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ABSTRACT This paper presents a robust human posture and body parts detection method under a specific
application scenario known as in-bed pose estimation. Although the human pose estimation for various
computer vision (CV) applications has been studied extensively in the last few decades, the in-bed pose
estimation using camera-based vision methods has been ignored by the CV community because it is assumed
to be identical to the general purpose pose estimation problems. However, the in-bed pose estimation has
its own specialized aspects and comes with specific challenges, including the notable differences in lighting
conditions throughout the day and having pose distribution different from the common human surveillance
viewpoint. In this paper, we demonstrate that these challenges significantly reduce the effectiveness of
the existing general purpose pose estimation models. In order to address the lighting variation challenge,
the infrared selective (IRS) image acquisition technique is proposed to provide uniform quality data under
various lighting conditions. In addition, to deal with the unconventional pose perspective, a 2- end histogram
of oriented gradient (HOG) rectification method is presented. The deep learning framework proves to be the
most effective model in human pose estimation; however, the lack of large public dataset for in-bed poses
prevents us from using a large network from scratch. In this paper, we explored the idea of employing a pre-
trained convolutional neural network (CNN) model trained on large public datasets of general human poses
and fine-tuning the model using our own shallow (limited in size and different in perspective and color) in-bed
IRS dataset. We developed an IRS imaging system and collected IRS image data from several realistic life-
size mannequins in a simulated hospital room environment. A pre-trained CNN called convolutional pose
machine (CPM) was fine-tuned for in-bed pose estimation by re-training its specific intermediate layers.
Using the HOG rectification method, the pose estimation performance of CPM improved significantly by
26.4% in the probability of correct key-point (PCK) criteria at PCK0.1 compared to the model without such
rectification. Even testing with only well aligned in-bed pose images, our fine-tuned model still surpassed
the traditionally tuned CNN by another 16.6% increase in pose estimation accuracy.

INDEX TERMS Convolutional neural network (CNN), convolutional pose machine (CPM), histogram of
oriented gradient (HOG), in-bed pose estimation, infrared selective (IRS).

I. INTRODUCTION
Human in-bed pose and posture are important health-related
metrics with potential values in many medical applications
such as sleep monitoring. It is shown that sleeping pose
affects the symptoms of many diseases such as sleep apnea
[1], pressure ulcers [2], and even carpal tunnel syndrome [3].
Moreover, patients are usually required to maintain specific
poses after certain surgeries to get a better recovery result and
during pregnancy since certain sleeping postures can cause
harm to pregnant women and the fetus. Therefore, long-term

monitoring and automatically detecting in-bed poses are of
critical interest in healthcare [4].

Currently, besides self-reporting by patients and visual
inspection by the caregivers, in-bed pose estimation methods
mainly rely on the use of pressure mapping systems. Pouyan
et al. [5] extracted binary signatures from pressure images
obtained from a commercial pressure mat and used a binary
pattern matching technique for pose classification. The same
group also introduced a Gaussian mixture model (GMM)-
based clustering approach for concurrent pose classification
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and limb identification using pressure data [6]. Pictorial struc-
ture model of the body based on both appearance and spatial
information was employed to localize the body parts within
pressure images in [7]. The authors considered each part of
the human body as a vertex in a tree and found how well
the appearance of each body part matches its template as
well as how far the body parts deviate from their expected
respective locations. Finally, the best configuration of body
parts was selected by minimizing the total cost. Although
pressure mapping based methods are effective at localizing
areas of increased pressure and even automatically classi-
fying overall postures [6], the pressure sensing mats are
expensive (>$10K) and require frequent maintenance. These
obstacles have prevented pressure-based pose monitoring
solutions from achieving large-scale popularity.

By contrast, camera-based vision methods for human pose
estimation show great advantages including their low cost
and ease of maintenance. General purpose human pose esti-
mation has become an active area in computer vision and
surveillance research [8], [9]. The methods and algorithms
for pose estimation can be categorized into five categories:
(i) The classical articulated pose estimation model, which
is a pictorial structures model [10], [11]. It employs a
tree-structured graphical model to constrain the kinematic
relationship between body parts. However, it requires the
person to be visible and is prone to errors such as dou-
ble counting evidence. Some recent works have augmented
this structure by embedding flexible mixture of parts (FMP)
into the model [12], [13]. (ii) Hierarchical models, which
represent the body part in different scale in a hierarchi-
cal tree structure, where parts in larger scale can help to
localize small body parts [14], [15]. (iii) Non-tree models,
which augment the tree structure with additional edges to
capture the potential long range relationship between body
parts [16], [17]. (iv) Sequential prediction frameworks, which
learn the implicit spatial model directly from training pro-
cess [18], [19]. (v) Deep neural network based method usu-
ally in a convolutional neural network (CNN) configuration
[20], [21]. A recent CNN-based work, called convolutional
pose machine (CPM) employed multi-stage CNN structures
to estimate various human poses [22]. The CPMwas tested on
several well-recognized public datasets and promising results
were obtained in estimating general purpose poses.

