
A Novel Method to Handle the Effect of Uneven
Sampling Effort in Biodiversity Databases
Iker Pardo1*, Marı́a P. Pata1, Daniel Gómez2, Marı́a B. Garcı́a1
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Abstract

How reliable are results on spatial distribution of biodiversity based on databases? Many studies have evidenced the
uncertainty related to this kind of analysis due to sampling effort bias and the need for its quantification. Despite that a
number of methods are available for that, little is known about their statistical limitations and discrimination capability,
which could seriously constrain their use. We assess for the first time the discrimination capacity of two widely used
methods and a proposed new one (FIDEGAM), all based on species accumulation curves, under different scenarios of
sampling exhaustiveness using Receiver Operating Characteristic (ROC) analyses. Additionally, we examine to what extent
the output of each method represents the sampling completeness in a simulated scenario where the true species richness is
known. Finally, we apply FIDEGAM to a real situation and explore the spatial patterns of plant diversity in a National Park.
FIDEGAM showed an excellent discrimination capability to distinguish between well and poorly sampled areas regardless of
sampling exhaustiveness, whereas the other methods failed. Accordingly, FIDEGAM values were strongly correlated with the
true percentage of species detected in a simulated scenario, whereas sampling completeness estimated with other
methods showed no relationship due to null discrimination capability. Quantifying sampling effort is necessary to account
for the uncertainty in biodiversity analyses, however, not all proposed methods are equally reliable. Our comparative
analysis demonstrated that FIDEGAM was the most accurate discriminator method in all scenarios of sampling
exhaustiveness, and therefore, it can be efficiently applied to most databases in order to enhance the reliability of
biodiversity analyses.
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Introduction

Decisions on biodiversity conservation are typically dependent

on the degree of knowledge of species distribution [1], therefore,

they ideally require the best available spatially explicit information

of species distribution [2]. Given that field work necessary to get a

database representative of the real biodiversity in large areas is

highly resource-consuming, and current funding for this task is

scarce [3–4], historical data stored in herbaria, museums, atlas and

unpublished material emerge as an outstanding alternative [5]. In

fact, biodiversity databases compiling information from these

sources have proliferated worldwide in the last decade [6], as it is

exemplified by initiatives such as the Global Biodiversity

Information Facility (GBIF) [http://www.gbif.org]. Scientists

and managers can now take advantage of the enormous effort

done during decades of biodiversity inventories [7] and raise new

ecological questions [6,8]. In particular, biodiversity databases are

being intensively used in relevant conservation issues, such as the

predictive distributions of plants and animals under global change

scenarios [9–10], the identification of biological hotspots (e.g. [11–

13]), or the design of protected areas [1,14]. The generation of

new analytical tools is promoting advances in the study of these

fields, however, their reliability remains challenging due to the

contingencies of the baseline data [15–22]. For instances,

biodiversity database usually contain incomplete distribution data,

because the information was collected according to different aims

[15]. Evidences of how bias in database information can

compromise biodiversity analyses and conservation planning are

reported in a large number of studies [19,20,23,24,25,26,27].

Hence, an adequate control of data-quality is needed [15].

Quality control process should regard both database configu-

ration and the evaluation of data suitability for analyses.

According to the scheme proposed in Hortal et al. [15], the

control routine has two main levels: (i) data-compilation and

digitalization, and (ii) sampling effort assessment. The former is

related to the reliability of the sources of information, taxonomic

bias and the geographical accuracy of the data [8,28,29]. The

latter refers to the uneven sampling effort present in non-

systematic biodiversity databases [30]. As the first control level

has already been discussed elsewhere, in this paper we will focus

only on the assessment of the sampling effort bias.

Sampling effort is likely to be temporally, spatially and

environmentally biased [20,27,31,32,33]. Temporal bias can be

minimized by limiting database information to a time period short

enough as to ensure that information remains the same throughout

this period. Regarding spatial and environmental bias, it is well

known that some territorial units accumulate more sampling

records than others due to diverse factors such as accessibility,
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habitat singularity, abundance of rare taxa, or differences in

funding [24,25,34,35,36,37,38]. Given that most aspects of

biodiversity (e.g. species richness) correlate well with sampling

effort (e.g. [15]), diversity distribution inferred from raw database

information may reflect the spatial distribution of sampling effort

rather than the real distribution of diversity [8,15,27]. Hence,

biodiversity distribution analyses based on spatially explicit data

should account for sampling effort.

