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Abstract.—Reconstructing ancestral characters and traits along a phylogenetic tree is central to evolutionary biology. It is the
key to understanding morphology changes among species, inferring ancestral biochemical properties of life, or recovering
migration routes in phylogeography. The goal is 2-fold: to reconstruct the character state at the tree root (e.g., the region of
origin of some species) and to understand the process of state changes along the tree (e.g., species flow between countries).
We deal here with discrete characters, which are “unique,” as opposed to sequence characters (nucleotides or amino-acids),
where we assume the same model for all the characters (or for large classes of characters with site-dependent models) and
thus benefit from multiple information sources. In this framework, we use mathematics and simulations to demonstrate
that although each goal can be achieved with high accuracy individually, it is generally impossible to accurately estimate
both the root state and the rates of state changes along the tree branches, from the observed data at the tips of the tree. This
is because the global rates of state changes along the branches that are optimal for the two estimation tasks have opposite
trends, leading to a fundamental trade-off in accuracy. This inherent “Darwinian uncertainty principle” concerning the
simultaneous estimation of “patterns” and “processes” governs ancestral reconstructions in biology. For certain tree shapes
(typically speciation trees) the uncertainty of simultaneous estimation is reduced when more tips are present; however, for
other tree shapes it does not (e.g., coalescent trees used in population genetics). [Ancestral states, evolutionary patterns
and processes, information theory, phylogeny, transition rates, Yule and coalescent trees.]

Reconstruction of the past is central to evolutionary
biology (Maddison 1994; Felsenstein 2004; Liberles 2007).
A first step is often phylogenetic reconstruction, which
is central to understanding the origin, evolution and
classification of species, protein families, and pathogens
such as HIV, as well as for reconstructing the evolution
of communities and ecosystems. However, phylogeny
is not an end in itself; it is generally the support for
more complete studies. In particular, one frequently
reconstructs the evolution along a phylogenetic tree
of ancestral characters of diverse nature, for example:
molecular (Grass Phylogeny Working Group II 2012;
Werner et al. 2014), phenotypic (Marazzi et al. 2012;
Beaulieu et al. 2013), geographical (Lemey et al. 2009;
Edwards et al. 2011; Lemey et al. 2014; Heintzman et al.
2016; Dudas et al. 2017), or ecological (Grass Phylogeny
Working Group II 2012; Marazzi et al. 2012; Werner
et al. 2014), and these reconstructions involve differing
time scales, ranging from a few years for fast evolving
viruses (e.g., Ebola, Dudas et al. 2017), to hundreds of
millions years for higher eukaryotes (e.g., plants, Grass
Phylogeny Working Group II 2012; Marazzi et al. 2012;
Beaulieu et al. 2013; Werner et al. 2014). The problem has
two facets (Fig. 1), which are generally combined: one
may want to infer the “pattern,” that is, the ancestral
states associated with phylogeny root and nodes, for
example, the origin and migration routes of a species
(Edwards et al. 2011; Heintzman et al. 2016) or an
epidemic (Lemey et al. 2014; Dudas et al. 2017); or one
may aim to understanding the “process” driving the
character evolution and state changes such as the factors
explaining the spread and sustainability of epidemics

(Dudas et al. 2017), or the selection mechanisms acting
at a molecular level (Lemey et al. 2012).

Many methods have been proposed to reconstruct
the pattern. Today, one most often uses probabilistic
methods based on Markovian evolutionary models
with numerical parameters to be estimated from the
data (Maddison 1994; Felsenstein 2004; Liberles 2007).
These models and their parameters are mathematical
representations of the evolutionary processes. We
deal here with discrete “unique” characters (e.g., a
particular geographical or morphological character) as
opposed to sequence characters (nucleotide or amino-
acid). In this framework, we show, using information
theory, mathematics and simulations, that evolutionary
patterns (ancestral states) and processes (transition rates)
cannot generally be simultaneously reconstructed with
high accuracy from extant data. This result applies even
to the simplest models, and to characters commonly
used in a number of current studies, to describe a wide
range of evolutionary phenomena, from molecular to
ecological levels.

