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Abstract

Hebbian plasticity, a mechanism believed to be the substrate of learning and memory,

detects and further enhances correlated neural activity. Because this constitutes an unsta-

ble positive feedback loop, it requires additional homeostatic control. Computational work

suggests that in recurrent networks, the homeostatic mechanisms observed in experiments

are too slow to compensate instabilities arising from Hebbian plasticity and need to be com-

plemented by rapid compensatory processes. We suggest presynaptic inhibition as a candi-

date that rapidly provides stability by compensating recurrent excitation induced by Hebbian

changes. Presynaptic inhibition is mediated by presynaptic GABA receptors that effectively

and reversibly attenuate transmitter release. Activation of these receptors can be triggered

by excess network activity, hence providing a stabilising negative feedback loop that weak-

ens recurrent interactions on sub-second timescales. We study the stabilising effect of pre-

synaptic inhibition in recurrent networks, in which presynaptic inhibition is implemented as a

multiplicative reduction of recurrent synaptic weights in response to increasing inhibitory

activity. We show that networks with presynaptic inhibition display a gradual increase of fir-

ing rates with growing excitatory weights, in contrast to traditional excitatory-inhibitory net-

works. This alleviates the positive feedback loop between Hebbian plasticity and network

activity and thereby allows homeostasis to act on timescales similar to those observed in

experiments. Our results generalise to spiking networks with a biophysically more detailed

implementation of the presynaptic inhibition mechanism. In conclusion, presynaptic inhibi-

tion provides a powerful compensatory mechanism that rapidly reduces effective recurrent

interactions and thereby stabilises Hebbian learning.

Author Summary

Synapses between neurons change during learning and memory formation, a process

termed synaptic plasticity. Established models of plasticity rely on strengthening synapses

of co-active neurons. In recurrent networks, mutually connected neurons tend to be co-

active. The emerging positive feedback loop is believed to be counteracted by homeostatic

mechanisms that aim to keep neural activity at a given set point. However, theoretical

work indicates that experimentally observed forms of homeostasis are too slow to
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maintain stable network activity. In this article, we suggest that presynaptic inhibition can

alleviate this problem. Presynaptic inhibition is an inhibitory mechanism that weakens

synapses rather than suppressing neural activity. Using mathematical analyses and com-

puter simulations, we show that presynaptic inhibition can compensate the strengthening

of recurrent connections and thus stabilises neural networks subject to synaptic plasticity,

even if homeostasis acts on biologically plausible timescales.

Introduction

Synaptic plasticity is widely believed to be the neuronal substrate for learning and memory.

Hebbian plasticity [1], in particular, is the long-standing prime candidate for associative learn-

ing. It preferentially connects neurons that are co-active, thereby linking neural representa-

tions of events that co-occur in time. Notwithstanding its obvious suitability for learning,

Hebbian plasticity also has the precarious side-effect of creating a positive feedback loop [2].

Pairs of neurons whose connection was strengthened by Hebbian plasticity tend to be even

more co-active, which in turn further strengthens their connection. The standard argument

why this vicious circle does not generate runaway activity in the brain is that there is a broad

spectrum of homeostatic mechanisms that keep this instability at bay [2–4]. Such mechanisms

have been demonstrated in various forms, including homeostatic scaling [5], intrinsic plastic-

ity [6, 7], metaplasticity [8, 9] or plasticity of inhibition [10, 11]. While these mechanisms

counteract modifications that take neuronal activity out of a functional regime, they all occur

on a relatively long time scale of hours or days. They are therefore poorly suited to protect neu-

ral circuits against unwanted consequences of rapid changes in input or connectivity [12, 13].

Zenke et al. [13] recently suggested that the known homeostatic mechanisms must hence be

complemented by rapid compensatory processes that render the circuit stable on shorter time

scales and hence give homeostasis the time it needs.

We suggest that presynaptic inhibition—a form of inhibition that has attained little atten-

tion in computational modelling—could serve as a candidate for such a rapid compensatory

process. Presynaptic inhibition is a mechanism that suppresses synaptic transmission by

means of presynaptic receptors and can occur through a variety of pathways [14]. At excitatory

synapses, activation of presynaptic GABAB receptors causes a reduction of neurotransmitter

release [15] by inhibiting voltage-dependent Calcium channels [16, 17]. In turn, presynaptic

GABAB receptors are activated by interneuron-mediated GABA release [18], potentially by

means of GABA spillover [16, 19, 20]. Hence, excess activity in excitatory neurons can recruit

inhibitory interneurons, which in turn activate presynaptic inhibition and thereby suppress

recurrent excitatory connections. This provides a dynamic and reversible negative feedback

loop onto recurrent excitation—a potent source of network instability—on timescales of hun-

dreds of milliseconds [18, 21, 22]. GABAB-mediated presynaptic inhibition has been observed

in a range of brain areas of different species (see for example [15, 18, 23–25]), but the func-

tional implications, in particular in recurrent circuits, remain elusive.

Here, we use simulations of rate-based networks as well as mathematical analyses to study

the compensatory properties of presynaptic inhibition in recurrent circuits. We show that pre-

synaptic inhibition ensures a gradual increase of firing rates for increases in recurrent excita-

tion, in contrast to traditional excitatory-inhibitory networks [26]. This stabilises neural

activity in networks subject to Hebbian plasticity even if homeostasis is slow. We find that the

stabilising properties are robust to network parameters and details of the mechanism. Finally,

we show that these results generalise to networks of spiking neurons.

