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Abstract

Lignocellulosic biomass is an abundant and renewable resource for biofuels and bio-based

chemicals. Vanillin is one of the major phenolic inhibitors in biomass production using ligno-

cellulose. To assess the response of Corynebacterium glutamicum to vanillin stress, we

performed a global transcriptional response analysis. The transcriptional data showed that

the vanillin stress not only affected the genes involved in degradation of vanillin, but also dif-

ferentially regulated several genes related to the stress response, ribosome/translation,

protein secretion, and the cell envelope. Moreover, deletion of the sigH or msrA gene in C.

glutamicum resulted in a decrease in cell viability under vanillin stress. These insights will

promote further engineering of model industrial strains, with enhanced tolerance or degra-

dation ability to vanillin to enable suitable production of biofuels and bio-based chemicals

from lignocellulosic biomass.

Introduction

As a kind of new and renewable energy resources, biomass energy has rich reserves in the
world [1]. The utilization of biomass energy provides a new option to cope with energy crisis
that people faced to in the near future [2]. As important biomass energy resources, lignocellu-
lose materials are potential sources for biofuels and other bio-based chemicals production [1–
5]. At present, before these materials being applied into industrial production in a large scale, a
series of problems need to be solved. One of those problems is that certain by-products (such
as furan derivatives, weak acids, and phenolic compounds) showed up after the pretreatment
of lignocellulose,which inhibit growth and fermentation of the industrial strains [6]. Vanillin
is considered as one of the major inhibitors of phenolic compounds from pretreatment of
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lignocellulose, because it inhibits fermentation of microorganisms at very low concentrations
[7]. So the studies on the tolerance and degradation to vanillin for robust strains become very
important.

As a Gram-positive bacteriumwith high G+C content, Corynebacterium glutamicum is tra-
ditionally well known as a workhorse for the industrial production of various amino acids, and
recent studies also explored it as production platforms for various chemicals, materials and
fuels, such as the bio-based butanol and ethanol, the diamines cadaverine and putrescine, the
sugar alcohol xylitol, gamma-amino butyric acid, polyhydroxybutyrate, pyruvate, lactate,
2-ketoisovalerate, 2-ketoglutarate and succinate [8, 9]. C. glutamicum is able to utilize a large
number of lignocellulosicmaterials derived aromatic compounds (such as vanillin, ferulic acid,
phenol, benzoate, 4-hydroxybenzoate, 4-cresol, resorcinol, benzyl alcohol, 2,4-dihydroxy-
benzoate, 3,5-dihydroxytoluene, etc.) for growth [10–17]. The extraordinary capability of C.
glutamicum in assimilation of aromatic compounds as an alternative source to sugars makes it
a unique advantage in utilizing lignocellulosic hydrolysates as sustainable resources in indus-
trial fermentation [16].

Studies on the capability of microbe to detoxify and assimilate the vanillin as the carbon and
energy resource had been taken in recent years [18, 19]. Genes involved in degradation of van-
illin have been identified in C. glutamicum: vdh [16], vanABK [11] and pcaHGBC [13] gene
clusters. However, although the inhibition of vanillin to several kinds of microorganisms
(including yeast species,Aspergillus species, Escherichia coli, Lactobacillus plantarum, and Lis-
teria innocua) [20, 21] has been evaluated, the adaption and tolerance to vanillin in C. glutami-
cum have not been investigated. Therefore, in this study, microarray analysis of the response of
C. glutamicum to vanillin was conducted. Our work provides new insights into cellular
response to vanillin stress that could be used to explore C. glutamicum as an efficient industry
strain to convert sustainable lignocellulose to biofuels and bio-based chemicals in the future.