The Markovian evolutionary models used to
reconstruct character evolution can be very simple,
typically symmetrical with very few states (Fig. 1),
but the current trend is to rely on ever more complex
models which can be nonsymmetrical, with dozens of
states (Dudas et al. 2017) (and therefore hundreds of
parameters), latent variables (Marazzi et al. 2012) and,
for some models, evolution over time (Lemey et al.
2009; Beaulieu et al. 2013; Heintzman et al. 2016; Dudas
et al. 2017). The estimation of these models is based on
maximum likelihood (ML) and Bayesian approaches,
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FIGURE 1. Evolutionary process and history: a) Simple 2-state
Markovian evolutionary process, where 0 swaps into 1 with rate ��1
and vice versa. This process has three (nonindependent) parameters:
the state equilibrium frequencies (�0 and �1) and the global rate of
evolution (�). b) This simple process acts along a phylogenetic tree,
starting from the tree root with state 0 and evolving the character state
until the tree leaves, where various state values are observed. This
observation (along with the phylogenetic tree) is all that is known.
The goal is to estimate both the evolutionary pattern, notably the
root state, and the parameters of the process. c) A more complex
4-state process, where the rate of change depends on the origin
state, and not-only on the destination state. In this phylogeographic
example, movement between four countries distributed across two
continents moves at rates that are different (typically higher) within
continents than between continents as indicated by the parameter �.
This model is formally equivalent to the HKY model of nucleotide
substitution (with A,A′,B,B′ equal to A,G,C,T, respectively), in which
� corresponds to the transition/transversion ratio. �=1 corresponds
to the “equal-input” model (F81 with DNA).

and the task is complicated by the fact that with unique
characters there is only one realization of the process,
corresponding to the state values observed at the leaves
of the tree. Estimations are much simpler with DNA or
protein sequences, where we assume the same model
for all the characters (or for large classes of characters
with site-dependent models) and thus benefit from
multiple information sources. To learn the mostcomplex
of these (single-character) models, one can rely on user-
supplied “factors,” such as the degree of connectivity
between two countries in phylogeography (Lemey et al.
2014; Dudas et al. 2017). In a Bayesian framework, the
parameters of complex models are sometimes viewed
as nuisance parameters, and then the focus is not on
their precise values, but on the global impact of the
model on the reconstruction of the ancestral character
states. To predict ancestral states, one generally uses
marginal, joint or posterior likelihoods of the tree
node states (Maddison 1994; Felsenstein 2004; Liberles
2007; Yang 2007; Matsumoto et al. 2015; Arenas et al.
2017). These two components (model estimation and
ancestral reconstruction) are most often simultaneous
and interdependent because neither the model nor the
ancestral states are generally known (exceptions are
paleontological rests with morphological characters,
ancient DNA, and serial sampling over time of fast

evolving organisms such as viruses). Only the tree and
branch lengths can be considered as known; in practice,
they are usually estimated from DNA or protein
sequences via a probabilistic approach that includes
the estimation of a model of site substitution for those
sequences, and possibly a molecular clock model to
date the tree nodes and root age (Felsenstein 2004). Note
that the model used to estimate the tree and its branch
lengths from sequences cannot describe the transition
rates of the unique character (e.g., morphological or
geographical) under study. For example, assuming that
the tree is time scaled, we need to estimate the global
rate of state changes per year (among other parameters,
depending on the character evolution model), and this
global rate cannot be deduced from the sequences.

Theoretical work has shown the difficulty of
reconstructing ancestral states even when the
evolutionary model describing the state changes is
fully known (Evans et al. 2000; Mossel and Peres 2003;
Gascuel and Steel 2010). If the rate of changes is too
fast, the information provided by tree leaves is low and
it is impossible to reconstruct the root state accurately,
regardless of the estimation method. Note, however,
that the reconstruction of states at recent tree nodes is
easier, and can be achieved even when the root state
cannot be reconstructed (Gascuel and Steel 2014). To
our knowledge, there is no theoretical work on the
joint estimation of evolutionary model parameters and
the ancestral states, in standard models of character
evolution. Moreover, very few simulations have been
performed to verify that the complex models used in
recent studies described in the previous paragraph
could be estimated with high reliability. We show here
that it is usually not possible to accurately reconstruct
both the root character state and estimate the parameters
of the evolutionary model. Intuitively, if the global rate
of change is low, the reconstruction of the root is easy
because the root state is largely preserved along the tree
branches all the way to the leaves, but then they are
too few state changes to accurately estimate the relative
rates of changes from one state to another; conversely,
with a rapid evolution, one cannot reconstruct the tree
root, but estimating the rates seems easier.

