheric oxygenation, more diluted waters,
such as lakes, rivers, and streams oxygenated well ahead of
the ocean. Therefore, during the evolution in Precambrian
and Neoproterozoic, lowering of temperature and salinity, and
increased dissolved O2 were the main determinants that suggest
the origin of the fungi in freshwater (James et al., 2006; Lücking
et al., 2009; Raghukumar, 2017). The ocean allowed non-marine
early fungi to transition to the current marine niche due to
the significant decrease in salinity and a rise in O2. This claim
thus indicates the origin of existing marine fungi in freshwater.
However, the oceanic origin of existing marine fungi is still
discussed (le Calvez et al., 2009; Raghukumar, 2017).

The concern about the fungal origin is most likely answered
by high-throughput sequencing of genetic markers in several
freshwaters and aquatic environments (Lear et al., 2018). As we
learn more about the early-diverging fungal species, we would
better understand the underlying mechanism of multicellularity,
fungal colonization on land, and the origin of marine fungi.

CONSEQUENCES AND ADAPTATION OF
MARINE FUNGI TO CLIMATE CHANGE

In the marine ecosystem, almost all organisms depend on fungi,
for the decomposition and recycling of carbon and minerals. To
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FIGURE 1 | Schematic representation of evolutionary timeline related to fungi. *ARM, Aphelidomycota, Rozella, Microsporidia; *LECA, last eukaryotic common
ancestor.

understand the consequences of climate change it is essential
to understand the critical response of fungi toward it. In
fungal growth, fruiting, and distribution in marine environments,
climates play a dynamic and critical role. However, marine
environments are getting progressively fragile due to various
natural and anthropogenic stressors, including increased human

population pressures, pollution, habitat loss, and degradation
(Crain et al., 2008). Numerous biotic and abiotic factors influence
the composition and distribution of marine fungal species
(Hyde et al., 2000; Jones, 2011). Here we discussed several
issues concerning the impact and adaptation of marine fungi
to climate change.
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Increased CO2 Levels

Carbon dioxide is one of the most dissolved gas in seawater.
In addition to salinity and aridity, greater concentrations of
CO2 can be damaging to various marine fungi contributing
to significant changes in vegetation (Sandilyan and Kathiresan,
2012). Increased degrees of atmospheric CO2 influence both the
host and the associated fungal communities (Maček et al., 2019).
Increased mycelium growth has been documented because of
high CO2, including in arbuscular mycorrhizal fungi (Maček
et al., 2019). Change has been observed in the community of
Basidiomycetes on the coastal scrub oak forest soil after a 5-
year treatment of soil with elevated CO2 (Klamer et al., 2002).
This suggests, with the elevation in CO2 level, the composition
of the soil fungal community changes significantly (Tu et al.,
2015). However, the impact of CO2 on the fungal population
from various environments should not be overlooked as it alters
to some degree the community structure.

Rising Temperatures
Temperature is a significant element affecting the worldwide
distribution of marine fungi (Jones, 2000). Temperature
fluctuations can significantly impact marine ecosystems and
marine organisms, e.g., mangrove forests that are integral
to marine ecosystems need a photosynthesis temperature
of 28–32◦C, leaf temperatures at 38–40◦C can dramatically
decrease the growth of mangrove trees, thus affecting net
productivity. Increased temperature in fungal communities by
4–8◦C leads to compositional changes that favor various classes
of decomposers and promote the degradative succession of fungi
(Venkatachalam et al., 2019). Species that are already under
stress suffer the most due to habitat loss. Some obligate, as well as
facultative marine fungi, follow the “Phoma-pattern” and prefer
higher temperatures to grow (Ritchie, 1957; Venkatachalam
et al., 2019), allowing mycetaen marine fungi to grow better at
increased salinities and temperatures. This may lead to false-
positive results while evaluating the fungal diversity of species
involved in decomposition and restricted to temperature regimes
(Chen et al., 2011; Xu et al., 2014).