Although our work focuses on in-bed pose estimation, due
to the use of camera for imaging instead of pressure mat, this
line of research is categorized under camera-based human
pose estimation [23]. It is sensible to assume that pre-trained
models on existing datasets of various human poses should
be able to address in-bed pose estimation as well. However,
it turned out that when it comes to pose monitoring and
estimation from individual in sleeping postures, there are
significant distinctions between two problems. Since in-bed
pose estimation is often based on a long-term monitoring
scenario, there will be notable differences in lighting con-
ditions throughout a day (with no light during sleep time),
which makes it challenging to keep uniform image quality

via classical methods. Moreover, if night vision technology is
employed to address this challenge, the color informationwill
be lost. Another difference is on the imaging angle, which for
in-bed applications is overview (bird’s-eye view) and subject
overall orientation will have a different distribution from a
common human surveillance viewpoint. For instance, it is
possible that human appears upside-down in an overview
image, but it is quite rare to see an upside-down human
from a side viewpoint. In addition, the similarity between the
background (bed sheets) and foreground (human clothing)
is magnified in in-bed applications. To the extent of our
knowledge, there is no existing work that has addressed these
issues. In addition, no specific in-bed human pose dataset has
been released to demonstrate and compare the possibilities
of employing existing models to serve for in-bed pose esti-
mation.

In this paper, we address the aforementioned challenges
and make the following contributions: (i) Developing an
infrared selective (IRS) image acquisition method to pro-
vide stable quality images under significant illumination
variations between day and night. (ii) Improving the pose
estimation performance of a pre-trained CPM model from
side viewpoint dataset by adding a 2-end histogram of ori-
ented gradient (HOG) orientation rectificationmethod, which
improved performance of the existing model over 26.4% on
our dataset. (iii) Proposing a fine-tuning strategy for inter-
mediate layers of CPM, which has surpassed the classical
model accuracy by 16.6% in detecting in-bed human poses.
(iv) Considering practical cases and embedded implementa-
tion requirements (e.g. to preserve privacy), an on-demand
trigger estimation framework is proposed to reduce compu-
tational cost. (v) Building an in-bed human pose dataset with
annotation from several realistic life-size mannequins with
clothing differing in color and texture in a simulated hospital
room via proposed IRS system. The dataset also includes a
semi-automated body part annotation tool.

II. METHODS
Most human pose estimation works exclusively address the
pose estimation when a human-contained bounding box
is given. Instead, our work presents a system level auto-
matic pipeline, which extracts information directly from raw
video sequence inputs, while containing all the related pre-
processing parts. An overview of our system is presented
in Fig. 1. In Section II-A, we first introduce the IRS acquisi-
tion method to address the lighting condition variation issue
during day and night. Then in Section II-B, we suggest the
n-end HOG rectification method to handle the unusual pose
distribution from overview angle. Section II-C describes on-
demand trigger mechanism, which provides on-demand pose
estimation. Finally in Section II-D, an example of general
purpose pose estimation models based on deep neural net-
works is repurposed for in-bed pose estimation.

In particular, we used convolutional pose machine (CPM)
as a pre-trained CNN [22]. We also employed a high per-
formance pictorial structure oriented method, called flexible
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FIGURE 1. Overview of our in-bed human pose estimation system. In-bed
images are collected from the proposed IRS system, then based on the
system user’s demand, pose estimation routine is triggered. Raw images
are first preprocessed by a rectification method to get rectified and then
fed into a fine-tuned pre-trained pose estimation model to produce pose
estimation results.

mixture of parts (FMP) during experimental analysis for
estimation accuracy comparison. The rational behind using
CPM and FMP is that these two algorithms represent two
typical frameworks for pose estimation, one is based on deep
learning, and the other is based on the pictorial structure, one
of the most classical pose estimation models. In the case of
CPM, to deal with the high-volume data requirement issue,
a fine-tuning strategy is also suggested, which is based on
training only a few specific layers rather than retraining the
whole network. Therefore, we were able to evaluate the pose
estimation accuracy of both models using our ‘‘shallow’’
in-bed dataset. We chose the term ‘‘shallow’’ to indicate
the differences between our IRS in-bed pose data and pub-
licly available general purpose pose data. These differences
include limited size of dataset, lack of color information, and
irregular orientation and poses that one may take while being
in bed.

A. INFRARED SELECTIVE (IRS) IMAGE
ACQUISITION SYSTEM
Available datasets for pose estimation are collected under
well illuminated environment and the subjects are visible
enough to be captured by regular cameras. However, in-bed
pose estimation requires to be conducted not only during
daytime but also during night time, which means to be func-
tional under a totally dark environment. Night vision cameras
are commercially available, however the resultant images
are significantly different than images from regular cameras,
which raises great challenges to the pose estimation methods.