While these intuitive trends are easily grasped, our
aim in this article is to make these vague claims precise,
with a formal mathematical proof. This approach
allows us to deduce consequences that do not seem as
intuitively clear; namely, for certain tree shapes (Yule
trees, commonly used to describe species trees) the
uncertainty in simultaneous estimation can be reduced
towards zero by increasing the number of taxa, while
for other tree shapes (e.g., coalescent trees, commonly
used in population genetics) it cannot. We will also see
from simulations that with a high rate of evolution some
model parameters are well estimated, while some others
are not.

MATHEMATICAL RESULTS

We first establish this Darwinian uncertainty principle
by using mathematical results based on standard
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Markovian evolutionary models. In all these results we
assume that the trees are time-scaled and clock-like,
meaning that the branches are measured in time units
(e.g., years, million years etc.). We will also assume that
the tips are at the same distance (evolutionary time) to
the root, and thus provide similar information on the
character state of the root (actually, Theorem 1 holds even
without that constraint).

For our first theorem, we consider any “equal input
model” (Semple and Steel 2003) on any number of states
(Fig. 1a,c, assuming � = 1). Such a model includes any
stationary 2-state model, and in the setting of DNA site
substitution models (not our main focus here), the equal
input model corresponds to the Felsenstein 1981 model
(Felsenstein 2004) (F81, also known as the Tajima—
Nei model) and submodels such as the Jukes–Cantor
model. For any number k of states the Mk model for
morphological characters (being a generalization of the
Jukes-Cantor model) is an equal input model. With JC
and Mk models, the unique parameter to be estimated
is the global rate (measured in number of state changes
per year), while with F81 and equal input models we also
have to estimate the equilibrium frequencies of the states.
The equal input model is simple but includes the state
equilibrium frequencies, like most evolutionary models
used nowadays. The difficulties shown for that model
are thus likely to apply to more complex models.

In the equal input model, the rate of changes from
state i to state j is proportional to the model equilibrium
frequency of j, and does not depend on i. Let XL be
the observed states at the leaves (“the data”) of a given
phylogenetic tree T (with known branch lengths), and
let n be the number of tree leaves. Information theory
provides a precise way to formalize our first result.
Let I� denote the mutual information between XL and
the ancestral state at the root of tree T, and let I�
denote the mutual information between XL and the
state equilibrium frequency vector (�) of the model. We
assume that the root state is sampled from �, as usual
in phylogenetics. Both I� and I� are functions of the
global evolutionary rate � of character evolution (� is
the expected number of state changes per time unit, as
described further in the Appendix).

Our first theorem (described in the Appendix)
demonstrates that the information provided by the data
obtained at the tips of an evolutionary tree concerning
the ancestral root state and concerning the relative
rates behave in opposite ways as a function of the
global evolutionary rate �. More precisely, Theorem
1 says that for any tree, as � increases, I� and I�
always have consistent but opposite trends. In particular,
the optimal transition rate for estimating the ancestral
root state is the worst for estimating �, whereas the
optimal transition rate for estimating � is the worst
for estimating the ancestral root state. This immediately
implies a fundamental uncertainty limit on the accuracy
of simultaneous estimation of both these variables.

Our second theorem (described in the Appendix)
positively moderates this phylogenetic uncertainty
principle with Yule trees (Yule 1925; Harding 1971;

Brown 1994; Stadler and Lambert 2013), which roughly
describe the shape of speciation trees. Theorem 2 shows
that for Yule trees of fixed height, the uncertainty of
simultaneous estimation is reduced when more tips
are present (however, for a particular study, adding
more taxa may not be possible; this and other practical
issues are discussed in the concluding section). This
result holds for a wide variety of evolutionary models,
in particular, we can allow any stationary, reversible,
continuous-time Markov process involving any number
of states for which the rate matrix R has strictly positive
off-diagonal entries. This positivity constraint implies,
for example, that in phylogeography all regions are
directly accessible from all others, without transitions
through intermediary regions. Note, however, that any
rate can be arbitrarily small, and thus this constraint has
little practical impact.

This positive result for Yule trees does not hold for
certain other tree models. For coalescent trees (Wakeley
2009), commonly used in population genetics, and star
trees, corresponding to extreme radiations), we show
that uncertainty remains even if the number of tips tends
to infinity.