Among the range of methods that have been proposed to reduce

the bias of sampling effort, those based on species accumulation

curves (SAC) [34,39,40] are commonly used. According to SAC’s

properties, the total number of species recorded rises towards a

ceiling as sampling effort increases [39,41]. Once the SAC is

constructed, a model is fitted to describe the accumulative-

sampling effort relationship (e.g. [42]). The selection of the model

should be done with statistical rigor [39], but also according to the

discrimination capability, i.e. the probability of correctly identify-

ing well (or poorly) sampled units [43]. The discrimination is a sine

qua non criterion in scientific fields with important social

responsibility such as clinical diagnostic [44–45], whereas it has

been hardly applied in ecological classification analysis, including

the evaluation of sampling effort. If the methods to assess sampling

effort fail to discriminate well from poorly sampled units, the

resultant classification would be seriously affected. Likewise, if the

discrimination capability differ among methods, then, the reliabil-

ity of the classification would depend to a great extent on the

selected method, and so will do the uncertainty of any analysis

based on such information.

In this study, we analyze for the first time the discrimination

capability of commonly used SAC based methods to quantify

sampling completeness, and present a novel approach. We first

compare methods according to their discrimination capability in

two contrasting scenarios of sampling exhaustiveness and in an

ideal situation, where the true species richness is known. Finally,

we define an objective and generalizable procedure to account for

sampling effort bias in biodiversity databases using the novel

method and discuss its practical benefits for conservation

management.

Methods

Review of methods to assess sampling effort bias
The SAC are constructed by plotting the expected (mean)

cumulative number of species S(n), at a given number of samples

(n) [40,46]. Samples order is randomized by repeatedly re-

sampling (without replacement) to rule out its effect on the SAC

[40,41,46]. Two main procedures based on SAC have been

proposed to assess the sampling completeness: (i) the proportion of

species richness out of the total predicted by the richness

estimators [47–49], and (ii) the slope of the accumulation curve

[30,50].

For the former procedure, the predicted richness should be

calculated first, which can be done in several ways. Extrapolation

of SAC based on asymptotic functions is one of them. The

predicted richness is estimated as the total number of species that

would be achieved with a hypothetical infinite sampling effort.

The most usual models used to describe the SAC are the negative

exponential, the Clench, and the Weibull models

[39,50,51,52,53]. The other common way of predicting species

richness is by non-parametric estimators based on the number of

rare species observed within samples, either from incidence or

abundance data [54–55]. The most common estimators in this

case are Chao [56], Jacknife (onwards NPE) and Bootstrap [57]

estimators, as well as incidence-based and abundance-based

coverage estimators, called ICE and ACE respectively [58]. For

a complete review of all these methods see [40], [59] and [60].

The second procedure for measuring sampling completeness is

the slope of the SAC along the sampling effort gradient, which is

minimum when all species have been found [30,50]. There are

several alternatives to compute the slope of the curve. One is the

geometric definition of the slope as the secant line to the curve:

m~
DY

DX
ð1Þ

where Y is the species richness and X the measure of effort. An

appropriate procedure for calculating Y is the unbiased estimator

of true species richness, the so called Mao Tau estimator (hereafter

STE) [41,61]. Another way of estimating the slope of the SAC is to

calculate the species accumulation rate at a given sampling level,

by fitting a function to the curve. To do that, it is necessary to

previously examine the level of homogeneity of sample units by

comparing the empirical mean randomized SAC, with the

expected curve if all individuals had been randomly assigned to

the samples. The expected curve may be constructed either by

computing a rarefaction curve or a Coleman curve (for details see

[40,46]). The slope of the SAC is then calculated with the first

derivative of the fitted curve. The final slope of the Clench

function (as well as the slope of other asymptotic functions) is the

most common method for assessing the accumulation rate

[30,39,60]. Two main problems are associated with these

asymptotic functions: their limited use at low sampling levels of

sampling [15], and the violation of statistical assumptions inherent

to non-linear regression models (i.e., correct mean structure,

variance homogeneity, and independent and normally distributed

errors [62]).