1) IRS IMAGING SYSTEM IMPLEMENTATION
To address this issue, we developed an IRS image acquisition
method, which provides stable quality image under huge
illumination variation between day and night. The IRS imag-
ing benefits from the difference between human vision and
charge coupled device (CCD) cameras, which show different
sensitivity to the same spectrum. CCD cameras capture larger
range of spectrum beyond human capability, which makes
the visualization possible under dark environment to human.
Our system avoids the visible light spectrum, which ranges
from 400nm to 700nm, and selects the infrared spectrum

FIGURE 2. Infrared selective (IRS) acquisition method, (a) IRS
spectrum [24], (b) IRS hardware diagram.

ranging from 700nm to 1mm. Different from traditional night
vision cameras, which only employ the IR light to enhance the
lighting condition during night, we filter out the whole visible
light spectrum in order to make the image quality invariant
to lighting conditions, thus making robust performance esti-
mation possible. The IRS imaging process and the hardware
implementation are shown in Fig. 2a and Fig. 2b, respectively.

FIGURE 3. Image captured by normal webcam (a) with light on and
(b) with light off. The same images captured by IRS imaging system
(c) with light on and (d) with light off.

Fig. 3 shows the images captured by IRS system and a com-
paring pair from a normal webcam. It clearly demonstrates
that IRS system provides stable image quality under huge
illumination variations. This makes the night monitoring
possible without disturbing subjects during sleep. Another
advantage of using IRS imaging is it produces high contrast
foreground and background, which makes the segmentation
easier. In terms of the safety of our IRS imaging system, it is
proved that IR light is a non-ionizing radiation, which has
insufficient energy to produce any type of damage to human
tissue. Most common effect generated by IR is heating [25].
In our case, the visualization radiation is far below the dan-
gerous level due to its low power density.

2) NEW CHALLENGES FROM IRS
IRS provides a way for stable image acquisition for day long
monitoring, however the use of the IRS setup results in new
challenges. Fig. 3a and Fig. 3b show the images captured
from regular cameras with light on and off, respectively.
Fig. 3c and Fig. 3d show the images captured by our IRS
system the under same conditions. As you can see, the color
information is totally lost from this process and the purple
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color in the image Fig. 3d is resulted form filtering process.
To employ existing pose estimation models, we assumed this
false color as gray intensity information and replicated this
to three channels, what is the standard input format for most
pose estimation models. It is shown that the color information
is not trivial in pose estimation and its effect on pose estima-
tion accuracy is given in Section III-C.

Moreover, in-bed pose distribution under overview angle
will be different frommost public datasets collected from reg-
ular side viewpoint. Subjects can be commonly upside-down
in an overview image because of their in-bed orientation,
which is a rare case from a side viewpoint. This difference
is also not trivial during estimation process which is shown
in both models under our test (Section III-D). One example
is shown in Fig. 4 where we employed a pre-trained CPM
model to test the pose estimation accuracy of same image
in our dataset but with different orientations [22]. The result
showed notable differences between the image with portrait
orientation and the inverse one.

FIGURE 4. Convolutional pose machine (CPM) detection result of same
image with different orientations, sleeping position with the head (a) in
the top of the image, and (b) in the bottom of the image.

B. IN-BED POSE ORIENTATION DETECTION
Classically, subject orientation problem during pose estima-
tion is handled by data augmentation technique [26], which
artificially enlarge the pose dataset using label-preserving
transformations [27]. However, this technique often results in
an extensive re-training computational time. Assuming that
the chosen model is capable of capturing pose information
from side view, to utilize the model trained on a large dataset,
we present an orientation rectification method to re-align
the image to a similar position to training set. In order to
employ the pre-trained pose estimation models directly in
our application, here we present an n-end HOG rectification
method to minimize the image misalignment.

1) BOUNDING BOX DETECTION
We assume under usual home/hospital settings, beds are
aligned with one of the walls of the room. In the case of
cuboid rooms, this will result in four general categories of
in-bed orientations. Suppose the camera is correctly setup
to capture images with major axes approximately parallel to
the wall orientations. We define these four general in-bed

FIGURE 5. Bounding box extraction using (a) threshold method,
(b) binary image from thresholding, (c) the edge detection method,
(d) edge detected with the ’Sobel’ operator.

orientations as north, east, south, and west {N ,E, S,W }. The
first step to find the general in-bed orientation, is locating the
human-contained bounding box in the image. This could be a
computationally intensive process over multi-scale extensive
search for a common vision task. However in our case, due to
IRS imaging, foreground appears with high contrast from the
background, which makes the segmentation a straightforward
threshold-based algorithm.We further noticed that under IRS,
the foreground shows visible edges, in which the bounding
box can also be extracted from a classical edge detection
algorithm using the ’Sobel’ operator. The results of applying
these two methods are shown in Fig. 5. When there is no
disturbance at surroundings, the edge based bounding box
extraction will be more accurate to locate the boundaries.
However, threshold based method will be more robust to
the noise and a multiple scale search can be employed to
improve the results. Information associated with a bounding
box are B = {Bxc ,Byc ,Bw,Bh}, where Bxc ,Byc represent
the coordinate of the up-left corner, and Bw,Bh represent the
width and height of the bounding box, respectively. From the
bounding box width and height ratio, in-bed orientations are
first categorized into horizontal and vertical ones. To further
rectify the orientation, we apply an n-end HOG rectification
method as described below.