PLOS COMPUTATIONAL BIOLOGY Presynaptic inhibition rapidly stabilises plastic recurrent networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008118 August 7, 2020 2 / 28

https://doi.org/10.1371/journal.pcbi.1008118


Results

To study the compensatory effects of presynaptic inhibition, we simulated networks of excit-

atory and inhibitory rate-based neurons and analysed the effect of changes at excitatory recur-

rent weights on network activity. We start by systematically increasing recurrent excitation to

illustrate the stabilising properties of presynaptic inhibition. Then, we study the interaction of

presynaptic inhibition with the Bienenstock-Cooper-Munro (BCM) rule, a rate-based Hebbian

plasticity rule that comprises a homeostatic control mechanism. We vary the timescale of

homeostatic control and contrast the behaviour of networks with and without presynaptic

inhibition.

Presynaptic inhibition in a recurrent network model

Our model of presynaptic inhibition is based on the following biophysical mechanism: GABA

spillover from inhibitory synapses activates presynaptic GABAB receptors at excitatory synap-

ses. This suppresses voltage-dependent calcium (Ca2+) channels, thereby inhibiting neuro-

transmitter release. Thus, activation of inhibitory neurons can lead to presynaptic inhibition of

excitatory synaptic transmission [18] (see Fig 1A for a schematic illustration).

In the rate network, we use inhibitory activity as a proxy of GABA spillover, which in turn

modulates excitatory synaptic transmission (Fig 1B). We model this presynaptic modulation

as a multiplicative “release” factor that scales excitatory synaptic weights and decreases with

Fig 1. Presynaptic inhibition in a recurrent network. A. Presynaptic inhibition mechanism: (1) Network activity drives inhibitory

interneurons. (2) GABA released by interneurons can spill over to nearby excitatory synapses, where it binds to presynaptic GABAB

receptors that (3) in turn inhibit voltage-sensitive Calcium (Ca2+) channels. (4) Reduced Ca2+ influx decreases the release of

neurotransmitter Glutamate and (5) therefore the amplitude of EPSPs. B. Simplified rate-based model consisting of excitatory (red)

and inhibitory population (blue) and a presynaptic inhibition mechanism (green). C. Release factor as a linear function of inhibitory

neuron activity for different slopes β = 0.01, 0.03, . . ., 0.09. D. Population rate as a function of excitatory recurrence (wEE) without

presynaptic inhibition for increasing strength of postsynaptic inhibition (weight wEI = 1, 1.5, . . ., 3). E. Same as D but for fixed

postsynaptic inhibition and increasing strength of presynaptic inhibition (slope of transfer function β, see C). Markers are simulation

results and solid lines analytically determined steady-state rates (see Methods and models).

https://doi.org/10.1371/journal.pcbi.1008118.g001
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increasing inhibitory activity. For the sake of analytical tractability, the release factor decreases

linearly with inhibitory firing rate (Fig 1C). Therefore, the sensitivity of presynaptic inhibition

to inhibitory firing rate (i.e. the strength of presynaptic inhibition) is determined by the slope

of this linear transfer function. Here, we assume that the effect of presynaptic inhibition is

homogeneous and diffuse enough such that all inhibitory neurons contribute to the modula-

tion of a global release factor. This global factor then multiplicatively scales all excitatory recur-

rent weights in the network. Note that the presented results remain unchanged for model

variants, in which presynaptic inhibition acts more locally, because we exclusively study ran-

dom networks without spatial structure.

Presynaptic inhibition compensates for recurrent excitation

Hebbian plasticity adjusts recurrent synaptic weights according to correlations in neural activ-

ity. At the same time, changing recurrent weights affects the activity of interconnected neu-

rons, forming a potentially destabilising positive feedback loop. Thus, how the overall firing

rate increases with changes in recurrent excitatory weights is an indicator of stability in the

presence of Hebbian plasticity. We therefore first study the effect of ad-hoc homogeneous

increases in excitatory recurrence.

In a network without presynaptic inhibition, minor changes in overall excitatory recurrence

cause major increases in the mean population firing rate (Fig 1D). Above a critical value, the

recurrent excitation drives the network to pathologically high activity states. Increasing the

strength of postsynaptic inhibition does not eliminate the supralinear dependence, but merely

shifts it to higher values of the excitatory recurrence. With presynaptic inhibition in place, fir-

ing rates have a qualitatively different dependence on recurrence. Network activity gradually

increases with excitatory weights for arbitrarily strong recurrent excitation (Fig 1E). We con-

firm these results in mathematical analyses and show that the mean population rate saturates

at a finite value as recurrent weights increase (Methods and models). How much the rate

increases with recurrence and where it saturates depends on the strength of presynaptic inhibi-

tion (Fig 1E), which is determined by the transfer function’s slope (Fig 1C).

In summary, while conventional networks of excitatory and inhibitory populations are

prone to instabilities triggered by increases in excitatory recurrence, adding presynaptic inhi-

bition allows for gradual increases of neural activity with growing excitation. This makes pre-

synaptic inhibition a candidate mechanism to break the positive feedback loop generated by

Hebbian plasticity and recurrent excitation.

Presynaptic inhibition prevents runaway excitation in the face of Hebbian

plasticity

Does presynaptic inhibition also stabilise Hebbian plasticity at recurrent excitatory synapses?

Recent work by Zenke et al. [12] has revealed that stability in spiking networks with Hebbian

plasticity on excitatory synapses requires the timescale of homeostasis to be substantially

shorter than that of plasticity. To show that presynaptic inhibition increases the range of stabil-

ity, we first qualitatively reproduce these results in a recurrent rate network with plastic excit-

atory synapses. To this end, we use the BCM rule [8], which has a correspondence to the triplet

rule used in the work of Zenke et al. [27, 28]. Homeostasis is implemented by a sliding thresh-

old in the BCM rule that aims at keeping a running average of single neuron firing rates at a

given target rate [8] (Fig 2A, left). The time constant of this running average determines the

timescale of homeostasis and is therefore referred to as the homeostatic time constant in the

following [12].
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In accordance with previous work, we find that as long as homeostasis is fast enough (on

the order of a few seconds), the BCM rule keeps network and single neuron activity at the tar-

get rate (Fig 2B, top). However, above a critical homeostatic time constant, the sliding thresh-

old is not able to control the positive feedback loop of recurrent excitation and Hebbian

plasticity.