FIDEGAM: a new method to quantify sampling
completeness

As an alternative to the methods reviewed above, we have

developed the FIDEGAM method, which fits a Generalized

Additive Model (GAM) [63–64] with Poisson response, or the

negative binomial if data presents overdispersion [65], to each

randomized SACs. GAM is an extension of Generalized Linear

Models (GLM) [66], which allows flexible modeling of the

influence of the response variable [64]. In a GAM framework,

statistical assumptions are met because the function is adjusted to

non-normal distributed data instead of forcing data to fit an

arbitrary known function. Besides, contrary to asymptotic methods

the model fits even at low levels of sampling effort. Once GAMs

are fitted, the first derivatives and their 95% corresponding

confidence intervals along the species accumulation process are

calculated. This output describes the whole pattern of species

accumulation, being the first derivative at the maximum number

of sampling records the measure of sampling completeness

(onwards FIDEGAM value). FIDEGAM values range from 0 to

1, corresponding to high and low sampling completeness for a

given area, respectively.

Testing and comparing the discrimination capability of
the sampling completeness measures

(i) Classification rules to assess discrimination

capability. The discrimination capability between different

methods should be evaluated under different levels of sampling

completeness and according to an objective classification rule [43].

From a statistical point of view, the discrimination capability of a

given Y (e.g. a measure of sampling completeness in our case) to
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distinguish between two alternative states S1 (e.g. well sampled

unit) and S2 (e.g. poorly sampled unit), should be based on a

Receiver Operating Characteristics (ROC) curve analysis

[43,67,68]. A binary response is needed for ROC analyses, so

that Y classifier should be dichotomized according to a cut-point

value. Values of the sampling unit above that cut-point would refer

to one of the two possible states (i.e. S1), and values below to the

alternative state (i.e. S2). The classification criterion used in ROC

analysis is related to the probabilities of belonging to one of the

states as a function of the values of Y, P [S1|Y ]. These

probabilities are estimated using a GLM in a binary regression

framework [43]. Once the ROC curve for each completeness

measure is fitted, their discrimination performance is evaluated

using the area under the ROC curve (AUC)

AUC~

ð1

0

ROC tð Þdx ð2Þ

The AUC takes values between 0.5 (uninformative classifier) and 1

(perfect classifier) [44,69,70].

(ii) Discrimination capability of methods in different

scenarios. We tested the discrimination capability of the

completeness measures based on the observed proportion of

species richness out of the total predicted by a non-parametric

estimator (NPE), the slope of the Mao Tau estimator (STE) and

FIDEGAM using ROC in two contrasting scenarios of sampling

completeness and in a ideal situation, where the true species

richness is known.

The scenario of high sampling exhaustiveness is derived from a

database that contains information of the vascular flora of the

Ordesa-Monte Perdido National Park (Spanish Pyrenees; OR-

DESA thereafter). The National Park is one of the most

exhaustively prospected areas in the Iberian Peninsula [71],

however, due to the high topographic complexity, the large

altitudinal range (,700 to 3354 m a.s.l.) and severe access

difficulties to some points, the sampling effort is expected to be

unevenly distributed along the ca. 30000 ha of the Park. The

ORDESA database comprises more than 44000 spatially explicit

records of 1379 vascular plant species along the 321 UTM cells

(1 km2; sampling units) of the Park (excluding Bujaruelo valley),

compiled from herbarium samples, phytosociological relevés, and

visu records collected over the last 50 years in the JACA

Herbarium (http://proyectos.ipe.csic.es/floragon/index.php). To

homogenize the different sources of information we defined

‘‘sampling record’’ as each input of information of plants

occurrence (from one to multiple species) that differs in date, site,

method and/or author.

The second scenario was created emulating the structure

(sampling units/sampling records/species per record) of the

ORDESA database and using a random procedure, which

involves the following steps (see Figure S1 for further details):

1. For each sampling unit (n = 180), assign the number of

sampling records according to three levels of sampling intensity

(20–50, 51–80 and 81–110 sampling records) at random.