2) N-END HOG POSE RECTIFICATION METHOD
HOG features were first employed for pedestrian detec-
tion [28], which captured the localized portion features by
estimating the local gradient orientation statistics. These fea-
tures show the benefit of being invariant to the geometric
and photometric transformations. Since all the horizontally-
orientated images can be detected based on the Bw/Bh and
rotated back into vertical ones, here the classification is
between upside-down images vs. portrait ones, all in vertical
cases. As upper and lower body parts show clear differ-
ences in their overall geometry, we captured information from
large scale patches instead of small grids. Therefore, unlike
extracting HOG features on dense grid, we only extracted
HOG features on sparse locations. To form HOG features in
this way, two information is needed. One is HOG descriptor
parameters and the other is interest points’ locations, where
HOG operator to be applied at.
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For HOG parameters, we employed a 2 × 2 cell structure
for each block to capture overall information. The block size
is determined by the size of the estimated bounding box
as lblock = min(B̄w, B̄h), where B̄w and B̄h represent the
average of width and height of the bounding boxes in images
from our IRS dataset, respectively. In practice, the average
bounding box information can be achieved by a short period
of initial monitoring. Consequently, the cell size is lcell =
lblock/2. For long-term in-bed monitoring applications, once
set up, the scale information would stay the same during the
monitoring time.

For interesting points’ locations, we assumed Bw < Bh
and the coordination of the first and last interesting points are
given as:

Chog(1) = (Bxc + lblock/2,Byc + lblock/2)
Chog(n) = (Bxc + lblock ,Byc + Bh − lblock/2) (1)

where n is an integer stands for the total number of interesting
points, and Chog(n) is the center of the n-th HOG descrip-
tors. Once the two end interesting point coordination are
achieved, other interesting point can be extracted from linear
interpolation from them. In our case, we chose n = 2 and
2-end HOG features are generated as shown in Fig. 6(a)(b).
Extracted HOG features from the interest points are cascaded
in top to bottom order into HOG feature vector, f2e. A support
vector machine (SVM) model is then employed as binary
classifier on extracted HOG features to give prediction result
from orientation categories of {N , 6= N }.We assign this result
to an indicator bitN . Another indicator bitH comes from the
bounding box to show if the subject is horizontal or vertical.
The final orientation is decoded from the encoding rule that
assigns different bitH and bitN to the four orientation cate-
gories. This process automatically forms a two-layer decision
tree as shown in Algorithm. 1.

FIGURE 6. 2-end HOG feature extraction and random lying direction
rectification by minimal-area encasing rectangle detection, (a) candidate
HOG center locations, (b) HOG features extracted from the candidate
locations, (c) rectify longer edge to vertical direction, (d) correct
rectification, (e) upside down rectification.

3) GENERAL ORIENTATION RECTIFICATION
In the cases that the bed is in a random orientation layout,
it is not possible to represent the general lying direction
in only 4 categories. Instead, we first employ the minimal-
area encasing rectangle algorithm to find a tight bounding
box [29]. The principle direction of the bounding box is
found from the longer edge and then the image is aligned

Algorithm 1 2-End HOG Rectification Method
Input: Image I
Result: General in-bed orientation from {N ,E, S,W },

reclined portrait image
Initialization;
Edge detection on I , output Ibw;
Bounding box extraction from Ibw;
Calculate Bw/Bh;
if Bw/Bh > 1 then

Subject has a horizontal in-bed orientation,
bitH = 1; Rotate original image to vertical in-bed
orientation I = Rotate(I , -90o);

else
Subject has a vertical in-bed orientation, bitH = 0;

end
2-end HOG extraction to form vector f2e;
Get orientation from the SVM classification;
if N then

bitN = 1;
else

bitN = 0;
end
Predict in-bed orientation from encoding table.
Rectify image I to N category.

to the vertical direction as shown in Fig. 6(c)(d). However,
this algorithm can only rectify the image to a general vertical
layout, yet the upside down case still exists as demonstrated
in Fig. 6(e). After this initial rectification, the up or down
decision comes out to be a binary classification which falls
back to our N-end HOG pose rectification method.

C. ON-DEMAND TRIGGER FOR POSE ESTIMATION
Typical applications of in-bed pose estimation are overnight
sleep monitoring and long-term monitoring of bed-bound
patients. In these cases, human on the bed is often less
physically active or even totally immobile. Therefore, we can
reasonably hold the following hypothesis: ‘‘when the scene is
stable, the human pose stays the same.’’ This means that we
only need to estimate the pose after each variation in the scene
rather than continuously process the video, frame by frame.
In this scenario, we propose an on-demand estimation trigger
scheme to reduce the computational and power cost of our
pose estimation algorithm. This power efficiency is crucial
for patient’s privacy reasons, since it enables us to build an
in-situ embedded pose processing system rather than sending
all raw videos of the patient during his/her sleep to a base-
station for further processing.