Rising Sea-Levels
Sea-level has a major influence on the climate and fungal
diversity. Studies have shown the potential to disrupt marine
ecosystems through rising sea levels. Strong cyclones may destroy
mangroves by defoliation, uprooting, and tree mortality because
of the accelerated increase in sea level. An increase in sea levels
raises surface water and groundwater salinity by 1–33% in 25
consecutive years through saltwater intrusion which potentially
influences the aquatic food web, food security, and expansion
of salt-affected arable lands (Rahman et al., 2018; Ullah et al.,
2021). Alongside this, the characteristics of soil sediments also
change, which affects the fungal demography (Woodruff et al.,
2013; Li et al., 2016; Tisthammer et al., 2016). Fungi which are
dependent on host plants may also be affected when plants are
affected in coastal ecosystems. Nevertheless, there have been no
formal threats against marine fungi due to rises in sea levels.
Studies relating the evaluation of marine fungal assemblages and

environmental data with human development are thus required
to forecast the response to climate change and identify directions
for future coordinated management of marine ecosystems.

Adaptation of Marine Fungi to Climate
Change
Studies on the adaptive capacity of certain organisms to climate
change and in extreme habitats could alleviate the detrimental
impacts predicted by future climate change. The potential of
some fungi for their phenotypic and genetic adaptation in
response to extreme habitat and climate change has been
acknowledged here. Several fungi have characterized themselves
to adapt in environments with low water activity and high
concentrations of toxic ions by complex molecular and cellular
adaptation (Gostinèar et al., 2011; Gladfelter et al., 2019; Romeo
et al., 2020). Spores of some marine fungi have developed
strategies of sheath and appendages to attach, float, and adapt
to a new environment. Similarly, some marine arenicolous fungi
have developed subiculum to attach to sand grains and tolerate
extreme conditions like high temperature, variation in salinity,
and desiccation (Jones, 2000). These adaptation mechanisms
and their effects are highly dependent on different levels of
biological organization and follow a cascade of events (molecular
and cellular, whole organisms, population, and community).
Fungi isolated from hypersaline marine environments, deep-
sea hydrothermal vents, and deep-sea sediments have different
molecular and cellular mechanisms for adaptation, e.g., gene
expression, high osmolarity glycerol (HOG) signaling pathway,
melanization of the cell wall, composition and accumulation of
ions, enzymes involved in fatty acid modifications, and plasma
membrane composition (Turk and Plemenitaš, 2002; Kogej et al.,
2006; Romeo et al., 2020). Fungi with these characters have
been described for genera such as Aspergillus, Cladosporium,
Emericella, Eurotium, Hortaea, Trimmatostroma, and Wallemia.
Here we have discussed what molecular and cellular mechanisms
determine the adaptation of Hortaea werneckii to marine habitat
and how H. werneckii deals with climatic stressors such as high
salinity (3–4.5 M) and temperature (Kejžar et al., 2015; Gunde-
Cimerman et al., 2018; Romeo et al., 2020; Selbmann et al., 2020).
Also, we have addressed the adaptations of Aspergillus terreus to
the extreme conditions of a hydrothermal vent (Pang et al., 2020).

In yeasts (Saccharomyces cerevisiae), cells respond to the
stress signals through sensing the environmental stimuli by
mitogen-activated protein kinases (MAPKs) which ensure
adaptation to the current environment (Plemenitaš et al., 2014).
The sensor on the plasma membrane binds stimulus to the
central MAPK cascade through membrane proteins, tyrosine
kinase receptors, G-protein-coupled receptors, and histidine-
aspartic phosphorylation sensors. The signal from sensors
is passed to the MAPK kinase kinase (MAPKKKs), which
phosphorylates the MAPK kinase (MAPKKs), activation of
MAPKKs leads to the activation of MAPKs. MAPKs are then
translocated to the nucleus to activate multiple factors for the
adaptive transcriptional response. One such MAPK cascade
called the HOG signaling pathway, has been characterized
and conserved in H. werneckii (HwHOG) which acts as a
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FIGURE 2 | A schematic model of HOG – signaling pathway in Hortaea werneckii. Here, HwSho1 along with HwMsb2 and HwOpy2 interact with external stimuli
(changes in salinity and osmolarity) and transmits the signal to HwHog1 (MAPK) mediated pathway through HwSte11 (MAPKKK) and HwPbs2 (MAPKK). In
H. werneckii, the phosphorelay (HwSln1-HwYpd1-HwSsk1) interacts with cytosolic histidine-kinase (Hwhhk7) to transmit the external signal to HwSsk2. Signals from
both sensors (HwSho1 and HwSln1) converge at HwPsb2, HwPsb2 activates HwHog1. Activated HwHog1 translocates to the nucleus and interacts with
osmoresponsive genes and RNA Pol II for adaptation in fluctuating and hyperosmotic environments. *May or may not interact, **genes responsible for glycerol
production, protein synthesis, amino acid metabolism, lipid metabolism.

