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Introduction	
Reversible reactions are commonly encountered in pharma-

cology, chemistry, biology, chemical engineering, etc.[1-6] The 
influence of reversible metabolism on the pharmacokinetics of 
a drug and its metabolites has been the subject of considerable 
recent research.[5-11] An interesting example is the adminis-
tration of chiral drugs. Two enantiomers of a chiral drug, such 
as ibuprofen[10] and propranolol,[11] often have different 
potencies and pharmacokinetic profiles.[8-11] However, one 
enantiomer is usually interconverted into the other within the 
human body.[7-11] When a chiral drug is administered as a ra-
cemic mixture, its bioavailability and efficacy can be incorrectly 
estimated if reversible reactions between two enantiomers are 
not taken into account.[5,6] For the determination of an appro-
priate dosage regimen of a drug, it is therefore important to un-
derstand the characteristics of the reversible reaction between a 
drug and its metabolite. 

In this tutorial, we focus on the basics of the pharmacokinet-

ics of reversible metabolism. For a simple reversible reaction 
scheme, we use the matrix method to get exact solutions and 
plot them to find characteristic relationships between the phar-
macokinetic profiles of a parent drug and its metabolites. In ad-
dition, we describe two approximation approaches to deal with 
complex problems and examine the conditions required for the 
successful application of each approach. 

Theoretical analysis

Exact solution for the kinetics of reversible reaction 
Let us consider the following simple reversible reaction scheme

, 

Where the first step is reversible with a forward rate constant k1 
and reverse rate constant k2, and the second step is irreversible 
with the rate constant k3. The rate constant has the units of the 
amount per unit time, which are omitted for simplicity in this 
tutorial. The rate equations are:

                               � (1)

                                      � (2)

                               � (3)Reviewer
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Linear ordinary differential equations can be solved using La-
place transformation or the matrix method.[2,3,7,12] We used 
the latter to obtain an exact solution because of its simplicity. 
The above expressions can be written in matrix form:

             � (4)

                    
By setting 

, where λ is the eigen-

value, and solving for λ, we get the following characteristic poly-
nomial: 

                              � (5)

Where p = k1 + k2 + k3 and q = k1k3. The solutions of the qua-
dratic equation in Eq. (5) are given by 

, 
and 

. 

The resulting eigenvalues are 0, -α, and -β. These eigenvalues 
are substituted into the eigenvalue equation to yield the corre-
sponding eigenvectors of 

, spectively. 

Because the matrix M has three distinct real eigenvalues and 
their corresponding eigenvectors, we can express the solution as

            
 
�

(6)

At t = 0, A = A0 and B = C = 0, and A + B + C = A0 at all times. 
Using these boundary conditions, we can solve Eq. (6) to get C0 
= A0, C1 = -C2 and C1 = A0/(β – α). Then, the final expressions 
for the above differential equations (1–3) are

� (7)

� (8)

� (9)
                   

 

    

    

We can compare these results to those for a consecutive two-
step reaction, as described in the previous tutorial.[13] We can 
easily show that the latter has the eigenvalues of 0, -k1, and -k3, 
by setting k2 = 0 in Eq. (5). The solutions for B and C, equations 
8 and 9 in this study, are very similar to those for the consecu-
tive reaction (Equations 7 and 9 in Reference,[13] respectively). 
Thus, the expressions for the maximum amount of B (Bmax) and 
the time to reach the peak (tmax) can be obtained in a similar 
way:

                                 � (10)

and 

              , �(11)

respectively.