Including presynaptic inhibition in the network (Fig 2A, bottom) alleviates this instability.

We observe two effects: First, the critical homeostatic time constant, below which all neurons

remain at the target rate is increased more than tenfold (Fig 2B, bottom). Second, presynaptic

Fig 2. Presynaptic inhibition increases critical homeostatic time constant and maintains population firing rate at

low rates. A. Circuit diagrams for networks without (top) and with presynaptic inhibition (bottom). Excitatory

recurrent synapses are subject to the BCM rule with sliding threshold (illustration on the left). B. Temporal evolution

of the average firing rate for different homeostatic time constants τc for networks without (top) and with presynaptic

inhibition (bottom). Plasticity is switched on after 6 min of simulation time (indicated by asterisk). C. Mean final

population rate as a function of homeostatic time constant. Vertical dashed line marks critical homeostatic timescale

from theory with presynaptic inhibition (see F). D. Final firing rate distribution for example runs with presynaptic

inhibition for a faster (top) and slower (bottom) homeostatic time constant. Average firing rate is indicated by vertical,

dotted line. E. Single neuron firing rates over time at the end of the simulation for τc = 70s. Neurons are sorted

according to their activity in the beginning of this period. Target rate level (5 Hz) is yellow. F. Critical homeostatic time

scale as a function of presynaptic inhibition strength β. For simulations the vertical bars indicate the range between

largest stable and smallest unstable timescale tested. β = 0 corresponds to networks without presynaptic inhibition.

https://doi.org/10.1371/journal.pcbi.1008118.g002
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inhibition prevents a pathological runaway of activity even beyond this critical homeostatic

timescale (Fig 2C).

Above the respective critical time constant, the network behaviour is remarkably different

between networks with and without presynaptic inhibition. Without it the firing rate jumps

from target to the maximum rate even for small homeostatic time constants (Fig 2C). With

presynaptic inhibition, the mean population rate remains low (Fig 2B, bottom and Fig 2C)

although single neuron firing rates show a broad distribution of values (Fig 2D) and large tem-

poral fluctuations (see Fig 2E, and S2A–S2C Fig). The low mean firing rate on the population

level is the consequence of presynaptic inhibition, which limits the population rate by sup-

pressing recurrent interactions. The broad distribution of firing rates is a result of the BCM

rule: neurons firing above the target rate will further increase their activity due to the Hebbian

nature of the BCM rule, and the converse applies to neurons firing below the target rate. The

slow sliding threshold provides a delayed negative feedback loop to this diversification, leading

to a perpetual—albeit non-periodic—turnover of those neurons firing at high rates (Fig 2E)

that depends on the homeostatic time constant (S2 Fig). It is conceivable that this turnover is

chaotic, as observed in a feed-forward model of BCM [29]. Since chaos on such a slow time-

scale may interfere with network functionality, we here concentrate on the dynamic regime

below the critical time constant.

To understand what determines the increase in the critical time constant with presynaptic

inhibition, we used a similar approach as in previous work [12] (Methods and models) to

mathematically derive the critical homeostatic time constant with presynaptic inhibition in

place (cf. Eq (34)):

tcritc ¼
tplast

rel: factor
input
target

þ target� exc: rec:�
@ rel: factor
@ GABA

�
@ GABA
@ exc: rate

� �

This equation shows that the range of stability increases with

• lower release factor at the target rate,

• stronger excitatory recurrence,

• a steeper decrease in release factor in response to overall GABA spillover,

• a stronger dependence of GABA spillover on excitatory firing rate and

• the amount of background input to the network in relation to the target rate.

While most terms in the formulation above have a clear interpretation, it might be counter-

intuitive that excitatory recurrence increases the critical timescale. This can be understood in

two ways: First, stronger recurrent weights diminish the relative magnitude of weight

increases. As the weights are scaled by the release factor, this effectively decelerates Hebbian

plasticity. Second, this intuitive version of the critical timescale is not an explicit equation (cf.

Eqs (33) and (34)). Because the firing of the network is homeostatically controlled, the learned

recurrent weight depends on the background input and can thus not be considered a truly free

model parameter.

The mathematical analysis accurately predicts the critical homeostatic timescale above

which firing rates in the network deviate from the target, as long as presynaptic inhibition is

not too strong (Fig 2F). As the mechanism is neuron-unspecific, stronger presynaptic inhibi-

tion introduces more competition between neurons in addition to the BCM rule, which can

further amplify existing heterogeneities in the network. These heterogeneities are not captured

by the mean population model used in the mathematical analysis and thus the critical time-

scale in the full network can deviate from the theoretical prediction. If we remove the noise on
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initial excitatory weights—a prominent source of heterogeneity in these networks—the simu-

lation results match the theory regardless of presynaptic inhibition strength (S3 Fig). Here we

focus on the parameter regime in which the theoretical predictions for the critical homeostatic

timescale hold despite heterogeneities in the network.

Note that homeostatic timescales need to be considered relative to timescales of plasticity.

To limit simulation time, the timescale of plasticity was about one minute in the simulations—

shorter than to be expected in biology. Zenke et al. [12] estimated the time scale of plasticity

based on slice experiments and obtained an estimate of about 50 minutes. In slice experiments,

it is commonly observed that after the induction protocol, synaptic potentials only gradually

increase within tens of minutes [30]. With these relative time scales in mind, a critical homeo-

static time constant that is similar to the time scale of plasticity (about 60 seconds) is on the

order of almost an hour. The increase mediated by presynaptic inhibition may hence render

the experimentally observed forms of homeostasis functional.