Materials and Methods

Bacterial strains and culture conditions

Bacterial strains and plasmids used in this study are listed in S1 Table. E. coli were grown aero-
bically on a rotary shaker (220 rpm) at 37°C in Luria-Bertani (LB) broth or on LB plates with
1.5% (wt/vol) agar. C. glutamicum strains were routinely grown in LB medium or in mineral
salts medium supplemented with 0.05 g l-1 of yeast extract to meet the requirement of vitamins
for the strains on a rotary shaker at 30°C [10]. Plasmid pXMJ19 was transformed into C. gluta-
micum RES167 wild type (WT), a restriction-deficient strain derived from C. glutamicum
strain ATCC 13032, by electroporation for construction of WT(pXMJ19). For electroporation
of C. glutamicum, brain heart broth with 0.5 M sorbitol (BHIS) medium was used. Cell growth
was monitored by measuring absorbance at 600 nm (A600). Antibiotics were added at the fol-
lowing concentrations when needed: kanamycin, 50 μg ml-1 for E. coli and 25 μg ml-1 for C. glu-
tamicum; nalidixic acid, 40 μg ml-1 for C. glutamicum; chloramphenicol, 20 μg ml-1 for E. coli
and 10 μg ml-1 for C. glutamicum [22].

Sensitivity Assays to vanillin

To test the susceptibility of C. glutamicum strains to vanillin, overnight cell cultures were
diluted 100-fold with fresh LB medium and exposed to 90 mM vanillin for 40 min at 30°C with
shaking. The cultures were serially diluted and plated onto LB agar plates and then the survival
percentage was calculated as [(CFU ml-1 with stress)/(CFU ml-1 without stress)]×100 [23, 24].
All assays were performed in triplicate.
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Measurement of intracellular reactive oxygen species (ROS) levels

Intracellular ROS levels were measured using the fluorogenic probe 2’,7’-dichlorofluorescein
diacetate (DCFH-DA) as described [25, 26], with the following modifications. Cells grown aer-
obically (OD600 = 1.6) were collected, washed and resuspended in PBS (pH 7.4) prior to prein-
cubation with 2 μM DCFH-DA at 28°C for 20 min. Vanillin at indicated concentrations were
added to these mixtures and incubated for another 40 min. After that, cells were washed two
times with PBS, centrifuged, and resuspended in PBS. The fluorescence intensity was measured
using a spectro-max spectrofluorimeter (excitation, 495 nm; emission, 521 nm).

Validation of Microarray data by quantative real-time PCR (qRT-PCR)

The expression levels of 12 representative genes were examined by qRT-PCR to validate the
microarry data. The primers for qRT-PCR were designed using Primer 5 (S2 Table). The
cDNA synthesis was conducted using PrimeScript RT reagent Kit with gDNA Eraser (TaKaRa,
Japan). qRT-PCR was conducted on BioRad CFX96 Real-Time System using SYBR Premix Ex
Taq (TaKaRa). For each gene/sample combination, three replicate reactions were carried out.
In addition, the 16 S rDNA gene was chosen as a reference gene. The qRT-PCR results were
processed by “Bio-Rad CFX Manager 3.1” and gene expression ratios from the qRT-PCR were
log2 transformed.

Microarray experiments

The C. glutamicum DNA microarrays were custom-designed using the Agilent eArray 5.0 pro-
gram according to the manufacturer’s recommendations (Agilent Technologies, Santa Clara,
CA, US). The chip specificationwas 8×15K (design ID: 045822). Samples were collected during
the mid-logarithmic growth phase in minimal medium with added glucose (control sample
100 mM) or vanillin as the sole carbon source (3 mM), respectively. Total RNA was extracted
using TRIzol Reagent (Life Technologies, Carlsbad, CA, USA). Total RNA was amplified and
labeled using the Low Input Quick Amp Labeling Kit, Two-Color (Agilent Technologies).
Labeled cRNAs were purified using an RNeasy mini kit (Qiagen, GmBH, Germany). Each slide
was hybridized with 300 ng Cy3/Cy5-labeled cRNA using the Gene Expression Hybridization
Kit (Agilent Technologies) in a hybridization oven (Agilent Technologies). After 17 h of
hybridization, slides were washed in staining dishes (Thermo Shandon, Waltham, MA, US)
with a Gene Expression Wash Buffer Kit (Agilent Technologies). Slides were scanned using an
Agilent Microarray Scanner (Agilent Technologies) with the default settings: dye channel, red
& green; scan resolution, 5 μm; 16-bit. Data were extracted using the Feature Extraction soft-
ware version 10.7 (Agilent Technologies). Raw data were normalized using Lowess (locally
weighted scatter plot smoothing) algorithm in the Gene Spring Software version 11.0 (Agilent
Technologies). Experiments were repeated four biological replicates in each condition. Differ-
entially expressed genes were selectedwith p<0.01 by T-test methods. The fold changes of dif-
ferentially expressed genes were log2 transformed. The microarray data has been deposited in
NCBI Gene Expression Omnibus (GEO) database (accession number: GSE85949).