SIMULATION RESULTS

To explore the behaviour of evolutionary models
that are more complex and realistic than equal input
models of Theorem 1, we use computer simulations.
The goals are to: quantify the uncertainty with both
Yule and coalescent trees; measure the gain brought
by a large number n of tree leaves and observed
states; and study the accuracy of estimations with
model parameters that are different from the simple
equilibrium frequencies that define equal input models.
We use a model illustrated by the phylogeographic
example in Fig. 1c, which, as mentioned, is equivalent to
the HKY model (Hasegawa et al. 1985; Felsenstein 2004)
of DNA evolution. In addition to the four equilibrium
frequencies, this model includes the parameter �,
which is equal to the transition/transversion ratio.
A transversion is a change from one purine to one
pyrimidine and vice versa; a transition does not change
the nucleotide category. Transversions from state i
to state j occur at a rate ��j, whereas transitions
occur at a rate ���j. Thus, the rate of changes not
only depends on the destination state, but also on
the origin state, unless � = 1, which corresponds to
F81. HKY represents a larger and more realistic class
of models than F81 and equal input models. In a
phylogeographic context (more appropriate here as
we deal with unique characters), this model captures
the fact that migrations within continents are more
likely than migrations between continents. While the
state equilibrium frequencies can be approximated by
counting the number of state occurrences on the tree
leaves, � is not directly observable and its estimation
is expected to be more difficult than the estimation of
�. In our simulations, a unique character was evolved
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FIGURE 2. Simulation results with Yule (a) and coalescent (b)
trees: Horizontal axis: value of the global rate � used to simulate
the data; Vertical axis: error measurements (probability of error for
root state predictions; relative absolute error for other estimations;
see Appendix); GlobalRateML = ML estimation of the global rate �;
FreqML = ML estimation of the equilibrium frequencies; FreqTips
= quick estimation of the equilibrium frequencies by counting the
number of state occurrences on the tree leaves (clearly worse than
ML estimation); FreqMultin = best possible estimation of the state
frequencies with n samples, as obtained with a multinomial; KappaML
= ML-based estimation of � (the transition to transversion ratio);
RootMLtrue = root state prediction by ML, with the knowledge of the
evolutionary model used to simulate the data; RootMLfull = root state
prediction when all model parameters (�, �, �) are estimated from the
data; RootMultin = root state “prediction” with uninformative data, as
obtained with a multinomial model (similar to a tree with very long
edges).

using an HKY model along Yule and coalescent trees of
100 and 1000 tips, with various values of � rate, from
1/16 (very slow) to 16 (very fast). All estimations were
performed using the ML principle, which is known to be
optimal (Guiasu 1977). Additional details are given in the
Appendix.

Though the HKY model is more general than equal
input models, the results (Fig. 2) are in accordance
with the uncertainty principle of Theorem 1, for both
Yule and coalescent trees. With a low � rate, the
root state is easy to predict but estimation of the
model parameters is very poor. With a high � rate,
predicting the root state becomes impossible, but the
equilibrium frequencies (�) are well estimated. For the
rate parameters (� and �), their estimation first improves
when � increases, and then becomes poorer with Yule
trees and large � values, due to large numbers of changes
in pending branches. This makes the tip states nearly
independent one from the other, which is an advantage
to estimate the equilibrium frequencies, but not the rate
parameters. This finding reinforces again the uncertainty
principle, as with large � neither the root state nor
the rate parameters can be accurately estimated. With
coalescent trees (having short pending branches), the
estimation of � and � is still improving with � = 16
(Fig. 2), but drops with extreme � values (results not
shown).

As expected from Theorem 2, the accuracy of all
estimations improves with Yule trees when n = 1,000,
compared with n = 100. With n = 1,000 we observe
a narrow region around � = 1 (corresponding to 1
expected mutation along every root-to-tip path), where
the simultaneous estimation of all parameters (including
the root state) is reasonably accurate (error <25%).
However, outside this region some of the parameters are
still poorly estimated. With coalescent trees, we do not
observe such a region, and (as expected) the estimation
of the root state has similar accuracy with n = 100 and
n = 1000.