survival and adaptation tool in hypersaline, marine, and deep-sea
environments (Plemenitaš et al., 2014; Gunde-Cimerman et al.,
2018; Romeo et al., 2020).

Hortaea werneckii is the most studied eukaryotic model
organism in adaptive extremophiles, it can grow with or
without salt and there is plenty of literature available on
it. H. werneckii is placed in the family Teratosphaeriaceae
(Capnodiales, Dothideomycetes), and can be found from beach
soil, microbial mats, environments with low water activity, salty
food, seawater, wood immersed in hypersaline waters, and rocks
in tropical or subtropical coastal areas (Kejžar et al., 2015; Gunde-
Cimerman et al., 2018; Selbmann et al., 2020).

However, H. werneckii is still not considered a marine
fungus (Jones et al., 2015). Despite it has recently been isolated
from different depths of the Mediterranean Sea and shallow

hydrothermal vent as a common fungus (De Leo et al., 2019; Pang
et al., 2019; Romeo et al., 2020). Pang et al. (2019) also considered
that H. werneckii could be a marine fungus. Recently, based on
observed phylogenomic differences between different strains, it
has been found that the marine H. werneckii strains are derived
by intraspecific hybridization, suggesting that marine strains are
adapting and evolving in this environment (Romeo et al., 2020).

Whole genome sequencing of a marine H. werneckii strains
reported the up regulations and activation of genes related
to stress-activated MAPK cascade (GO: 0051403), MAPKKK
activity (GO: 0004709), cellular response to osmotic stress,
heat, and oxidative stress (GO: 0071470, GO: 0034605, GO:
0034599), and regulation of mitotic cell cycle (GO: 0007346).
Besides this, several Heat Shock Proteins (Hsps) were also
activated such as HSP88, HSP78 mitochondrial, and HSP
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DnaJ (Romeo et al., 2020). Suggesting that cells of H. werneckii
respond and adapt to fluctuating NaCl concentrations, heat,
and extreme conditions in its environment by immediate
responses, without requiring the synthesis of new proteins but
modulate the pre-existing ones in metabolism and membrane
transport mechanisms. Such modulation requires the activation
of signal transduction pathways by stress signals (Kejžar et al.,
2015; Gunde-Cimerman et al., 2018; Román et al., 2020). The
combination of signaling pathways enables cells to resume
growth and adapt to the conditions of marine and other extreme
environments, leading toward their adaptation (Marchetta et al.,
2018; Román et al., 2020; Romeo et al., 2020; Figure 2).

Similarly, in A. terreus (Aspergillaceae, Eurotiales); genes
related to MAPKs and the HOG signaling pathway were up-
regulated along with several other pathways, during intracellular
osmotic balance and stress tolerance. Pang et al. (2020)
investigated the growth of A. terreus at different pH, temperature,
and salinity, mimicking the stressed environment, also the
molecular adaptation of A. terreus was studied with the
transcriptome analysis. At higher temperature, salinity, and low
pH, A. terreus was able to grow optimally. This was validated
by the transcriptome results, where, due to high temperature
higher expressions of Hsps were observed along with that high
temperature-induced reactive oxygen species (ROS), to counter
this, genes related to catalases and superoxide dismutase were
up-regulated (Abrashev et al., 2014; Pang et al., 2020).