Presynaptic inhibition reduces sensitivity to strength of background input

In the model, the BCM rule raises or lowers excitatory recurrent weights to achieve a given tar-

get rate. As the background input also contributes to single neuron firing rates, its strength

affects the magnitude of recurrent weights necessary to reach the target rate. In particular, pro-

viding weaker background input renders the network effectively more recurrent. Because the

recurrent weights are critical for the stability of the network, we conjecture that the critical

homeostatic timescale is strongly affected by the level of background input. Because presynap-

tic inhibition provides a negative feedback on the recurrent weights, we expect it to reduce the

influence of the background input on network stability.

Indeed, we find that without presynaptic inhibition the range of stability of the network

increases strongly with the external input (Fig 3A, top). For the relatively low background

input we used so far, homeostasis needs to be at least ten times faster than the effective time-

scale of plasticity (5 compared to 60 seconds, Fig 3A, top left). Increasing the background

input substantially extends the range of stability in networks without presynaptic inhibition

(Fig 3A, top middle and right). If the input alone is strong enough to bring the network close

to the target rate, homeostasis on the order of the plasticity timescale is sufficient to maintain

stable firing (see also Fig 3D).

The (in)stability of networks without presynaptic inhibition can be understood by revisiting

the dependence of output firing rate on recurrent excitatory weights (cf. Fig 1D). For lower

background input, the mean recurrent weight has to be increased closer to the point of insta-

bility for the neurons in the population to reach a given target rate (Fig 3B). In consequence,

the network is more prone to destabilisation by the Hebbian contribution of the BCM rule,

because small changes in excitatory recurrent weights can push the network over this stability

threshold if homeostatic control is too slow.

Presynaptic inhibition removes the sudden point of instability, and introduces a gradual

increase of population activity with increasing recurrent excitation (cf. Fig 1E). In conse-

quence, the range of stability in networks with presynaptic inhibition is less dependent on the

strength of background input compared to target rate (Fig 3A, bottom). Although higher

inputs increase the critical homeostatic timescale, this increase is less prominent than in net-

works without presynaptic inhibition (Fig 3C). This observation is in line with the analytically

determined critical homeostatic timescale: The stronger presynaptic inhibition, the smaller is

the difference in critical timescales when varying the strength of background input (Fig 3D).

In addition, when homeostasis is slower than the critical timescale, the mean population rate
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decreases with higher inputs (Fig 3C). As higher inputs require weaker recurrence (Fig 3B),

plasticity-induced fluctuations of single neuron firing rates are smaller, leading to a lower

mean population rate.

In summary, the critical homeostatic time constant and, accordingly, network stability cru-

cially depend on the relation of background input to the target rate. Weak inputs require com-

pensation by strong recurrent excitation, bringing network dynamics closer to instability. As

networks with presynaptic inhibition do not suffer from such instabilities, they have a weaker

dependence on the level of background input or excitatory recurrence.

Fig 3. Sensitivity of networks with and without presynaptic mechanism to levels of external input. A. Temporal evolution of the average

firing rate for different homeostatic time constants τc for networks without (top) or with presynaptic inhibition (bottom) and different levels

of background input strength (low—0.5 Hz, medium—1 Hz and high—2.5 Hz). Strength of presynaptic inhibition is β = 0.05. B. Target firing

rate in Hz as a function of external input strength compared to mean recurrent excitatory weight in a network without plasticity and

presynaptic inhibition. C. Mean population rate as a function of homeostatic time constant in networks with (blue-green) and without (grey)

presynaptic inhibition for different strengths of background input. Markers and their colours correspond to A indicating the parametrisation

(low, medium or high, respectively). D. Critical homeostatic timescale derived analytically as a function of presynaptic inhibition strength for

increasing strengths of background input (I = 0.5, 1, 2, 3, 5).

https://doi.org/10.1371/journal.pcbi.1008118.g003
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Presynaptic inhibition in a spiking network confirms results from rate-

based model

So far we have considered a strongly simplified linear rate-based neuron model. Moreover, we

incorporated GABA spillover indirectly through the inhibitory firing rate. In the following we

validate our results in a more complex, spiking network model. To this end, we simulate net-

works of randomly connected leaky integrate-and-fire neurons with current-based synapses.

We include GABA spillover more explicitly: spikes from a given inhibitory neuron cause a

local increase in GABA concentration around those excitatory neurons it targets. The accumu-

lated GABA then inhibits afferent excitatory transmission, modelled again as a multiplicative

factor onto recurrent synaptic weights (Fig 4A). Thus higher GABA concentrations leads to a

decrease in amplitude of excitatory postsynaptic potentials (EPSP) (Fig 4B). To simplify a com-

parison with the rate-based analysis, we rescale the GABA concentration to values comparable

to inhibitory or excitatory firing rates in the system (see Methods and models) and use the

same linear transfer function linking GABA concentration to release factor as before (Fig 4C).

First we investigate how the mean firing rate depends on the overall excitatory recurrence.

As in the rate model, networks without presynaptic inhibition exhibit a high sensitivity to the

strength of recurrent excitatory weights (Fig 4D, top) [26, 31]. For weak recurrent excitation

the network fires at low rates, whereas for stronger excitation it destabilises and fires at a path-

ologically high firing rate that is only limited by the refractory period. Stronger postsynaptic

inhibition merely shifts the point of destabilisation to higher values of excitatory recurrence.