Lastly, a positive finding is that the accuracy of root
state estimation is not affected by the poor estimation
of the model parameters: the results are nearly the
same when using the estimated parameter values
(RootMLfull) and their true values (RootMLtrue), and
this finding still holds with low � rate when the model
parameters are very poorly estimated (since the root
state is the predominant state observed at the leaves).
This finding is not surprising with extreme rate values:
with low rates all methods succeed (including with
poor parameter estimates), whereas with high rates all
methods fail. In other words, with extreme rate values
we expect similar results when the model parameters
are known and when they are estimated from the
data. However, we see in Figure 2 that this property
holds for the whole range of rate values, both with
Yule and coalescent trees, and n=100 and n=1000. An
interesting direction for further investigations would
be to check that this property still holds with large
number of states and complex models involving many
parameters.
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DISCUSSION

We described above a series of new results on
the difficulty of estimating the process or model
explaining the evolution of a unique, discrete
character. Moreover, we showed that the difficulty
of estimating the model parameters behaves oppositely
to the difficulty of estimating the pattern, especially
the root state. Although these results (theorems,
simulations) demonstrating and quantifying the
uncertainty principle are obtained in simple settings,
it is highly likely that with more complex models and
real biological data the situation is even worse (e.g.,
see simulation results concerning the difficulty of
estimating the � parameter, not included in the F81-like
models of Theorem 1).

Our “Darwinian uncertainty principle,” which
governs ancestral reconstructions in biology, has a
similar flavor to a fundamental principle in quantum
physics: Heisenberg’s uncertainty principle. The
latter asserts a fundamental limit on the precision of
simultaneously measuring both the position and the
momentum of a particle (Heisenberg 1927). Here, we
take the phylogenetic analog of “position” as “ancestral
state,” and thus “momentum” (closely related to
velocity) corresponds to the rates at which ancestral
states change into different alternative states. In physics,
increasing the mass of a particle reduces the uncertainty
of jointly specifying its position and momentum; in our
setting, the analog of mass is n, the number of leaves.
Theorem 2 shows that for certain tree shapes (Yule
trees) increasing n also reduces the uncertainty of joint
estimation. Though the models and mathematics are
radically different, our results thus have a similar spirit:
it is not possible to accurately estimate both the ancestry
and the rate of state changes in characters commonly
used in a number of recent studies, to describe a wide
range of evolutionary phenomena, from molecular to
ecological levels.

From a practical standpoint, let us first emphasize
that we deal here with unique characters. Estimating
models from sequences where all sites are assumed
to be i.i.d. (independently and identically distributed)
is much easier, as one has access to multiple sources
of information. For example, estimating the state
frequencies by simply counting the states observed in
extant sequences is a common practice that performs
well (under the standard assumption that the root
sequence was drawn according to these frequencies),
while our findings (Fig. 2) demonstrate that it does
not work with unique characters, as generally the tips
states are still largely influenced by the root state. Note
also that having some knowledge concerning ancestral
states (e.g., with paleontological rests or ancient DNA)
or having serial samples should simplify the estimation
task, at least in certain configurations, making it possible
to accurately estimate both the (unique) ancestral root
state and the process.

Our results clearly indicate that when achieving
ancestral reconstructions, the reliability of the estimates
(both patterns and processes) has to be checked

systematically using some standard approach (e.g.,
posterior distribution, second derivative of the
likelihood function, nonparametric bootstrap; e.g.,
see (Ishikawa et al. 2019) for a method to account
for the uncertainty of ancestral state reconstruction
using posteriors). When the main goal is to reconstruct
ancestral states, our findings—approximate model
parameter estimates of their true values yield similar
root reconstruction accuracy (Fig. 2)—are reassuring,
in light of the common practice to neglect the model
parameters or to consider them as nuisance parameters
in a Bayesian setting. When the evolutionary model is
in question, estimating the reliability of the parameter
estimates is especially important; when they appear
to be stable and well estimated, one has to remember
that it is unlikely that ancestral states can be accurately
reconstructed (at least the deepest ones).

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://dx.doi.org/10.5061/dryad.6p55sp3.
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APPENDIX: MATHEMATICAL RESULTS AND SIMULATION

PROTOCOL

Statement and Sketch Proof of Theorem 1
Let T be a rooted phylogenetic tree (not necessarily

binary), for which each edge e has an associated positive
length l(e). Consider the evolution of a discrete character
on T based on a stationary continuous-time Markov
process from an unknown root state X� to the leaf-states
(by stationarity, the prior distribution of X� is �).