2. For each sampling record, randomly determine how many

(between 1 and 30) and which species are recorded from a

virtual pool (400 species).

The resultant information was compiled in a database named

SIMULAU. We assumed that the sampling effort has been enough

to detect the true richness in all the sampling unit of this database.

We then subsampled from SIMULAU to achieve an scenario of

low sampling exhaustiveness (SIMULAUsub). To do so, we

repeated Steps 1 and 2, but in this case the number of sampling

records and species was randomly assigned according to the

information gathered in SIMULAU. To ensure low levels of

sampling exhaustiveness in SIMULAUsub, we limited the maxi-

mum number of sampling record per sampling unit, and the

maximum number of detected species per sampling record to 25

and 20, respectively.

The next step was to produce the smoothed SAC for each

sampling unit in the ORDESA and SIMULAUsub database using

specaccum function (1000 permutations) in the VEGAN package

[72] in R [73]. Then, the three completeness measures were

estimated for each SAC. The NPE was calculated as the

proportion of species richness out of the total predicted by the

Jacknife estimator using the poolaccum function (1000 permutations)

in the VEGAN package. The slope for Mao Tau estimator (STE)

was computed from the SACs as

yi{yi{3

xi{xi{3
ð3Þ

being i the last position of both species richness (y) and number of

records (x). We finally used FIDEGAM method by fitting GAM

models with Poisson response to the each accumulation curve

(obtained at random) using penalized splines [64,74]. Optimum

effective degrees of freedom (equivalents to degrees of smoothness)

were automatically selected using the unbiased risk estimator

criterion (UBRE) [75]. The first derivative of the resultant curve

and its 95% confidence intervals were computed for each sampling

unit (Figure 1), being the first derivative at the maximum number

of sampling records the FIDEGAM measure of sampling

completeness (Figure 1).

The final step consisted in examining the discrimination

performance of the three completeness measures calculated, to

correctly classify well and poorly sampled sampling units. In most

real situations, the true species richness is unknown, therefore, a

surrogate of the sampling effort is needed to categorize sampling

units. Here, we used the number of sampling records as a

surrogate in the ORDESA and SIMULAUsub [30,47,76]. We set

the cut-point value according to the preliminary analysis [77] at

the 50th percentile (i.e. the median) of the number of records per

sampling unit [78] (see further details on Appendix S1). Thereby,

units with higher number of sampling records than the median

were classified as well sampled and those below as poorly sampled.

To evaluate the role that the surrogate could play on the results,

we categorize the sampling units of SIMULAU according to an

ideal scenario where the degree of sampling completeness is

known. Given that all species were detected in the sampling units

of SIMULAU, we calculated the true sampling completeness for

each unit as the

SRsub{SRtrue

SRtrue

|100 ð4Þ

where SRsub is the species richness in SIMULAUsub and SRtrue the

true richness obtained from the SIMULAU database [79–80]. The

inventory of sampling unit exceeding the 70% of completeness are

usually considered as nearly completed [81–82], therefore, we

categorized sampling units according to such value.

Once the binary response variable was created for all scenarios,

we proceed to estimate the capability of each completeness

measure (NPE, STE and FIDEGAM) for discriminating between

classes using ROC-GLM regression for binary responses with logit

link. The probability of belonging to each state was calculated as a
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function of the value of completeness measure

P Y~well sampled Dcompleteness measure½ � ð5Þ

whereas AUC values were computed using the roccurve function in

the pcvsuite package [83] and their 95% confidence intervals

estimated by bootstrap regression techniques [84].

Results

According to our logistic model (equation 5), the predicted

probabilities of a method for correct discrimination should reach 1

and 0 for well and poorly sampled units, respectively. Therefore,

when representing this ideal discrimination in a kernel density

plot, maximum densities of predicted probabilities of well and

poorly sampled areas should clump at 0 and 1 values of the x-axis.

On the contrary, higher densities of predicted probability values

would lie between 0 and 1 if the method fails in discriminating.