In contrast, networks with presynaptic inhibition allow a gradual increase of the mean popula-

tion firing rate with growing excitatory recurrence (Fig 4D, bottom). The dependence of the

population firing rate on excitatory recurrent weight scales multiplicatively with the strength

of presynaptic inhibition (Fig 4C). The qualitatively different behaviour in response to changes

in excitatory recurrence for networks with and without presynaptic inhibition is in good agree-

ment with the results obtained in the rate network (cf. Fig 1).

To verify whether presynaptic inhibition also stabilises spiking networks subject to Hebbian

plasticity, we incorporate the triplet rule with homeostatically controlled, activity-dependent

long-term depression [27] (see Methods and models). The timescale of homeostasis is related

to the time constant of the neuron-specific rate detector that scales the amount of long-term

depression [12]. As previous work by Zenke et al. [12] has shown, stability in spiking networks

without presynaptic inhibition critically depends on this homeostatic timescale. While fast

homeostasis keeps the population firing rate close to target, slow homeostasis above a critical

threshold is unable to control the positive feedback loop of recurrent excitation and Hebbian

plasticity, such that the network exhibits runaway activity (Fig 4E and 4F, top). Note that we

observe higher critical homeostatic time constant than Zenke at al. [12]. This is a consequence

of a higher background input in our spiking network (cf. Fig 3) and may also depend on other

differences in model choice, such as current-based rather than conductance-based synapses.

Including presynaptic inhibition in the spiking network produces qualitatively similar results

as in the rate model: Presynaptic inhibition increases the critical homeostatic time constant

below which network activity is homogeneous and at the target rate (Fig 4E, bottom). It also

maintains low population firing rates beyond this critical timescale (Fig 4G), although the net-

work shows a broader distribution of single neuron firing rates (Fig 4F). For slow homeostatic

feedback control, we observe a similar turnover as in the rate network: the set of neurons that

are most active changes over the duration of the simulation (Fig 4H).

We conclude that the results we obtained for rate models can be qualitatively reproduced in

networks of spiking neurons that include presynaptic inhibition based on local GABA spill-

over. In consequence, the features of presynaptic inhibition that prevent runaway excitation in
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Fig 4. Presynaptic inhibition in a spiking network. A. Circuit diagram of the spiking network model consisting of an excitatory and

inhibitory population of neurons as well as accumulation of local GABA concentration that triggers presynaptic inhibition. B. EPSP amplitude

in the presence of presynaptic inhibition (β = 0.1) for low and high GABA concentration (1 and 5, respectively). C. Release factor as a function

of GABA concentration for different examples of linear transfer functions. D. Population firing rate as a function of mean excitatory recurrent

weight for increasing strengths of postsynaptic inhibition wEI (top) or presynaptic inhibition β (bottom). E. Temporal evolution of the

population firing rate for different homeostatic time constants τc in networks without (top) and with presynaptic inhibition (bottom). F. Final

firing rate distribution for two example runs: τc = 60s (pink) and τc = 120s (dark blue-grey) without (top) and with presynaptic inhibition

(bottom). Average firing rate is indicated by triangle of respective colour. G. Mean final population rate as a function of homeostatic time

constant. H. Raster plot of 1000 random neurons in the networks sorted by activity at time t0 (left) and with the same ordering 20 minutes of

simulation time later.

https://doi.org/10.1371/journal.pcbi.1008118.g004
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the presence of Hebbian plasticity generalise across network models on different levels of

abstraction.

Discussion

In the present work we have demonstrated that presynaptic inhibition can robustly alleviate

destabilisation of network activity caused by changes in recurrent excitation. In our model of

presynaptic inhibition, synaptic transmission at excitatory synapses is inhibited presynaptically

by GABA spillover from inhibitory synapses. Increases in recurrent excitation inevitably ele-

vate inhibitory population activity and thus GABA release, forming a negative feedback loop

on effective recurrent excitatory weights. This negative feedback loop serves as a rapid com-

pensatory process that attenuates synaptic transmission if network activity is too high, a mech-

anism that differs fundamentally from classical forms of postsynaptic inhibition. While

increases in network activity also recruit strong feedback inhibition, additive negative feedback

can only compensate a limited amount of recurrent excitation. In contrast, by directly target-

ing recurrent excitation itself, presynaptic inhibition provides powerful multiplicative control.

We show that it therefore prevents runaway excitation arising from Hebbian plasticity when

homeostatic control mechanisms alone are not fast enough. By limiting the overall population

activity, presynaptic inhibition allows for homeostasis on biologically realistic timescales with-

out compromising network stability.

Multiplicative gain control

We model presynaptic inhibition of synaptic transmission as a multiplicative factor onto excit-

atory recurrent synapses, which decreases with (inhibitory) network activity. Thus, presynaptic

inhibition can serve as a form of multiplicative inhibition, i.e., a gain control. This was previ-

ously acknowledged by Fink et al. [24], who demonstrated in a simple feedback model that

presynaptic inhibition at the neuro-muscular junction can control sensory gain. Yet, multipli-

cative control of neural responses has typically been attributed to different processes such as

shunting inhibition [32], short-term depression [33] or synaptic scaling [34].

Whether shunting inhibition—an increase in membrane conductance that short-circuits

excitatory currents—can provide multiplicative inhibition [35] has been debated: Experimen-

tal and theoretical studies have shown that the overall effect of shunting inhibition on neural

responses in fact is not multiplicative but subtractive [36–38], unless specific assumptions such

as dendritic saturation or certain noise levels are met [37, 39].