Results and Discussions

Overview of microarray analysis

Gene expression patterns were assessed in the presence of vanillin and glucose as the sole carbon
sources. To identify differentially expressed genes, bacteria in the mid-logarithmic growth phase
were harvested for RNA extraction (S1 Fig) and furthermicroarray experiment (hybridizations).
The global analysis of differentially expressed genes was visualized by heat map (Fig 1). A total of
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Fig 1. Microarray heat map of differential transcription of genes involved in response of C. glutamicum to vanillin. Heat

map was generated using R program (version:i386 3.2.3). Red and green indicated lower or higher expression, respectively.

doi:10.1371/journal.pone.0164955.g001

Response of Corynebacterium glutamicum to Vanillin

PLOS ONE | DOI:10.1371/journal.pone.0164955 October 19, 2016 4 / 16



261 genes were up-regulated and 253 down-regulated. qRT-PCR of 12 representative genes was
used to verify the microarray data. The log2-transformedmean values of qRT-PCR from three
biological replicates for each gene were conformable to the log2-transformed fold changes of
microarray data from four biological replicates in the microarray data (Fig 2).

Further analysis of microarray data

We next identified the functions of the differentially expressed genes by Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis (Figs 3 and 4). Four kinds of pathways were
interested to us: degradation of aromatic compounds, biosynthesis of amino acids, ribosome
and bacterial secretion system.
Differentially expressed genes related to vanillin degradation. The vanillin generated by

lignocellulosepretreatment can influence the growth and reduce production of microbial cells.
However, bacteria such as C. glutamicum can adapt to the presence of this compound and uti-
lize it as the sole carbon and energy source for growth [13]. C. glutamicum cells can survive by
degrading vanillin, therefore, this degradation pathway was evaluated.

Our microarray data showed that vanA and vanB were up-regulated (Table 1). vanK, a
major facilitator superfamily permeasewas up-regulated. Interestingly, vanR, a regulator to
vanABK was up-regulated. But it was reported that VanR negatively regulates expression of the
vanABK genes [27]. According to the previous study, vanR is transcribed leaderless [27], so

Fig 2. Validation of microarray results by qRT-PCR. Twelve representative genes were evaluated for validation

of the microarray data using qRT-PCR. White bars show the mean log2-transformed fold changes of qRT-PCR

from three biological replicates; Black bars represent the mean log2-transformed fold changes of microarray data

from four biological replicates, and error bars indicate the standard deviations.

doi:10.1371/journal.pone.0164955.g002
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generally the expression of vanR does not have great change on different situation. Neverthe-
less, the direct interaction of VanR with its effector vanillate, generated from degradation of
vanillin, leaded to the deactivation of VanR [27], which may be the reason for the 1.2 fold
change of vanR expression in our experiment. However, the vanABK genes were all up-regu-
lated signally in the presence of 3 mM vanillin, which indicated the vanillin was catalyzed, and
expression of vanABK genes was not fully inhabited by VanR.
vanAB, which encodes vanillate demethylase, catalyzes the conversion of vanillate to proto-