(a) (b)

Figure 1. (a) Linear and (b) semi-logarithmic plots of the amount-time curves of A, B, or C in the reversible reaction, , , where k1 = 10,  

k2 = 0.1, and k3 = 1. The abscissa and ordinate denote the time and the amount of each species, respectively, in arbitrary unit. See text for details.
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Graphical insights into the kinetics of reversible reactions 
 	 Figure 1 shows representative amount versus time curves of 

A, B, and C, plotted on a linear and semi-logarithmic scale for 
three different cases: (a) k1 = 10, k2 = 0.1, and k3 = 1; (b) k1 = 5, k2 
= 4, and k3 = 2; (c) k1 = 1, k2 = 5, and k3 = 0.2. When k1 and k3 are 
relatively larger than k2, that is, the reverse reaction is negligible, 
linear plots of the amount versus time curves of A and B for the 
reversible reaction (Fig. 1a) look very similar to those for a con-
secutive irreversible reaction (see Figure 2 in Reference[13]). 
The semi-logarithmic plots for the former case (Fig. 1b), how-
ever, look different from those for the latter case (see Figure 3a 
in Reference[13]). In the former case, two curves are always 
parallel to each other in the elimination phase, whereas they are 

not in the latter case. The difference can be explained as follows. 
For an irreversible reaction, the amount of A is described by one 
exponential term, whereas for the reversible reaction, it is de-
scribed by two exponential terms. For the latter, the first term in 
Eq. (7) or (8) decreases faster than the second term over time, 
because α is always larger than β. This means that the elimina-
tion phase is governed by the second term. Therefore, the first 
term can be neglected when t is sufficiently large. In semi-loga-
rithmic plots of A and B, thus, both slopes for the elimination 
phase are linear and identical and given by –β/2.303. The y-in-

tercepts for A and B are   and , respectively. 

When 2k1 = 2k2 + k3, the intercepts are the same, as shown in 

Figure 2. (a) Linear and (b) semi-logarithmic plots of the amount-time curves of A, B, or C in the reversible reaction, , , where k1 = 5,  

k2 = 4, and k3 = 2. The abscissa and ordinate denote time and the amount of each species, respectively, in arbitrary unit. See text for details.

(a) (b)

Figure 3. (a) Linear and (b) semi-logarithmic plots of the amount-time curves of A, B, or C in the reversible reaction, , , where k1 = 1,  

k2 = 5, and k3 = 0.2. The abscissa and ordinate denote time and the amount of each species, respectively, in arbitrary unit. See text for details.

(a) (b)
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Figure 2. If 2k1 < 2k2 + k3, the curves A and B will not cross each 
other. As a third case, we set k1 = 1, k2 = 5, and k3 = 0.2, which 
satisfies this condition. It is noteworthy that the semi-logarith-
mic plots for this case (Fig. 3b) strongly resemble those for the 
consecutive irreversible reaction (see Figure 3b in Refer-
ence[13]). In the latter case, the semi-logarithmic plots of plas-
ma concentrations versus time of A and B become parallel 
straight lines at large t only when the formation rate of B is 
much slower than its elimination rate; that is, the metabolism is 
formation rate-limited (FRL).[13-15] In addition, the intercept 
for [B] becomes greater than that for [A] when the distribution 
volume of B, VB, is much smaller than that of A, VA (see Figure 
3c in Reference[13]). However, we need to be cautious when we 
apply this feature to the interpretation of the time profiles of the 
semi-logarithmic plots of a drug and its metabolite because this 
feature is commonly observed in reversible metabolic reactions. 
The pharmacokinetic parameters for each case, including tmax 
and Bmax, are summarized in Table 1. 

The area under the curve (AUC) is an important pharmacoki-
netic parameter, representing total drug exposure over time. The 
AUC for A and B can be obtained by directly integrating Eqs. (7) 
and (8) from zero to infinity, respectively, and expressed as 

                                                                             and� (12)

                                         

 

.   � (13)

Thus, the ratio of AUCA to AUCB can be simplified to .  
The AUC for C can also be calculated by integrating Eq. (9) 
from zero to t and given by

                                        � (14) 

Using a time integration method,[14,16] we can obtain the re-
lationship between AUC and rate constant or clearance, which 
has the units of volume (V) per unit time (CL = k × V). By sepa-
rating the variables in Eqs. (7–9) and integrating both sides with 

respect to their respective variables, we can write the equations 
as follows:

� (15)

� (16)

 

, 

, 

.    � (17)

They should satisfy the following boundary conditions: [B] = [C] 
= 0 at t = 0; [A] = [B] = 0 and VC × [C] = A0 at t = ∞. By substi-
tuting k1 = CL1/VA, k2 = CL2/VB, and k3 = CL3/VC, we get