Similar to the presynaptic inhibition mechanism studied here, short-term plasticity alters

synaptic transmission by affecting transmitter release [40, 41]. Indeed it has been shown, that

short-term depression can provide dynamic gain control [33, 42]. A defining difference

between presynaptic inhibition and short-term plasticity is that presynaptic inhibition depends

on surrounding network activity, whereas short-term plasticity is driven by presynaptic activ-

ity in the synapse in question. Hence, presynaptic inhibition scales recurrent interactions glob-

ally and preserves the overall network structure, whereas short-term depression reduces the

impact of highly active neurons on the network. While the spatial scale plays a minor role in

the random homogeneous networks we considered here, we expect to observe marked differ-

ences between presynaptic inhibition and short-term plasticity in any network, in which het-

erogeneities between neurons or synapses should be preserved.

Another mechanism that is considered to exert multiplicative control is synaptic scaling [5,

34, 43]. Similar to presynaptic inhibition, synaptic scaling modulates synaptic efficacies in

response to changes in neural activity. However, there are a few key differences: First, like

other forms of homeostasis synaptic scaling acts on a timescale of hours [5, 13], whereas
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presynaptic inhibition acts on a much shorter time scale and can therefore adapt to fluctua-

tions in network activity. Second, synaptic scaling operates on the spatial scale of single neu-

rons [44], thus affecting the relative contribution of different neurons to network activity—

albeit differently from short-term depression in that input and not output synapses are modu-

lated. Presynaptic inhibition operates on the network level. Finally, synaptic scaling is homeo-

static in that it scales synapses to maintain a certain target activity [3, 5]. Such a “set point”

does not exist in our model of presynaptic inhibition.

We conclude that although shunting inhibition as well as short-term depression and synap-

tic scaling all have been linked to multiplicative gain control, their network effects are funda-

mentally different from presynaptic inhibition.

Role of presynaptic inhibition in learning

Here, we have focused on the potential of presynaptic inhibition to stabilise Hebbian plasticity

at recurrent excitatory synapses. It conserves the underlying network connectivity and might

therefore set the stage for stable learning. GABAB receptors are highly expressed in several

regions traditionally linked to learning and memory [45, 46] and presynaptic inhibition is

prominent in the hippocampus (see for example [15, 17, 47, 48]). It is therefore conceivable

that presynaptic inhibition plays other roles in learning and memory beyond the stabilisation

of ongoing plasticity demonstrated here. For example, experiments in hippocampus suggest

that local, rapid and activity-dependent regulation of release probability serves to maintain

synapses in an operational range, ensuring that synapses are optimally placed to undergo

changes induced by learning mechanisms [49]. In addition, many models of learning rely on a

coincidence of pre- and postsynaptic activity (i.e., Hebbian plasticity). By regulating informa-

tion flow, presynaptic inhibition could thus act as a gating mechanism for the induction of

plasticity [18, 50]. Indeed, defects in GABAB receptor expression have been shown to compro-

mise long-term plasticity, leading to impairments in hippocampus-dependent memory [51].

Gating of long-term plasticity by presynaptic inhibition was also observed in the amygdala,

where loss of presynaptic GABAB receptors led to a generalisation of conditioned fear to non-

conditioned stimuli [52]. In this context it was suggested that presynaptic inhibition sets the

balance between associative and non-associative long-term potentiation. In cerebellum, stimu-

lation with physiological activity patterns leads to changes in presynaptic GABAB receptor

expression, which was suggested to complement other forms of plasticity: A reduction in pre-

synaptic inhibition increases synaptic transmission and could thus enhance long-term plastic-

ity [53].

In summary, a range of experiments indicate that beyond providing stability during ongo-

ing plasticity, presynaptic inhibition could serve as an activity-dependent gating mechanism

for long-term plasticity.

Phenomenology and limitations

Like all computational models, the present one contains simplifying design choices. Because

our goal was to investigate consequences of presynaptic inhibition on the network level, we

adopted a phenomenological description of the mechanism. Although we motivated the

model by a specific pathway that suppresses presynaptic calcium channels, activation of pre-

synaptic GABAB receptors can impair the release machinery in other ways, e.g. by activation of

potassium channels [17]. Furthermore, presynaptic terminals also express GABAA receptors

that have been implicated in presynaptic inhibitory effects [54, 55]. Such alternative pathways

also operate on timescales in a sub-second range, and should therefore not influence the valid-

ity of the mechanisms we suggest. Furthermore we show that the compensation of recurrent
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excitation does not require presynaptic inhibition to exclusively target recurrent excitatory

connections (S1 Fig), supporting the generalisability of the mechanism.

Urban-Ciecko et al. have attributed presynaptic inhibition to somatostatin-positive (SOMs)

but not parvalbumin-positive interneurons (PVs) [18]. Modelling circuits with different inter-

neuron types, in which presynaptic inhibition is mediated by SOMs is beyond the scope of this

work, however.

For analytical tractability we mostly used linear functions for presynaptic inhibition, but

show that the stabilising effect is robust to the specific choice of transfer function (S4 Fig).

Another simplifying assumption in our work is that we consider synaptic transmission to be

deterministic, such that presynaptic inhibition merely affects a synaptic release factor. A natu-

ral extension would be to include a probabilistic release mechanism and a dynamic model of

short-term plasticity. However, we expect that our results will still hold qualitatively, because

on the slow timescales of synaptic plasticity, short-term plasticity will act mainly through

changes in steady state [56], rather than through a short-term redistribution of synaptic release

[57].

Finally, we concentrated on recurrent synapses. The problem of Hebbian instability is par-

ticularly drastic in this setting, because not only post-, but also presynaptic activity is affected

by weight changes. For plasticity in feedforward synapses, this is not the case and the dynamics

therefore less explosive. We therefore suspect that the suggested stabilization mechanism

would not suffer from additional plasticity in the input synapses.