catechuate [11]. pcaH, which encodes one subunit of protocatechuate 3,4-dioxygenase was up-
regulated (Table 1). This enzyme catalyzes conversion of protocatechuate to β-carboxy-cis, cis-
muconate by a ring-cleavage reaction [13]. pcaB, which encodes β-carboxy-cis, cis-muconate
cycloisomerasewas up-regulated and pcaC which encodes γ-carboxymuconolactone decarbox-
ylase was up-regulated. These two enzymes above catalyze conversion of β-carboxy-cis, cis-
muconate to β-ketoadipate enol-lactone [13]. Therefore, according to transcriptome-level data,
C. glutamicum was capable of degrading vanillin.
Differentially expressed genes related to the stress response. The extracytoplasmic func-

tion (ECF) σ factors have been identified in many species, and its regulation mechanisms had
been studied in recent studies [28, 29]. C. glutamicum ATCC13032 has seven σ factor-encoding
genes: sigA, sigB, sigC, sigD, sigE, sigH, and sigM [28, 30]. And sigH has been reported to take
part in the heat stress or oxidative stress and regulate functional protein expressions to cope
with stress conditions [28]. From our transcriptome data, sigH was up-regulated by vanillin
stress (Table 2). Moreover, the sigHmutant was more sensitive to vanillin stress (90 mM) than
was the WT strain, while the complemented strain had a survival rate similar to that of the WT
(Fig 5).

Fig 3. KEGG pathway analysis of differentially expressed genes. Summary of the number of differentially expressed genes in each KEGG

pathway. The percentage of the differentially expressed genes account for the predicted genes are shown above the bars.

doi:10.1371/journal.pone.0164955.g003
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Environmental factors such as UV radiation, ionization radiation, or many chemical com-
pounds that produce intracellular reactive oxygen species (ROS) can arise the level of oxidative
stress [31]. Bacteria have evolved complex systems to protect them against oxidative stress [31,
32]. These systems involve enzymes such as catalase, superoxide dismutase, methionine sulfox-
ide reductase (MsrA), etc. [31]. MsrA is one important kind of antioxidant repair proteins

Fig 4. Differentially expressed genes (vanillin vs. glucose). The red and blue bars represent up- and down-

regulated genes, respectively, and the numeric labels represent the number of genes with that function pathway.

doi:10.1371/journal.pone.0164955.g004

Table 1. Differentially expressed genes related to vanillin degradation.

Locus tag Gene name Gene description Fold changea p-valueb

ncgl2299 vanR transcriptional regulator 1.20 0.004

ncgl2300 vanA ferredoxin subunits of nitrite reductase and ring-hydroxylating dioxygenase 6.64 0.004

ncgl2301 vanB flavodoxin reductase 1 6.94 0.004

ncgl2302 vanK major facilitator superfamily permease 6.29 0.003

ncgl2315 pcaH protocatechuate 3,4-dioxygenase subunit beta 5.24 0.007

ncgl2313 pcaB 3-carboxy-cis, cis-muconate cycloisomerase 3.00 0.009

ncgl2312 pcaC 4-carboxymuconolactone decarboxylase 3.58 0.002

aLog2-based expression ratio between glucose- and vanillin-grown cells.
bMicroarray significance determined by p-value (p < 0.01).

doi:10.1371/journal.pone.0164955.t001
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[33]. And the studies on the functions and mechanisms of MsrA to the oxidative stress by
many agents had been taken in our previous studies [34]. MsrA coding gene (msrA) was up-
regulated by vanillin stress (Table 2). The mutant was more sensitive to vanillin stress (90 mM)
than that of WT, and the complemented strain had a survival rate similar to that of the WT

Table 2. Differentially expressed genes related to the stress response.