Since this process is conducted in an indoor environment,
a threshold-based method is used to detect foreground varia-
tions. The pose estimation process then is triggered when the
scene recover from the variation. Suppose the current state
is Scur ∈ {0, 1} and previous state is Spre, where 1 stands
for a dynamic scene and 0 stands for a static one. To get

4900112 VOLUME 7, 2019



S. Liu et al.: In-Bed Pose Estimation: Deep Learning With Shallow Dataset

the state value, we make a difference operation by adjacent
video frames. If this difference is greater than a threshold,
it is assumed to be a dynamic frame, otherwise a static one.
When in-bed pose changes, it could be caused by the subject
herself or the caregiver. Based on the speed of reposition-
ing, the process possibly contains piece-wise static periods.
To suppress this false static state, we employed a backward
window Wbf of size Nbf to filter the raw state result. The
filtered state Ŝcur is 0 only when all states in the backward
window show static states, otherwise it is 1. This operation
as shown in Algorithm. 2 is designed to favor dynamic states
and guarantees a gap between static states if short disturbance
occurs between them.

Algorithm 2 On-Demand Pose Estimation Trigger
Input: Video stream I
Result: Trigger pose estimation process
Initialization;
while new frame do

Get difference of adjacent frames
UpdateWbf
if max (Wbf ) == 1 then

Ŝcur = 1
else

Ŝcur = 0
end
if Ŝcur - Ŝpre < 0 then

Trigger pose estimation process
end
Ŝpre = Ŝcur

end

D. FINE-TUNING CPM FOR IN-BED POSE ESTIMATION
Even with larger orientation possibilities and full loss of color
information, in-bed human poses still share great similarities
with ones taken from side views. We believe a well-trained
general purpose pose estimation model is still able to capture
body parts’ features and kinematic constraints between them.
In this work, a recent CNN-based pose estimation approach,
called convolutional pose machine (CPM) is employed as a
pre-trained pose estimation model [22]. CPM employs multi-
stage structure to estimate human pose, in which each stage
is a multi-layer CNN. Each stage takes in not only the image
features, but also previous stage’s belief map results as input.
The final stage outputs the final estimation results, which are
the 14 key joints’ coordinates in image domain that include
left and right (L/R) ankles, L/R knees, L/R hips, L/R wrists,
L/R elbows, L/R shoulders, top of the head and neck. In the
original work that introduced CPM [22], CPM with 6 stages
has shown promising estimation results on large scale dataset
such as MPII [30], LSP [31] and FLIC [32]. However, for
a new query image, manual intervention was still required
to indicate the exact bounding box of the human in the
scene.

Due to the IRS imaging system and 2-end HOG method,
our proposed method is able to accurately locate the human-
contained bounding box and efficiently rectify the image ori-
entation, which drastically save the cost of extensive search
across multi-scale image pyramid. These properties provide a
more efficient way to directly apply pre-trained CNN model
on an in-bed pose dataset. Furthermore, in order to adapt to
the input layer dimension of the pre-trained model, each input
image is amplified into three channels, which share the same
intensity value.

FIGURE 7. Fine-tuning configurations: green block indicates the layers for
training (a) MANNE-S6: fine-tuning only the last layer before output,
(b) MANNE-AS: fine-tuning last layers of all stages, (c)
MANNE-AS-S2C3-#: fine-tuning last layers of all stages as well as the
3rd convolutional layer of stage 2 with # number of iterations.

When available dataset is limited in size, such as our
IRS in-bed pose data, it is a golden rule to fine-tune the
deep neural network model with only fully connected lay-
ers or the last layer [33]. However, based on the multi-stage
configuration of the CPM, other fine-tuning approaches can
also be applied. In this work, three fine-tuning strategies are
proposed, which are illustrated in Fig. 7. First strategy, called
MANNE-S6 takes the convention to train the very last layer
before output or fully connected layer [33]. Due to the CPM’s
special configuration with multiple stages, in the second
configuration, we train the last layer of each stage, which
is called MANNE-AS. We also notice that there is a shared
layer in CPM structure, which is the 3rd convolutional layer
located in stage 2. Therefore, in third strategy, we further put
this layer under training. This strategy is called MANNE-
AS-S2C3-200, when it is trained with 200 iterations, and
is called MANNE-AS-S2C3-2000, when it is trained with
2000 iterations. More iterations will enhance the probability
of capturing more training samples’ patterns and tuning the
model weights to more representative values. Without any
fine-tuning, the pre-trained CPM model using MPII and LSP
dataset is called MPII-LSP.

To compare the effectiveness of the deep learning against
other non-deep models when our IRS in-bed pose dataset is
used, we employed a recently proposed pictorial structure
oriented model with flexible mixtures of parts (FMP) [34],
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which has also shown great general purpose pose estimation
performance on small scale human pose datasets such as
PARSE [12] and BUFFY [13].