Figure 2 shows strong differences in the predicted probabilities for

well and poorly sampled units among methods, evidencing the

higher discrimination capacity of FIDEGAM. This pattern was

consistent in the three examined scenarios despite that different

surrogates for categorizing the sampling units were used if true

richness was known or unknown (Figure 2). In all cases,

FIDEGAM showed an excellent performance for discrimination

according to the observed AUC values (Table 1). On the contrary,

NPE failed to correctly discriminate sampling units in the

ORDESA database, whereas, STE only classified correctly poorly

sampled units (Figure 2A), being good the discrimination quality

(Table 1).

At lower levels of sampling exhaustiveness (i.e., using data from

SIMULAUsub), the probability of NPE and STE for correct

discrimination decreased (Figure 2B), reaching undesirable AUC

values (Table 1). The same results were obtained in the simulated

scenario when sampling units were categorized according to the

true sampling completeness (Figure 2C, Table 1).

To better interpret the results obtained in the discrimination

analysis, we plotted the relationship between the true percentage

of species detected (defined as the ratio between the richness

observed in SIMULAUsub and SIMULAU) and the completeness

values of NPE, STE and FIDEGAM in SIMULAUsub (Figure 3).

By fitting a Poisson-GLM to this relationship, we found that values

of both NPE and STE did not correlate with that (R2 = 0.28 and

R2 = 0.14, respectively), whereas FIDEGAM values did

(R2 = 84.19) (Figure 3).

Handling with sampling effort bias in biodiversity
analyses: a case study

To illustrate how the measure of sampling completeness can be

used to enhance the reliability of biodiversity analysis, we analyzed

the patterns of distinctiveness along the Ordesa-Monte Perdido

National Park (excluding Bujaruelo valley) using the ORDESA

database. The distinctiveness indicates to what extent one area is

distinct from other areas in terms of taxonomic, functional or/and

genetic diversity [85–86]. The identification of most distinctive

areas constitutes a basis for establishing priority conservation areas

at different scales. We calculated here an easy-to-use index based

on taxonomic distinctiveness according to the formula detailed in

Jennings et al. [81], but it is also possible to use other metrics of

distinctiveness and beta diversity.

Figure 4A represents distinctiveness in the National Park from

the raw information in ORDESA, and suggests that most areas of

the Park would be highly distinctive. To what extent is this pattern

reliable? We quantified the sampling completeness of each

sampling unit with FIDEGAM and found that most of the poorly

sampled ones were those of highest distinctiveness values (Figures 4

and 5). Hence, the distinctiveness pattern obtained from raw

information is highly uncertain. To minimize such uncertainty, we

excluded poorly sampled areas from analysis according to an

objective criterion based on the maximization of the discrimina-

tion capability using the Youden index (J) [87]. The J value in the

ROC curve is

J~PS2 c0ð ÞzPS1 c0ð Þ{1 ð6Þ

being P the probability of correctly classifying, S1 and S2 well and

poorly sampled units respectively, and c0 the optimum cut-point,

Figure 1. The sampling completeness measured from two smoothed species accumulation curves (1000 randomization each) using
the FIDEGAM method in the Ordesa-Monte Perdido National Park. FIDEGAM values (in grey) recorded at the maximum number of sampling
records indicates higher sampling completeness in the sampling unit A than in B. Dashed lines correspond to confidence intervals of FIDEGAM values.
doi:10.1371/journal.pone.0052786.g001
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and the corresponding value of FIDEGAM the optimum threshold

to separate well sampled units from poorly. In the ORDESA

database the J index was 0.85 (confidence interval: 0.75–0.93) and

the corresponding threshold 0.029. After excluding sampling units

with FIDEGAM values above such threshold (i.e., poorly sampled

areas), we recalculated the distinctiveness values and found that

the resulting pattern of distinctiveness totally differed from the

previous one (Figure 4B). This result evidences how the inclusion

of uncertain information in biodiversity analysis (poorly sampled

units in this case) distorts the overall picture of the spatial pattern

of distinctiveness.