Locus tag Gene name Gene description Fold changea p-valueb

ncgl0733 cgl0767 RNA polymerase sigma factor RpoE/sigH 1.16 0.008

ncgl2825 cgl2926 methionine sulfoxide reductase A 1.36 0.005

ncgl2842 cgl2943 universal stress protein E 2.21 0.002

ncgl2755 cgl2853 universal stress protein 1.38 0.008

ncgl2955 cgl3060 oxidoreductase 2.76 0.003

ncgl1886 cgl1961 phage shock protein A -1.34 3.50E-04

ncgl0786 cgl0820 cold shock protein 1.69 0.006

ncgl2478 cgl2567 dithiol-disulfide isomerase 1.96 0.009

aLog2-based expression ratio between glucose- and vanillin-grown cells.
bMicroarray significance determined by p-value (p < 0.01).

doi:10.1371/journal.pone.0164955.t002

Fig 5. ΔsigH mutant was highly sensitive to vanillin stress compared to WT. Survival of the C. glutamicum

WT(pXMJ19), ΔsigH(pXMJ19), and ΔsigH(pXMJ19-sigH) strains was assessed after exposure to vanillin (90 mM)

for 40 min. Mean values with standard deviations (error bars) from at least three replicates are shown. ***:

P�0.001.

doi:10.1371/journal.pone.0164955.g005
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(Fig 6). To evaluate the function of MsrA in ROS reduction in the presence of vanillin stress,
ROS levels were examined using DCFH-DA. As shown in Fig 7, themsrAmutant had signifi-
cantly higher ROS levels than those of the WT after vanillin stress treatment. Moreover, ROS
levels in themsrAmutant could be restored by complementation to the similar levels in the
WT (Fig 7).

The universal stress proteins in E. coli are induced by the stress of various environmental
factors [35]. And in this study, ncgl2842 and ncgl2755, encoding universal stress proteins, were
up-regulated (Table 2), which may improve the ability to resistance to vanillin in C.
glutamicum.

Bacteria have several proteins to degrade damaged DNA/proteins or protect functional pro-
teins to maintain their metabolism [36]. Protein disulfide isomerase (PDI) interchanges thiol-
disulfide that involve the reduction, rearrangement or formation of protein disulfide bonds
[36]. In nascent proteins, PDI is important for disulfide bond formation and correct folding
[36]. ncgl2478, which encodes a dithiol-disulfide isomerase in C. glutamicum, was up-regulated
(Table 2) and this isomerase could protect proteins from further damage by vanillin stress.

There is a complicated stress response network in the cells [37]. More than one stress can be
responded by the same system, and protect cells from a certain stress may bed several systems
working together. [37]. Temperature induced stress is important for adaptation to environ-
mental changes to living beings [37]. The cold shock protein A (CspA) is responded to many

Fig 6. ΔmsrA mutant was highly sensitive to vanillin stress compared to WT. Survival of the C. glutamicum

WT(pXMJ19), ΔmsrA(pXMJ19), and ΔmsrA(pXMJ19-msrA) strains was assessed after challenge with vanillin (90

mM) for 40 min. Mean values with standard deviations (error bars) from at least three replicates are shown. **:

P�0.01.

doi:10.1371/journal.pone.0164955.g006
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stress conditions: osmotic stress, inhibition of replication, starvation, UV sensitivity, freezing
conditions, etc. [37]. From the microarray data, the cold shock protein A (ncgl0786) was up-
regulated under the stress of vanillin in order to protect functional proteins under vanillin
stress (Table 2).

The phage-shock-protein (Psp) system is induced by extracytoplasmic stress that can main-
tain the force of proton-motive, reduce cell energy status, maintain the integrity of cytoplasmic
membrane and affect protein export [38]. However, in the Gram-negative Enterobacteriaceae:
Salmonella enterica serovar Typhimurium, E. coli, and Yersinia enterocolitica, the Psp response
has been most studied [39]. In this study, the phage shock protein A gene (ncgl1886) of C. glu-
tamicum as one kinds of important Gram-positive model strain, was down-regulated under
the vanillin stress (Table 2), which may relate to the stress response to vanillin.
Differentially expressed genes related to ribosome/translation. It has been reported that

vanillin inhibits translation in Saccharomyces cerevisiae [7]. Vanillin can increase cytoplasmic
messenger ribonucleoprotein (mRNP) granules and affect the large ribosomal subunit in S. cer-
evisiae [7].