We will assume that this model follows the “equal
input model” on k >1 states, with equilibrium vector
�. An important property (Casanellas and Steel 2017)
of this model, is that it is equivalent to the model
in which events (called resampling events) occur at a
constant rate � along the edges of the tree, and when
such an event occurs the state at that point is replaced
by a state chosen from the equilibrium distribution �
independently of the original state (thus the state may
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or may not actually change). Conditional on the vector
�, the global transition rate r (i.e., the rate at which states
change to different states) is related to the rate � of these
resampling events according to the identity:

r=�

⎛
⎝1−

k∑
i=1

�2
i

⎞
⎠.

We regard � as an unknown quantity to be estimated
(i.e., as a random variable having some distribution). The
global transition rate r is also a random variable and we
will let � be the expected global rate of transition. Thus

�=�
(

1−∑k
i=1E[�2

i ]
)

, and so � and � are proportional
to each other. Let XL denotes the states observed at
the leaves of T and consider the following information
measures as a function of �:

• I�(�)= I(X�;XL) is the mutual information between
the state at the root vertex � and the states observed
at the leaves of T;

• I�(�)= I(�;XL) is the mutual information between
the equilibrium distribution (�) for the model and
the states observed at the leaves of T.

We can now state our first theorem (for details and full
proof, refer to the Supplementary Appendix available on
Dryad at https://dx.doi.org/10.5061/dryad.6p55sp3).

Theorem 1: For any phylogenetic tree with any number of
leaves, I�(�) is a monotone decreasing function of � (with
limit 0 as �→∞). In contrast, I�(�) is bounded above
by a monotone increasing function ϕ(�), which agrees with
I�(�) at �=0 and as �→∞. The latter limit corresponds
to the highest possible information that can be obtained with
n samples drawn from �, corresponding to a multinomial
distribution (given by a tree with very long edges).

A brief outline of the Proof of Theorem 1 follows. The
proof of both parts applies the classical data processing
inequality (DPI) from information theory (Cover and
Thomas 1991), but in different ways. Recall that the
DPI states that if X,Y, and Z are any three random
variables (not necessarily real-valued), and if X −→
Y −→Z is a Markov chain, then I(X; Z) is less or
equal to both I(X;Y) and I(Y;Z). Moreover, unless the
associated process X −→Z−→Y is also a Markov chain,
then these inequalities are strict. To show that I�(�)
is a monotone decreasing function of �, we establish
a more general result (allowing each edge to have its
own expected transition rate) and then examine the
impact of increasing this expected rate on any given edge.
A (probabilistic) coupling argument, together with an
application of the DPI, leads to the claimed monotonicity.
For the second part of Theorem 1 (concerning I�(�)),
we consider the more informative (but unobservable)
process Q in which one knows all the resampling events
and the transitions within the tree (not just the states at
the leaves). Let ϕ(�)= I(�;Q) be the mutual information

between � and this more informative process. Using the
DPI, we show that I�(�)≤ϕ(�). A further application of
the DPI to the more informative process Q shows that
ϕ(�) is a monotone increasing function of �, and the
claims about the values of I�(�) and ϕ(�) at � = 0 and as
�→∞ then follow.

Statement and Sketch Proof of Theorem 2
Notice that the estimation error curves in the

simulations (Fig. 2) appear to come down as n increases.
However, it is not at all clear whether they would
continue to decrease towards zero or would instead
converge to some nonzero value. We show that Yule
trees with fixed heights allow for asymptotically precise
estimation of both the root state and the relative rates
as the number of leaves become large. To simplify the
calculations, we increase the speciation rate � (as this
grows, the number n of leaves is a random variable
that tends to infinity). In Theorem 2, we allow more
general models than the equal input model (as assumed
in Theorem 1), encompassing most models used in
phylogenetics, including the HKY model used in our
simulations. We state Theorem 2 as follows (for details
and full proof, refer to the Supplementary Appendix
available on Dryad).

Theorem 2: For any continuous-time evolutionary model
with positive rate matrix R, the ancestral root state, and the
rate matrix R (i.e., both the relative rates and the global rate
�) can both be estimated with an error converging to zero on
a Yule tree with fixed height, as the number of leaves tends to
infinity. However, this is not possible for other tree shapes such
as the star and Kingman coalescent trees.