Discussion

Many biodiversity databases have been constructed from

heterogeneous sources of information because of the large

spatio-temporal ranges they usually cover. The information that

they contain, therefore, does not always represent the reality due

to large differences in sampling effort across time and space. This

fact constitutes one of the main limiting factors for the reliability of

the results provided by analyses based on them. Different methods

have been proposed to account for spatial sampling effort bias, but

not all of them perform equally. Here, we have demonstrated that

SAC based methods differ in terms of statistical robustness, but

also in their capability to discriminate between well and poorly

sampled units.

Statistical assumptions cannot be disregarded even in the most-

up-date statistical methods [88]. Some methods for quantifying

sampling completeness do not fulfill such assumptions (see [89]),

whereas others (e.g. the classic asymptotic function [39]) present

Figure 2. Kernel density plots of predicted probabilities of discrimination between well (dashed line) and poorly sampled units
(continuous line) for NPE, STE and FIDEGAM methods. In the scenarios of high (A) and low (B) levels of sampling exhaustiveness, the sampling
units were categorized as well and poorly sampled according to the number of records (see Appendix S1), whereas, when the true richness was
known (C), the true sampling completeness (see equation 4 on text) was used as a categorization criterion. Probabilities were calculated according to
ROC-GLM regression models.
doi:10.1371/journal.pone.0052786.g002

Table 1. AUC values and 95% bootstrap confidence intervals
(in brackets) obtained in the discriminatory analysis of
methods for sampling completeness quantification.

Method Level of sampling exhaustiveness SRtrue

high low

NPE 0.64 (0.59, 0.71) 0.49 (0,41, 0.59) 0.52 (0.40, 0.59)

STE 0.81 (0.75, 0.86) 0.49 (0.40, 0.57) 0.48 (0.40, 0.57)

FIDEGAM 0.92 (0.88, 0.95) 0.98 (0.97, 1.00) 0.97 (0.95, 0.98)

NPE is the proportion of species richness out of the total predicted by a non-
parametric estimator (Jacknife) [57]; STE is Mao Tau estimator [41,61]; FIDEGAM
is the first derivate of a GAM with Poisson response fitted to species
accumulation curves.
The analyses were repeated in two scenarios of high and low levels of sampling
exhaustiveness (from the ORDESA and SIMULAUsub databases, respectively),
and in an ideal situation where the true species richness was known (SRtrue).
Grading guidelines for AUC values indicate fail (0.50–0.60), poor (0.60–0.70), fair
(0.70–0.80), good (0.80–0.90) and excellent (0.90–1.00) discrimination.
doi:10.1371/journal.pone.0052786.t001
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severe limitations. Even when the statistical assumptions are not

violated, not all methods are equally reliable because there are

strong differences in their discrimination capability, as we have

shown here. The novel method we have proposed in this study,

FIDEGAM, outperforms others regardless of the sampling

exhaustiveness, and both when true richness was known and

unknown, evidencing its robustness. The most striking feature of

the method is its excellent performance at low levels of

exhaustiveness, because most regions and living groups worldwide

are not exhaustively sampled [15]. In turn, other methods based

on NPE and STE estimators, often misclassified well and poorly

Figure 3. Relationship between the sampling completeness calculated using the FIDEGAM method and the percentage of detected
species in a simulated scenario, where the true richness is known. Dashed lines state the 95% confidence intervals.
doi:10.1371/journal.pone.0052786.g003

Figure 4. Taxonomic distinctiveness in the Ordesa-Monte
Perdido National Park calculated using all (A) and selected
(B) sampling units. Grid cells correspond to UTMs of 1 km2. Striped
cells indicates sampling units with less than three sampling records,
where the quantification of sampling completeness is impossible using
FIDEGAM method, in A, and poorly sampled units in B. Well and poorly
sampled units were defined using their completeness value of FIDEGAM
and according to a threshold value that maximize the discrimination
capability between sampling units (see text for details).
doi:10.1371/journal.pone.0052786.g004

Figure 5. FIDEGAM values and taxonomic distinctiveness in the
Ordesa-Monte Perdido National Park. Low values of FIDEGAM
correspond to high sampling completeness. Black and grey dots
indicate well and poorly sampled units (1 km2) respectively, according
to an optimum threshold value of FIDEGAM that maximizes discrim-
ination capability.
doi:10.1371/journal.pone.0052786.g005
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sampled units, which may constitute another source of bias to the

original problem of sampling effort bias. As a result of this low

discrimination capacity, NPE and STE also failed to represent the

true proportion of detected species in a simulated scenario.