In this study, we found several genes related to ribosome (such as rpmH, tsnR, rpsF) were up
regulated by the affection of vanillin according to the transcriptome data (Table 3). And certain

Fig 7. A mutant lacking MsrA exhibited increased ROS production under vanillin stress. A quantitative

assay of intracellular ROS under vanillin stress was performed. Mean values with standard deviations (error bars)

from three replicates are shown. ***: P�0.001. The ROS levels in the indicated C. glutamicum strains were

measured by a DCFH-DA fluorescence assay after exposure to vanillin.

doi:10.1371/journal.pone.0164955.g007
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ribonuclease genes related to translation (such as rnpA, rnc, and rph) were differentially
expressed (Table 3). Therefore, these results above indicated that vanillin did affect the ribo-
some or translation in C. glutamicum.
Differentially expressed genes related to secretion protein. The Tat pathway and Sec

pathway are two important kinds of protein secretion pathways in C. glutamicum [40]. Folded
proteins are translocated by the Tat pathway, which is an alternative secretion pathway;
unfolded proteins are translocated by the Sec pathway [40]. The secD gene which is one subunit
of Sec pathway was down-regulated (Table 4). And two genes tatB and tatC, which belong to
the subunits of Tat pathway, were down-regulated (Table 4). Many secretion proteins were dif-
ferentially expressed from the analysis of microarray data (Table 4). The effects and mecha-
nisms of vanillin stress to protein secretion in C. glutamicum need to be further studied.
Differentially expressed genes related to the cell envelope. LikeM. tuberculosis, the cell

envelope of C. glutamicum has several layers: plasma membrane, thick peptidoglycan-arabino-
galactan layer, mycomembrane, and top layer [41]. This can enhance tolerance to various stress
conditions including vanillin stress.

Genes related to cell wall (such as ncgl0995, ncgl1156, ncgl2108, ncgl0126, ncgl0652, and
ncgl2750) were differentially expressed under the stress of vanillin according to the transcrip-
tome data (Table 5).

Table 3. Differentially expressed genes related to ribosome/translation.

Locus tag Gene name Gene description Fold changea p-valueb

ncgl2446a - 50S ribosomal protein L36 2.45 0.009

ncgl2993 rpmH 50S ribosomal protein L34 1.57 9.44–04

ncgl1334 tsnR 23S ribosomal RNA methyltransferase 1.51 4.53E-04

ncgl2881 rpsF 30S ribosomal protein S6 1.11 0.008

ncgl2992 rnpA ribonuclease P 1.27 0.002

ncgl1994 rnc ribonuclease III -1.20 0.006

ncgl2415 rph ribonuclease PH -1.28 1.98E-06

aLog2-based expression ratio between glucose- and vanillin-grown cells.
bMicroarray significance determined by p-value (p < 0.01).

doi:10.1371/journal.pone.0164955.t003

Table 4. Differentially expressed genes related to secretion protein.

Locus tag Gene name Gene description Fold changea p-valueb

ncgl1594 secD preprotein translocase subunit SecD -1.64 0.006

ncgl1433 tatC Sec-independent protein secretion pathway component TatC -2.34 0.002

ncgl1077 tatB sec-independent protein translocase protein TatB -2.41 0.002

ncgl2661 cgl2757 putative secreted protein 2.48 0.002

ncgl0136 cgl0139 putative secreted protein 2.36 0.003

ncgl0872 cgl0909 secreted protein 2.14 1.26E-05

ncgl2912 cgl3015 putative secreted protein 2.14 0.002

ncgl0623 cgl0651 putative secreted protein -3.22 0.001

ncgl0757 cgl0791 putative secreted protein -2.48 9.27E-04

ncgl2225 cgl2307 putative secreted protein -2.27 0.002

ncgl2775 cgl2883 putative secreted protein -2.11 0.006

aLog2-based expression ratio between glucose- and vanillin-grown cells.
bMicroarray significance determined by p-value (p < 0.01).