III. EXPERIMENTAL SETUP AND ANALYSIS
A. BUILDING AN IN-BED POSE DATASET
Although there are several public human pose datasets avail-
able such as MPII [32], LSP [30], FLIC [31], Buffy [35],
they are all mainly from scenes such as sports, TV shows,
and other daily activities. None of them provides any specific
in-bed poses. To fill this gap, we crafted an image acquisition
system based on an IRS configuration and collected IRS data
from one male and one female realistic life-size mannequins
in a simulated hospital room at the Health Science Depart-
ment of Northeastern University.

FIGURE 8. Mannequin pose dataset collected in a simulated hospital
room. First row images show the raw image collected via IRS system.
Second row shows manually annotation pose results of first row images.

Using mannequins gave us the option to collect images
from different in-bed postures (supine, left side lying, and
right side lying) by changing their poses with high gran-
ularity. Limited by the number of available mannequins,
we collected data from the mannequins with different clothes,
mainly different color/texture hospital gowns. We totally col-
lected 419 poses, some of which are shown in Fig. 8. For
comparison purpose, a color edition in-bed pose dataset is
also established under the same setting but with an overview
normal webcam. Some samples of the colored in-bed pose
dataset is shown in Fig. 9. A semi-automated tool for human
pose annotation is designed in MATLAB, in which the
joint indices follow the LSP convention [30], as shown in
Fig. 8(g) to (l). The GUI of this tool (GitHub code available)
provides the convenience to label join locations and visibility
in a semi-automated way.

B. POSE ESTIMATION PERFORMANCE MEASURE
Throughout the result section, probability of correct
keypoint (PCK) criteria is employed for pose estima-
tion performance evaluation, which is the measure of

FIGURE 9. Annotated mannequin pose samples collected via webcam
system in a simulated hospital room.

joint localization accuracy [34]. The distance between the
estimated joint position and the ground-truth position is
compared against a threshold defined as fraction of the
person’s torso length, where torso length is defined as the
distance between person’s left shoulder and right hip [30]. For
instance, PCK0.1metricmeans the estimation is correct when
the distance between the estimated joint position and the
ground-truth position is less than 10% of the person’s torso
length. This is usually considered a high precision regime. For
the experimental analysis, we illustrate the pose estimation
results of different models for the body part categories of total
(all body parts), hip, knee, ankle, head, shoulder, elbow, and
wrist by combining the estimation results of left and right
corresponding limbs.

C. DOES COLOR INFORMATION MATTER?
One obvious difference between the IRS in-bed dataset and
the publicly available general purpose datasets is the loss
of color information. To investigate the influence of color
loss on pre-trained models, we employed a pre-trained CPM
model (trained on MPII and LSP dataset) to estimate poses
of our mannequin dataset collected using IRS imaging and
a normal webcam, respectively. To exclude the influence of
unusual orientation, we only compare these two datasets from
portrait image angle. To show the general effect of color loss
on other pre-trained models, an FMP model is also evaluated
under the same setting.

As shown in Fig. 10, both pre-trained models show better
result on colored dataset than its black and white (BW) coun-
terpart. Improvements from color information bring much
more improvement in CPM than FMP. It shows color infor-
mation is important in both models and is more helpful in
CNN framework. In overall performance, the CPM gives
better result. Even its performance on BW edition surpasses
the FMP color edition. These results once more clarify our
rationale for choosing a CNN based framework as the main
pre-trained model for in-bed pose estimation. Another specu-
lation is that whether or not the IRS dataset is just a gray-scale
version of RGB camera. To clarify this question, we trained
the CPM from scratch with gray-scale versions of the MPII-
LSP dataset with 70000 iterations. The test results for this
model are also presented in Fig. 10, which shows that the
CPM model trained on gray-scale MPII-LSP dataset shows
similar performance to the pre-trained CPM on original
MPII-LSP dataset, yet not as good as the model fine-tuned
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FIGURE 10. Quantitative posture estimation result with different IRS mannequin black and white dataset and webcam mannequin color dataset via
MPII-LSP pre-trained CPM model, CPM model pre-trained on gray-scale version of MPII-LSP and FMP model. All images are in the portrait view similar
to the general purpose view point common in the MPII and LSP datasets to exclude the in-bed orientation factor.

FIGURE 11. Quantitative posture estimation result via MPII-LSP pre-trained CPM model on different in-bed orientation images as well as their 2-end
HOG rectified version.

on the IRS version (see Fig. 12). Such difference in pose
estimation accuracy could come from the facts that: (1) the
pose distribution is different between the humans lying on
bed and humans during their daily normal activities, and/or
(2) although presented as an intensity image, the IRS image
distribution is different from the gray-scale version of its
RGB image counterpart. This could caused by the differ-
ences in the physics of imaging when using IR vs. visible
light.