Several proteins are associated with fungal reactions to acidic
pH, such as up-regulation of phenylalanine ammonia-lyase
(PAL), ATP-binding cassette transporters (ABC), and gamma-
aminobutyric acid, while pH binding transcription factor (Pac
C) and acetyl xylan esterase were down-regulated (Pang et al.,
2020). To tolerate the salinity stress, genes related to arginine
metabolism, HOG-pathway, MAPK, and linoleic acid were up-
regulated, suggesting their involvement in intracellular osmotic
balance. Pang et al. (2020), suggest that marine Aspergillus species
are able to tolerate a range of environmental stress with the help
of their stress-related genes and they could be a great source of
such genes for transgenic studies.

Apart from these species, marine fungi such as Aspergillus
aculeatus, Microascus brevicaulis, Penicillium oxalicum, and
Trichoderma harzianum are also able to grow at different
environmental conditions including high temperature and
salinity, suggesting that they could also adapt to different changes
in the environmental conditions (Jones et al., 2015; Pang et al.,
2016, 2020).

CONCLUSION AND FUTURE
PROSPECTS

1. Adaptation of marine fungi to climate change and
extreme environment is an unending topic and there
are more to be understood regarding it. In this review,
we discussed how climate change leads to changes
in the physicochemical properties of marine habitats,
which alters the ecological structure, function, physiology,
and population of individual species. Also, how certain

marine fungal groups have adapted to these conditions.
We have also discussed the molecular ecology and
evolution of marine fungi and their origin based on the
existing literature.

2. Cellular and molecular alterations due to climate change
could be either as a response to the changing dynamics of
the marine environment or due to the direct influence of
stressors on the fungi. To counter stressors like osmotic
and temperature fluctuations, H. werneckii utilizes HOG-
pathway for osmoadaptation. Osmoadaptation includes
adjustments in metabolism, cell surface properties, cell
morphogenesis, growth and proliferation, and cellular
protectant production, such as glycerol, erythritol, arabitol,
mannitol. The regulation occurs either by activation
and/or recruitment of specific transcriptional factors or
associating with RNA polymerase-II, or both. H. werneckii
produces melanin, which accumulates on the outer cell
wall, forms a dense shield-like layer to protect the cell from
UV. At optimal NaCl concentration, melanized cell walls
help to retain glycerol in the cell.

3. Similarly, A. terreus isolated from shallow hydrothermal
vents were able to grow at 45◦C, pH 3, and 30% salinity.
Along with this, genes related to stress tolerance were
also shown to be up-regulated, suggesting the molecular
adaptation of A. terreus to extreme conditions and
environmental changes (Pang et al., 2020).

4. Marine fungi can adapt to the high salinity, temperature,
and severe pH levels, which provides them with greater
variety in biotechnological applications and offers an
important biological advantage over terrestrial fungi.
The understanding of the adaptation of marine fungi
in extreme environments would help researchers
to develop transgenic plants that can grow in such
environments and provide greater flexibility during
changing climatic conditions.

5. Studies on marine fungal ecology and evolution are
rare, this could be due to (1) fewer marine fungal
taxa were recorded than terrestrial habitats; (2) large
geographical areas were still not explored; (3) some
marine fungal taxa had recently been investigated with
a lot of work yet to be carried out; (4) convergent
evolution may have masked evolutionary relationships,
and (5) a huge amount of marine water dilutes any
evidence of environmental genetic material available.
Through using molecular techniques with culture-based
approaches, new environmental sequences from many
marine environments will make a significant contribution
to fungal diversity (Richards et al., 2012; Zhang et al., 2014).

6. There are continuing discussions about whether sequence-
based species description can be accepted and recognized
for taxon identification? (Hawksworth and Lücking, 2017;
Hongsanan et al., 2018; Thines et al., 2018). In our opinion,
the classification by sequence is not sufficient but may
provide leads to the fungal diversity of unresolved taxa
from the provided environmental samples.

7. We also addressed some of the current hypotheses
concerning the origin and development of marine fungi
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with their rationales. We suggest, the extant marine fungi
were originated from freshwater and subsequently moved
from land and, because of the strong natural selection, the
species evolved and adapted to the sea.
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