doi:10.1371/journal.pone.0164955.t004
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A previous study on the way of action of vanillin against L. innocua, L. plantarum, and E.
coli suggested that it is an important membrane active compound [21]. From our microarray
data, certainmembrane protein genes were differentially expressed (Table 5).
Differentially expressed genes encodingmaster regulators. The transcription regulators

play important roles in the metabolism and stress resistance processes for bacteria. The roles of
various regulators in C. glutamicum were studied in recent years [42]. And we found two
genes: ramA (ncgl2472) and sigD (ncgl0575) encodingmaster regulators were differentially
expressed in our microarray data [42]. ramA was up-regulated 1.20-fold, which can activate
the genes related to acetate metabolism, aconitase gene acn, glyceraldehyde-3-phosphate dehy-
drogenase gene gapA, et al [43]. This may show the different mechanisms of carbon metabo-
lism between glucose and vanillin in C. glutamicum. Except the sigH, another gene encoding
ECF σ factor SigD was down-regulated 1.03-fold in our microarray data. It was reported that
SigD is induced by cold shock and is necessary to full virulence inMycobacterium tuberculosis
[44, 45]. In Clostridium difficile, SigD as a regulator can positively regulate the expression of
toxin [46]. However, the function of SigD in C. glutamicum is not clear by now. It may play a
role in the response to vanillin in C. glutamicum.

Conclusions

The mechanisms of tolerance to vanillin inhibitor generated by lignocellulosepretreatment of
C. glutamicum were as follows. First, C. glutamicum was able to degrade vanillin. Second, the
C. glutamicum cell envelope, which has complex structures, has a greater protective effect than
other microbes. Third, genes related to stress response were differentially expressed under van-
illin stress conditions, which could reduce the damage to C. glutamicum cells. Fourth, ribo-
some/translation and protein secretion genes were differentially expressed to cope with the
vanillin stress (Fig 8). The sigH andmsrAmutants were more sensitive to vanillin stress. There-
fore, C. glutamicum can degrade vanillin to reduce the damage caused. And moreover, this
microorganism possesses defense and damage repair mechanisms.

To date, this is the first report of a transcriptomic analysis of the response to vanillin by C.
glutamicum. The results provide insights into the mechanisms of C. glutamicum adaption and
tolerance to vanillin, an important lignocellulose-derivedinhibitor. This provides a theoretical
basis for the engineeringof industrialmicroorganisms tolerant to vanillin and makes facile pro-
duction of biofuels and bio-based chemicals from lignocellulosicbiomass in the future.

Table 5. Differentially expressed genes related to the cell envelope.

Locus tag Gene name Gene description Fold changea p-valueb

ncgl0995 cgl1039 glycosyltransferase, probably involved in cell wall biogenesis 1.27 0.004

ncgl1156 cgl1203 UDP-N-acetylmuramyl pentapeptide phosphotransferase -2.98 0.002

ncgl2108 cgl2188 cell wall-associated hydrolase 1.85 0.005

ncgl0126 cgl0127 N-acetylglucosaminyltransferase 1.50 0.004

ncgl0652 cgl0682 cell wall-associated hydrolase -1.76 0.009

ncgl2750 cgl2847 UDP-glucose 6-dehydrogenase -1.97 3.25E-05

ncgl0103 cgl0104 membrane protein -3.45 0.002

ncgl0680 cgl0710 membrane protein -1.12 0.002

ncgl0824 cgl0858 metalloendopeptidase-like membrane protein -1.10 9.85E-04

ncgl0014 cgl0015 membrane protein 5.56 0.002

ncgl2372 cgl2458 putative membrane protein 2.66 0.003

aLog2-based expression ratio between glucose- and vanillin-grown cells.
bMicroarray significance determined by p-value (p < 0.01).

doi:10.1371/journal.pone.0164955.t005
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