D. UNUSUAL ORIENTATION HANDLING
To handle the unusual orientation resulted from overview
camera angle, a 2-end HOG rectification method was
employed. We evaluated the effectiveness of the process in
two phases. In the first phase, we tested the accuracy of 2-end
HOG orientation detection and rectification method. We aug-
mented our IRS in-bed pose dataset by synthesizing and
adding several in-bed orientations in {N ,E, S,W } general
categories for each image. bitH and bitN were obtained for
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FIGURE 12. Quantitative posture estimation result with different fine-tuning strategies as shown in Fig. 7. MPII-LSP stands for the original pre-trained
CPM model from MPII and LSP dataset. MANNE-S6 stands for model only fine turned on the last layer of final stage. MANNE-AS stands for the model
fine turned with last layers of all stages. MANNE-AS-S2C3-200 and MANNE-AS-S2C3-2000 stand for the model fine turned with last layers of all stages
and the 3rd convolutional layer in stage 2 after 200 and 2000 iterations, respectively.

a given image in dataset based on Bw/Bh and the results of
the SVM classifier as explained in Algorithm. 1. Using a 10-
fold cross validation scheme, 99% accuracy in the general
orientation detection was achieved. To further evaluate the
performance of our proposed method in estimating general
lying orientations, we regenerated our test dataset with all
possible lying orientations and tested our method on them.
As the bounding box realignment can be easily realigned the
subject to the near vertical layout, the error only comes from
the 2-end HOG alignment process and it was 4% (i.e. 2 cases
of alignment error out of 49 random orientation samples).

In the second phase, to further evaluate the pose estima-
tion performance on unusually oriented images (belonging
to {E, S,W } categories) vs. rectified images (all re-aligned
to {N } position), we employed a pre-trained CPM model
from MPII [30] and LSP [31] dataset and also the flexible
of parts (FMP) model [34] as our pose estimation models.
We then divided our IRS in-bed pose dataset into two sub-
sets: 370 images for training and 49 for test and used PCK
metric for performance evaluation, as suggested in [31]. The
estimation performance on images belonging to {E, S,W }
in-bed orientations categories is compared to the portrait
images after 2-end HOG rectification and the results are
shown in Fig. 11. These results demonstrate that in-bed orien-
tation significantly affects the pose estimation accuracy and
our proposed 2-endHOG rectificationmethod boosts the esti-
mation performance by a large margin for both CNN based
and pictorial structure based models. Our method shows
promising to act as a generic purpose tool to enhance the
performance of pre-trained models for in-bed case.

E. FINE-TUNING OF A DEEP MODEL
To further improve the performance of our chosen neural
network model, the MPII-LSP pre-trained CPM, we per-
formed fine-tuning with different configurations as shown
in Fig. 7. We trained all three proposed configurations with
small iteration (=200) with batch size of 16. Fig. 12 shows the
performance of CPMmodel after different fine-tuning strate-
gies compared to the original pre-trained CPM. Our third
fine-tuning configuration, MANNE-AS-S2C3-200, showed
the highest estimation performance when compared to the
traditional fine-tuning approach. When the iteration number
was increased to 2000 for the third configuration, it further
improved the estimation results.

In 200 iteration training test, MANNE-S6 does not show
improvement over original model, however our proposed
strategy, MANNE-AS-S2C3-200 shows clear improvement
after 200 iterations in all body parts except the head
part. MANNE-AS-S2C3-200 model shows improvement at
PCK0.1, however falls behind at PCK0.2. It means the model
either gives accurate answer for the head location or drifts
far away from the correct location. This may come from
the fact that the head part depends more on local image
features. This drawback however is resolved after more
iterations. Our final fine-tuned model MANNE-AS-S2C3-
2000 surpassed the original pre-trained CPM MPII-LSP and
also the traditional fine-tuned model MANNE-S6 by nearly
20% at PCK0.2 criterion. One sample of an estimation belief
map is shown in Fig. 13. We hypothesize that the success
of MANNE-AS-S2C3-2000 is due to the fact that its first
3 layers are reused in all the following stages, which means
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TABLE 1. Pose estimation accuracy in PCK0.2 standard using FMP, pre-trained CPM, and our fine-tuned CPM model.

FIGURE 13. Human pose estimation result with our
MANNE-AS-S2C3-2000 model. (a)-(n) estimated belief map of head, neck,
right shoulder, right elbow, right wrist, left shoulder, left elbow, left wrist,
right hip, right knee, right ankle, left hip, left knee, and left ankle, (o)
background belief map, and (p) pose visualization.

FIGURE 14. PCK0.2 on test set against training iterations and on-demand
triggering. (a) PCK0.2 on test set performance against training iterations,
(b) on-demand state estimation trigger result.

it has larger influence on the final output, and the outcome
performances validate this hypothesis.