� (18)

� (19)

                             

= ,   

 

=    � (20)

Eq. (19) can be rearranged as

                                    . � (21)

These relationships are helpful in understanding pharmacoki-
netic features and metabolic pathways.[14,17,18]

Approximation of the kinetics of reversible reactions 
To get a good approximate solution for a reversible reaction 

scheme, approximation approaches have been developed and 
are widely used.[12,19,20] Depending upon the reactivity of the 
intermediate species, we can use either of two approximation 
approaches. One is a steady-state approximation, in which the 
intermediate species B is very reactive and hence short lived. 
This approximation is useful for explaining reactions involving 
radical species. The other is an equilibrium approximation, in 
which B is quite stable and long-lived because the equilibrium 
reaction proceeds faster than the product formation reaction; 

Table 1. Pharmacokinetic parameters for the following cases: (a) k1 = 10, k2 = 0.1, and k3 = 1 (as in Fig. 1); (b) k1 = 5, k2 = 4, and k3 = 2 (as in Figure 2); 
(c) k1 = 1, k2 = 5, and k3 = 0.2 (as in Figure 3); (d) k1 = 0.1, k2 = 1, and k3 = 5, (as in Figure 4a); (e) k1 = 10, k2 = 1, and k3 = 0.1 (as in Figure 4b)

(a) (b) (c) (d) (e)

tmax (B) 0.245 0.256 0.855 0.722 0.439

Bmax 0.768 0.387 0.158 0.0157 0.873

AUC0–∞ (A) 0.11 0.6 26 12.0 1.1

AUC0–∞ (B) 1.00 0.5 5 0.2 10.0

AUC0–100 (C) 98.89 98.9 69 87.8 88.9

Intercept (A)* 0.0122 0.556 0.842 0.998 0.0924

Intercept (B)* 1.10 0.556 0.163 0.0169 0.915

Slope (A & B)* 0.429 0.434 0.014 0.0361 0.0394

AUC0–∞ and AUC0–100 represent the areas under the curve from t = 0 to t = ∞ and 100, respectively. All the intercepts and slopes (*) were obtained 
from semi-logarithmic plots.



Vol. 27, No.2, Jun 30, 2019
56

TCP 
Transl Clin Pharmacol

Pharmacokinetics of reversible metabolism

that is, k1, k2 >> k3. For both approaches, the following condition 
should be satisfied: 

                                            
 � (22)

In the steady-state approximation, B is extremely unstable 
and very short-lived and thus is present in most of the time in 
extremely small amounts. By assuming that B ≈ 0, we can get a 
new boundary condition: A + C = A0. From Eq. (22), Eq. (2) can 
be rearranged to yield:

                                      
 � (23)

For the steady-state approximation, this ratio should be very 
small because the amount of B is much smaller than that of A. 
Substituting Eq. (23) into Eq. (1) and re-arranging it for A, we 
have

                                      
 � (24)

By separating the variables and integrating the resulting equa-
tion, we get

                                   � (25)

Using the above expression and the new boundary condition, 
A + C = A0, we obtain

                                   � (26)

Now we can solve Eq. (2) for B using Eq. (26), to get

                                       � (27)

We plot the exact and approximate solutions for the 
case where k1 = 0.1, k2 = 1, and k3 = 5 (Fig. 4a). Because 

~0.017 << 1, the requirement for the steady-state 
approximation is satisfied. As the reaction begins, the amount 
of B quickly increases but is still extremely small (Bmax = 0.016 at 
tmax = 0.72) for most of the time, as expected. As shown in Fig-
ure 4a, the approximate solutions (dashed lines) agree well with 
the exact solutions (solid lines).

For the equilibrium approximation, the reaction needs to be 
in pseudo-equilibrium. In such a case, we can express

                                         , � (28)

Where Keq is an equilibrium constant. Because

                                 , � (29)

we also have 

                                    . 