The sampling exhaustiveness of the database is an important

constrain for the use of both non-parametric estimators and

asymptotic methods [90]. Beyond discrimination capability, even

the computation of sampling completeness values is limited by

using asymptotic methods (e.g. Michaelis-Menten) in scarcely

prospected areas. These areas ought to be ruled from the sampling

effort assessment, and as a result, a large amount of information is

susceptible to be lost. This situation is less dramatic using the

FIDEGAM method, because it requires a lower number of

sampling records (i.e. three) than the asymptotic ones.

The assessment of sampling completeness can be easily

incorporated into biodiversity analyses to reduce the uncertainty

of results. A promising procedure is to incorporate sampling

completeness values as a covariate (or offset) in the analysis of

biodiversity patterns (Pata et al., unpublished data), although the

most frequent alternative is to only consider the areas that are well

surveyed (i.e. those with a sampling effort above some threshold)

[15,91,92,93]. If sampling effort is similarly distributed across

space (regardless of the level of sampling exhaustiveness), the

selection should be done according to comparable values of

sampling effort rather than to high values [35,94]. The full interest

of this procedure relies on how to define a threshold value in order

to classify the suitability of different areas [30,95]. An arbitrary

value may be justified when the knowledge of the studied system is

robust, otherwise the subjectiveness should be avoided. In the

example presented, the threshold value was defined according to

the maximization of discrimination capability, thereby, minimiz-

ing in this way the potential bias intrinsic to method. The

straightforward advantage of proceeding objectively is that the

method can be equally used in other databases, regardless of the

nature and spatial resolution of the information.

Correctly identifying well and poorly sampled areas is also of

paramount importance for the interpretation of biodiversity

distribution [27,92], and FIDEGAM has been proved to provide

an accurate layer of uncertainty over results obtained from raw

data. This would allow us to know at which locations results of

biodiversity analysis is reliable, and where the prospective

biological exploration is necessary if we want to extend results of

standard analysis of biodiversity [53,92].

To summarize, our results have highlighted that an adequate

selection of the assessment method is as important as the decision

itself of taking into account the sampling effort for enhancing the

reliability of database analyses. FIDEGAM provides the best

discrimination capability and minor dependence on exhaustive-

ness. Therefore, we recommend this method to overcome

sampling effort bias when analyzing the information gathered in

biodiversity databases. By no means, a method for sampling

completeness quantification will replace the advantages provided

by further biological prospections. However, given the urgencies of

biodiversity conservation and the limitations for intensive data

gathering, we consider the quantification of sampling complete-

ness the best alternative to enhance the reliability of biodiversity

analyses based on non-exhaustive database.
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1. Whittaker RJ, Araújo MB, Paul J, Ladle RJ, Watson JEM, et al. (2005)

Conservation Biogeography: assessment and prospect. Diversity Distrib 11: 3–

23.

2. Possingham HP (2007) How can you conserve species that haven’t been found?

J Biogeogr 34: 758–759.

3. James AN, Gaston KJ, Balmford A (1999) Balancing the Earth’s accounts.

Nature 401: 323–324.
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48. González J, Gayubo S, Asis J, Tormos J (2009). Diversity and biogeographical

significance of solitary wasps (Chrysididae, Eumeninae, and Spheciformes) at the
Arribes del Duero Natural Park, Spain: their importance for insect diversity

conservation in the Mediterranean region. Environ Entomol 38: 608–626.

49. Ulrich W, Ollik M, Ugland K (2010) A meta-analysis of species-abundance

distributions. Oikos 119: 1149–1155.

50. Hortal J, Garcia-Pereira P, Garcia-Barros E (2004) Butterfly species richness in
mainland Portugal: predictive models of geographic distribution patterns.

Ecography 27: 68–82.

51. Moreno CE, Halffter G (2000) Assessing the completeness of bat biodiversity

inventories using species accumulation curves. J Appl Ecol 37: 149–158.
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