It is worth mentioning that further extending iterations did
not improve the accuracy in this experiment. The evaluation
of metric PCK0.2 on our test set across iterations from 200 to
3000 is shown in Fig. 14(a). We can see that the accuracy
converges to a performance with 1% error range without
further improvement over extended training sessions while
the model at 2000 iterations shows slightly better than its
following successors.

Here, we also present and compare the results of pose esti-
mation using a classical framework against the deep neural
network model. We employed a recent augmented pictorial
structure based method with flexible mixture of parts (FMP),
which showed best pose estimation performance on PARSE
dataset [12] at that time and comparable performance to
the state-of-the-art non-deep leaning methods [34], [36].
We compared the model performance of our fine-tuned CPM
model, pre-trained CPM with MPII-LSP dataset, and the
FMP model on orientation rectified IRS dataset to exclude

the orientation factors in test result which is shown in Fig. 15.
Our fine-tuned model shows advantages in total accuracy
across all PCK standards. However surprisingly, trained only
on a small dataset, FMP surpasses the CPM performance in
all upper body parts’ estimation in a high precision regime
(PCK0.1) and slightly inferior in the low precision regime
(PCK0.2) for head detection. This result once more empha-
sizes the importance of color information in the CPM model.
Instead, FMP essentially employs the HOG features, which
highly depend on image gradients. This is the reason that
FMP surpasses the pre-trained CPM in several body parts’
estimation. For example, the head, shoulder, and elbow show
obvious shape features compared to other body parts, which
is more easily captured by the HOG descriptors than the
color information. The quantitative result of PCK0.2 is shown
in Table 1 and our fine-tuned model surpasses the second best
model by 19.6%.

F. ON-DEMAND ESTIMATION TRIGGER
To validate the effectiveness of our on-demand trigger
pipeline, we video monitored a mannequin on bed via using
IRS system. In this video, we mimicked a practical scenario,
where hospital bed is moved around and kept in place for
a while after each relocation. In this process, mannequin
was located in different in-bed orientations as part of the
{N ,E, S,W } general categories, defined in Section II-B.
We simulated 4 times relocation in the video and each stable
period in between lasted approximately 6–8 seconds, which
is enough for our algorithm to distinguish the static states
(S = 0) from the dynamic states (S = 1). The pose
estimation algorithm is triggered only at each falling edge,
when S transits from 1 to 0, and not frame by frame.
To generate the the ground-truth label for the video,

we replayed the video and annotated the start and end points
of the dynamic states manually by recording their frame
index. Our on-demand trigger method is also applied on
this video with backward window Wbf of size Nbf = 30.
As the test video has a frame rate of 11.28 frame/s, this
window is approximately 2.66s. Fig. 14(b) shows our state
estimation results against the ground-truth and the trigger
signal to initiate the estimation pipeline. It shows that our
algorithm is successful in triggering the estimation after
each dynamic to static state transition. There is a slight lag
between our trigger and ground-truth label due to the use
of backward window of size 2.66s. In practice, caregivers in
nursing homes and hospitals usually perform posture repo-
sitioning for pressure re-distribution on a regular basis to
prevent bed born complications such as pressure ulcers [37].
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FIGURE 15. Quantitative posture estimation result with different pre-trained general purpose pose detection models against our fine-tuned model on
the rectified IRS in-bed pose images.

Considering a recommended 2-hour interval between reposi-
tioning, even 10 seconds lag can only result in 0.12% infor-
mation loss and the loss caused by our lag is much smaller.

IV. DISCUSSION AND FUTURE WORK
In this work, we have presented a comprehensive system to
estimate in-bed human poses and address the challenges asso-
ciated with this specific pose estimation problem. The issue
of huge lighting variations for this application is addressed
by our proposed IRS imaging system. The image differences
between the overview angle used for human in-bed monitor-
ing and the side angle often used in available human pose
datasets is handled by our proposed 2-end HOG rectification
method, which effectively improve the performance of exist-
ing pose estimation models for irregular poses. In CV appli-
cations, this issue is usually handled by extensively augment-
ing the dataset to cover all possible orientations. However,
our rectification method avoids the time/memory expense
of retraining the whole network by this preprocessing steps.
Without a large dataset, retraining a deep neural network from
scratch is not feasible. In this paper, we explored the idea of
using a shallow (limited in size and different in perspective
and color) dataset collected from in-bed poses to fine-tune
a CNN, which was pre-trained on general human poses.
We showed that classical fine-tuning principle is not always
effective and the network architecture matters. For the spe-
cific CNN, the CPM model, our proposed fine-tuning model
demonstrated clear improvement over the classical one.

The problem of in-bed pose estimation still has other
challenges that remain. The main one is the high probabil-
ity of being covered by a sheet or blanket while on bed.
In fact, vision-based methods would no longer be functional
in this case. Other sensing modalities may provide other

forms of indication for pose inference, however it is less
likely to be able to retrieve color information from those
modalities. In this respect, this work is also a pilot study
for pose estimation under information loss. In future work,
we plan to address this issue by employing other sensing
modalities to complement vision information. Test on real
human data is also anticipated in our next step.
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