A brief outline of the proof of Theorem 2 follows. To
show that the root state can be accurately estimated with
Yule trees, the primitive method of maximum parsimony
(MP) (Maddison 1994; Felsenstein 2004) suffices (even
though it is less accurate than ML). The proof that MP
is consistent here combines two ideas: first we apply
a (probabilistic) coupling argument which shows that
it is enough to establish the result for an associated 2-
state process; we then investigate this simpler process by
deriving and analyzing a system of nonlinear differential
equations (analogous to Gascuel and Steel, 2010).

To show that the entries in the rate matrix R can also
be consistently estimated with Yule trees, we consider
an estimation method based on 3-leaf pendant subtrees.
While such a method is not likely to be optimal (e.g.,
ML surely performs better) it is nevertheless sufficient
to establish the theorem, and its simplicity allows
for a tractable mathematical analysis that would be
difficult for more complicated methods. We deal with
3-leaf pendant subtrees rather than just 2-leaf pendant
subtrees (“cherries,” commonly used to estimate models
from sequence data) for two reasons. First, it allows
us to consider more general Markovian processes (in
particular, we need not assume the Markovian process
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is time-reversible). Second, even for time-reversible
models, an approach based on cherries only works if the
leaves are very far from the root [so that the frequencies
of states is at (or very close to) equilibrium]; in our
setting, the tree has fixed height, and so generally the
distribution of states amongst the leaves will not be
very close to the equilibrium distribution (as observed
in the simulations, a major difference with sequences
where the equilibrium distribution is well approximated
by the state frequencies among the sites, due to
stationarity).

For each pair of not necessarily distinct states i and j,
we say that a 3-leaf pendant subtree (ab)c is of type ij if
leaf c and one of the remaining leaves (a or b) have state
i and the other leaf (from the pair {a,b}) has state j. We
will also say that (ab)c is of type i if it is of type ik for some
k (including the case k = i), and that (ab)c is typical if its
height is no more than twice its expected height (in a Yule
tree). For each pair of distinct states {i,j}, let Nij denote
the number of typical 3-leaf pendant subtrees of type
ij and Ni denote the number of typical 3-leaf pendant
subtrees of type i.

Define Li to be twice the sum of the heights of the
cherries of the typical 3-leaf pendant subtrees of type
i. Our proof uses the following simple estimator of the
transition rates in the rate matrix R: for any two (distinct)
states i,j, let R̂ij =Nij/Li. We show that R̂ij is a statistically
consistent estimator of Rij as � grows. The proof uses the
distribution of the number and height (Rosenberg 2006;
Stadler and Steel 2012) of 3-leaf subtrees in a Yule tree,
together with further asymptotic arguments to show that
R̂ij converges in probability to Rij.

For the second part of Theorem 2, first suppose that Tn
is a star tree. Then neither the ancestral root state, nor the
equilibrium vector � can be estimated accurately, even as
n→∞. More precisely, the following nonidentifiability
result holds. One can switch the root state to a different
state, and adjust the parameters � and � to give an
identical probability distribution on the data that such
a tree generates regardless of how large n is (details are
provided in the Supplementary Appendix available on
Dryad).

Next suppose that Tn is a tree generated by the
Kingman coalescent. For any value of �>0, the state at
the root of Tn has an error that does not decrease to zero
as n→∞. The proof relies on a well-known property
(Wakeley 2009) of the coalescent tree Tn: the shorter of the
two edges incident with the root of Tn has an exponential
distribution with a mean that is asymptotic (as n→∞)
to l/2, where l is the height of the tree. A simple coupling
argument (Mossel and Steel 2005) then shows that with
probability at least p>0 (where p is independent of n but
dependent on �,l and the rate matrix R) the states at the
leaves are independent of the root state of Tn, and so the
error in inferring the root state does not tend to zero as
n grows.

Simulation Protocol
To explore the behaviour of evolutionary models

that are more complex and realistic than F81 and the
equal input models used in Theorem 1, we performed
computer simulations using the HKY model (Hasegawa
et al. 1985; Felsenstein 2004). We generated Yule and
coalescent trees with a number n of tips equal to 100
and 1000. These trees were rescaled to have a total height
of 1.0 (this is similar but not identical to the set-up for
the mathematical proof of Theorem 2, where we fix
the height of Yule trees, and vary the speciation rate
to increase the expected number of leaves). Then, we
simulated the evolution of a 4-state character according
HKY with � (transition/ transversion ratio) equal to
4.0, and �i equilibrium frequencies equal to 0.15, 0.35,
0.35, and 0.15, for A, C, G, and T, respectively. The HKY
rate matrix was normalized as usual (i.e., the expected
number of changes along a branch of length 1.0 was set
to 1.0) and then multiplied by the global rate � with
values equal to 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, and 16.
For each of the tree models (Yule, coalescent) and �
values, 1000 trees and data sets were generated with
n = 100, and 500 with n = 1000 for computing time
reasons. For each data set we jointly estimated using
the ML principle the � and � parameters, the four �i
equilibrium frequencies, and the ancestral character state
at the tree root. The latter was inferred using the MAP
(maximum a posteriori) principle (i.e., the predicted
state corresponded to the maximum of the posteriors
among the four states), which is known to be optimal
(Guiasu 1977). The estimation procedure was performed
in three steps:

1. As the HKY parameters were unknown, we first
used the Jukes and Cantor (JC) model (Felsenstein
2004) to obtain a rough estimate �̃ of � by ML.
Then, the tree was rescaled by multiplying all
branch lengths by �̃.

2. The resulting rescaled tree was given to PhyML
(Guindon et al. 2010) along with the tips values, to
estimate the � and � parameters (corresponding
to KappaML and FreqML curves in Fig. 2). It
has been demonstrated in a number of studies
(e.g., Le and Gascuel, 2008) that the estimation of
evolutionary model parameters remains accurate
with approximate trees, as we have here regarding
the branch lengths that are rescaled using �̃
(instead of � which is unknown).

3. These ML-estimates of � and � were used to jointly
infer the root state (RootMLfull in Fig. 2) and obtain
a better ML-estimate of � assuming an HKY model
(GlobalRateML in Fig. 2). To quantify the loss of
accuracy induced by the approximate estimation
of the model parameters (�, � and �), we also
estimated the root state with the model parameter
values used to generate the data (RootMLtrue in
Fig. 2).
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A difficulty with ML-based estimations of �, is that
when the mutation rate is low, the root and tip states
tend to be identical, and then � is estimated to be
zero. Similarly, with high rate � is often estimated to
be infinite. In both cases the estimation of the other
parameters and root state becomes impossible (at least
using a standard ML implementation, as PhyML). Thus,
we imposed the constraint: �̂∈[�/4,�×4], where �
is the true value and �̂ the estimate. This constraint
was used with both JC-based (Step 1) and HKY-based
(Step 3) estimations of �.

To quantify the estimation error, for the numerical
estimates (�, �, and �) we measured the average over all
data sets of the relative absolute error (e.g., with � : |�̂−
�|/�), and the error of the four frequencies was further
averaged over the four states. For the root state, we
simply measured the frequency of the prediction errors.
For comparison with the more accurate ML approach, a
rough estimate of the equilibrium frequencies was also
obtained by counting the number of state occurrences
at the tree tips (FreqTips in Fig. 2). The error of this
quick estimator (used in many ML software programs,
but with sequences, not a single character) is clearly
higher than FreqML, corresponding to the fact that
with low and moderate � the tip state frequencies do
not reach the equilibrium probabilities (while they do
with aligned genetic sequence data, as the root states of
the multiple sites are (assumed to be) drawn based on
the model equilibrium frequencies). We also compared
the estimations of the �i frequencies and root state,
with those obtained with a multinomial with n trials
drawn using the same nucleotide probabilities as in tree-
based simulations. This multinomial model is equivalent
to the tree model when � is very large and/or the
pending branches are extremely long. In this condition,
the tips state values do not bring any information on
the root state (I� =0), while the information on � (I�)
is as high as possible with n tips/trials (see Theorem
1). The root prediction error (RootMultin in Fig. 2)
is then nearly equal to 0.65 (MAP returns C and G
states with ∼0.5 probability each, and both have a
prediction error of 0.65). The frequency estimation error
was computed by simulations (FreqMultin in Fig. 2,
∼0.148 and ∼0.047 with n = 100 and 1000, respectively).
As expected, RootMultin ≈ RootML ≈ 0.65 with �=16,
and FreqMultin ≈ FreqML ≈ FreqTips with � = 16 and
Yule trees. Coalescent trees have much shorter pending
branches, and the convergence of FreqML and FreqTips
toward FreqMultin is slower.

All software programs (except PhyML) used to
perform the simulation study were implemented in
Common Lisp and are available on request. We used
the version 3.3.20170530 of PhyML available from
https://github.com/stephaneguindon/phyml.
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