Spatial specificity of presynaptic inhibition

It is unclear how specific is the mechanism of presynaptic inhibition. A critical determinant of

this specificity is the source of GABA at excitatory synapses. One possibility is the presence of

axo-axonal synapses that release GABA in very close proximity to excitatory synapses and

thereby mediate a potentially highly specific form of presynaptic inhibition [58]. For example,

presynaptic inhibition at the neuro-muscular junction ensures smooth and stable movement

patterns through axo-axonal synapses [24]. However, in most brain areas axo-axonal synapses

are not numerous enough to account for the full range of presynaptic inhibition effects [18].

Presynaptic inhibition also occurs in the absence of axo-axonal synapses, potentially through

GABA that diffuses from nearby inhibitory synapses [19, 59]. In fact, a specific class of inter-

neurons—neurogliaform cells—has been found to release GABA in a target-independent way,

generating non-specific forms of inhibitory control [60]. Regardless of the exact source of

GABA spillover, the spatial specificity of presynaptic inhibition depends on diffusion coeffi-

cient of GABA as well as the input specificity of the respective cells.

We were interested in the interactions of presynaptic inhibition with plasticity in recurrent

connections. We therefore considered a small network in which synaptic connections can

essentially be considered random. Assuming that GABA release and spillover provide a spa-

tially unspecific signal on this scale, we modelled presynaptic inhibition as a global effect.

More specifically, activity of all inhibitory neurons modulates a single release factor that acts at

every recurrent excitatory synapse. This leads to the control of mean population activity by

presynaptic inhibition, whereas single neurons can exhibit heterogeneous firing rates. How-

ever, we do not expect that in the brain, presynaptic inhibition can act sufficiently locally to

allow highly specific control, e.g., on a single neuron level. The reason is that the mechanism

does not provide direct feedback but acts through a population of inhibitory neurons, thus los-

ing spatial specificity.

Considering morphologically more complex neurons might give insights into the computa-

tional properties of presynaptic inhibition at the level of single compartments or even dendritic
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branches. Experiments have revealed that release probabilities within a dendritic branch are

similar and change depending on recent dendritic activity [49]. However, an extension to net-

works of multi-compartment neurons is also beyond the scope of this project.

In conclusion, the spatial specificity of presynaptic inhibition is not yet resolved. Both local,

specific mechanisms via axo-axonal synapses and broader mechanisms mediated by GABA

spillover from other synapses have been demonstrated [20]. It is also conceivable that the

degree of specificity of presynaptic inhibition varies between brain areas depending on the

computational demands.

Outlook

In the present work, we focused on the role of presynaptic inhibition to stabilise recurrent

excitation in the presence of plasticity. Besides the extensions mentioned in previous para-

graphs, it would also be interesting to study the effects of presynaptic inhibition on sensory

information processing, e.g., by providing a gating mechanism for sensory information at an

early stage [20]. Presynaptic inhibition has been repeatedly observed in early sensory systems

including the retina [61], lateral geniculate nucleus [62], somatosensory cortex [18] and the

olfactory system of drosophila [25], and theoretical work has implicated presynaptic inhibition

in extending the dynamic range in sensory processing [63]. Further theoretical work will be

required to pinpoint the full functional repertoire of presynaptic inhibition.

Methods and models

To investigate the effect of presynaptic inhibition on network stability, we simulate large rate-

based and spiking recurrent networks and mathematically analyse mean population dynamics.

Recurrent rate network

The recurrent rate network consists of NE = 1024 excitatory and NI = 256 inhibitory neurons

described by their firing rates riE and riI. To ensure positive and finite firing rates, riE and riI are

rectified and saturated at 200 Hz. The neurons are randomly connected with connection prob-

ability c = 100 × 2−10� 0.1 and fixed indegree. Neuron numbers were chosen as powers of two

to increase simulation speed, and the connection probability guarantees an exact ratio of 4: 1

(100 and 25) excitatory and inhibitory ingoing synapses at each neuron. The firing rate

dynamics are given by

tE
driE
dt
¼ � riE þ p

X

j2exc

wij
EEr

j
E �

X

j2inh

wEIr
j
I þ Ibg ð1Þ

tI
driI
dt
¼ � riI þ

X

j2exc

wIEr
j
E �

X

j2inh

wIIr
j
I ; ð2Þ

with synaptic weights wðijÞXY (X, X 2 {E, I}) and time constants τE = τI = 20 ms. Presynaptic excit-

atory or inhibitory input populations are given by indices from neuron-specific subsets exc
and inh and excitatory neurons receive noisy, uncorrelated background input Ibg (with distri-

bution N ðI; 0:1IÞ). Synaptic weights are scaled by connection probability and network size

(see Table 1) and fixed with exception of the excitatory recurrent weights wij
EE. Excitatory

weights are either a free parameter (Fig 1) or subject to plasticity. Weights are chosen such that

the network is balanced [26] and excitatory and inhibitory firing rates are similar.
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Presynaptic inhibition mechanism. The global release factor p in Eq (1) multiplicatively

scales the total excitatory recurrent input to each neuron. In the absence of presynaptic inhibi-

tion we set p� 1, which leaves a standard recurrent rate model of excitatory and inhibitory

neurons. If the presynaptic inhibition mechanism is included, p is modulated by the total

inhibitory input rate according to

tp
dp
dt
¼ � pþ gðrtotI Þ ; ð3Þ

where g is a monotonically decreasing function and τp = 500 ms. The time constant of presyn-

aptic inhibition was chosen to reflect the timescale of metabotropic GABAB receptors [18]. For

simplicity, we use a linear function g(r) = 1 − βr with slope � b, and rectify p to enforce positiv-

ity. The mechanism is global, meaning that a single release factor p is modulated by the total

weighted inhibitory activity rtotI ¼
PNI

j¼1
wEIr

j
I. The slope β as well as inhibitory weight wEI

determine the strength of the mechanism. To account for the scaling of wEI, β is also normal-

ised by connection probability c (see Table 2).