Because of the above condition, it is not feasible to directly solve 
Eqs. (1) and (2). Instead, we need to combine the two equations 
to get

                                         . � (30)

If we define X = A + B = A0 – C, from Eq. (28), we can express A 
and B as

                                  . � (31)

Now Eq. (30) can be solved for X to get

                                             � (32)

Figure 4. Linear plots of the amount-time curves of A, B, or C for the cases of (a) k1 = 0.1, k2 = 1, and k3 = 5, corresponding to the steady-state ap-
proximation, and (b) k1 = 10, k2 = 1, and k3 = 0.1, corresponding to the equilibrium approximation. The solid and dashed lines represent the exact 
and approximate solutions, respectively. The abscissa and ordinate denote time and the amount of each species, respectively, in arbitrary unit. See 
text for details.

(a) (b)
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Then, we have 

� (33)

� (34)

                       

, 

, 

. � (35)

In Figure 4b, we show the plots of the exact and approximate 
solutions for the case where k1 = 10, k2 = 1, and k3 = 0.1. Unlike 
in Figure 4a, the amount of B is not negligible (Bmax = 0.87 at tmax 
= 0.44). The reaction rapidly reaches quasi-equilibrium, after 
which the amount of B slowly decreases. As shown in Figure 
4b, the approximate solutions (dashed lines) agree well with the 
exact solutions (solid lines). 

The difference between steady-state and equilibrium ap-
proximate approaches lies in the range of their applicability.
[20] When we introduce an additional constraint, k2 >> k1 into 
the equilibrium approach and k2 >> k3 into the steady state ap-
proach, both methods will yield the same solution.[20] This re-
lationship can be further explained by considering an approxi-
mate expression for β. Using the following binomial theorem

 

we can obtain the binomial expansion of β, which yields

      
. 

                  . � (36)

If k1 + k2 >> k3 or k2 + k3 >> k1, the second and higher order 
terms in the expansion can be negligible, and the first term can 
be further simplified to be the same as the exponent in the equi-
librium approximation [see Eqs. (33-35)] or in the steady-state 
approximation [see Eqs. (25-27)], respectively. For a refined 
approximation, we can differentiate Eq. (23) for A and B with 
respect to time t to get 

                                   
 � (37)

By substituting Eqs. (3), (23), and (37) into Eq. (29) and rear-
ranging the resulting equation, we get 

                                    � (38)

We expect a better approximate solution from the above equa-
tion compared with that produced by Eq. (24).

Application of the Reversible Reaction Scheme
The reversible reaction scheme is also used to describe drug 

distribution after rapid intravenous injection. Drug distribution 
within the body is often described by a two-compartment mod-
el with central and peripheral compartments.[21] In this model, 
an injected drug will be either eliminated or distributed within 
the central compartment, representing intravascular space, and 
the peripheral compartment, representing non-metabolizing 
body tissues. The distribution phase can be expressed by two 
linear differential equations similar to Eqs. 1 and 2.[21] The 
solution for drug concentration in each compartment can be 
obtained using a similar approach and described by two expo-
nential terms.

To explain the kinetics of an enzyme-catalyzed reaction, a 
Michaelis-Menten model has been widely used.[22-24] When 
an enzyme and a substrate form a complex, the binding of the 
substrate to the active site of the enzyme is non-covalent and 
reversible. If the conversion of the enzyme-substrate complex to 
a product is the rate-limiting process, the concentration of the 
complex can be considered to be constant. Then, the equilib-
rium approximation will give a hyperbolic relationship between 
the initial reaction rate, v_0, and substrate concentration [S], 
known as the Michaelis-Menten equation,

 

Where Vmax is the maximum reaction rate achieved when all 
of the active sites are occupied by substrates. The Michaelis con-

stant, in the original article,[22,23] is given by . When 

a steady-state approximation is used, the constant is given by 

.[24]

Concluding remarks
We have described the mathematical approaches needed to 

determine the reaction kinetics of a reversible reaction system 
and provided graphical insights into the results. The knowledge 
acquired through this tutorial may help deepen the under-
standing of the pharmacokinetics of reversible metabolism and 
ultimately help with the prediction of the appropriate dose of a 
drug that is subject to equilibrium in a human body.
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