In S4 Fig we test sigmoid and exponential functions as alternatives. The sigmoid transfer

function is parametrised as

gsðrÞ ¼
1

1þ ebsðr� rshiftÞ

with slope parameter βs and shift (or reversal point) rshift. For an exponentially decaying trans-

fer function we use

geðrÞ ¼ e� ber

with slope parameter βe.

Plasticity model. We used the Bienenstock-Cooper-Munro (BCM) rule [8] as a model for

synaptic plasticity. Plasticity only affects connections between excitatory neurons, changing

Table 2. Timescales, presynaptic inhibition and plasticity parameters in the rate network (unless specified

differently).

timescale value parameter value

τE 0.02 s η 5

τI 0.01 s κ 5 Hz

τp 0.5 s w0 1

τw 300 s wmax 10 w�

τc free parameter β 0.05 c (default)

https://doi.org/10.1371/journal.pcbi.1008118.t002

Table 1. Rate network parameters (unless specified differently).

parameter value parameter value

NE 1024 wEI 1/(cNI)

NI 256 wIE 1.5/(cNE)

c 100 × 2−10 wII 0.5/(cNI)

rmax 200 Hz I 0.5 Hz

https://doi.org/10.1371/journal.pcbi.1008118.t001
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the weights according to

tw
dwij

EE

dt
¼
Zw0

k3
riEr

j
E riE �

ð�riEÞ
2

k

� �

: ð4Þ

The effective timescale of plasticity is determined by time constant τw, initial weight w0 and

learning rate η. Thus, the effective time constant of plasticity is given by

tplast ¼
tw
Zw0

: ð5Þ

As in the original formulation, this recurrent BCM rule is Hebbian and will attempt to

potentiate afferent synapses of neurons above the target rate κ and depress the ones below,

which is captured by the nonlinear threshold
ð�r iEÞ

2

k
in Eq (4). The neuron-specific threshold

depends on the target rate κ as well as a running estimate �riE of neuron activity, given by a low-

pass filter of that neuron’s firing rate:

tc
d�riE
dt
¼ � �riE þ riE : ð6Þ

For constant input, the plasticity rule together with the threshold’s dependence on the rate

estimate create a homeostatic system that tries to bring the firing rate of every neuron to the

target κ = 5 Hz. The network is initialised close to the fixed point as determined by mathemati-

cal analyses: r�E ¼ k, p� = 1 − βκ and wij
EE ¼ w� ¼ 1

p�cNE
ð1þ

~wEI ~wIE
1þ ~wII
� I

k
Þ (cf. Eq (18)). Excitatory

recurrent weights are limited to the interval from zero to 10w�.
A critical parameter for stability is the time constant τc of rate estimation [12], which in this

context acts as timescale of homeostasis and is a free parameter of the system. Note that the

homeostatic timescale needs to be seen in relation to the the effective timescale of plasticity. To

improve simulation speed in the rate network, we rescaled the timescale of plasticity by a factor

of 50 (τplast = 60s instead of 3000s used in previous work [12]). As all other timescales in the

system are at least a factor of 100 faster, this does not influence the stability of the network.

Thus, a homeostatic timescale of 60 seconds (τplast) in our network actually corresponds to

homeostasis on the order of almost an hour of biological time.

Mean population rate model

To understand the dynamics of the recurrent rate network in more detail, we derive a mean

population rate model from the full network. Assuming homogeneous neuron activity as well

as a sufficiently large network, the excitatory and inhibitory populations can be described by

their mean population firing rate rE and rI, respectively. Both populations receive recurrent

and reciprocal input with a mean weight, such that their dynamics can be simplified to

tE
drE
dt
¼ � rE þ p~wEErE � ~wEIrI þ I ð7Þ

tI
drI
dt
¼ � rI þ ~wIErE � ~wIIrI ; ð8Þ

with weights ~wXY ¼ cNYwXY and in particular ~wEE ¼ hw
ij
EEiij, where wXY are the synaptic weight

parameters from the full rate network (Table 1). As in the full model, firing rates are rectified

and thresholded at 200 Hz and presynaptic inhibition is modelled by a monotonic decrease in
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release factor p (see Eq (3)) with rtotI ¼ ~wEIrI. As ~wEI does not depend on the connectivity or

number of neurons, no further normalisation of β is needed.

In the mean population rate model the BCM rule with homeostatically sliding threshold

reduces to

tw
d~wEE

dt
¼
Zw0

k3
r2

E rE �
�r2
E

k

� �

ð9Þ

tc
d�rE
dt

¼ � �rE þ rE ; ð10Þ

as pre- and postsynaptic firing rates are both described by the mean excitatory population rate.

Thus, the mean population rate model with presynaptic inhibition simplifies to a five-dimen-

sional dynamical system.

Analytical steady-state firing rates

To compare the steady-state behaviour of the mean population rate model in the presence and

absence of presynaptic inhibition, we derive the fixed point of Eqs (7) and (8) for unsaturated

rates and linear presynaptic inhibition transfer function in Eq (3). In steady-state, the inhibi-

tory rate is

rI ¼
~wIE

1þ ~wII
rE : ð11Þ

and thus we can write the steady-state excitatory firing rate without presynaptic inhibition as

rp�1

E ¼
I

1 � ~wEE þ
~wEI ~w IE
1þ~wII

: ð12Þ

Note that this fixed point only exists as long as ~wEE < 1þ
~wEI ~w IE
1þ~wII

.

In the following we define the total inhibition recruited by the excitatory population

through the inhibitory population, and the excitatory weight as

wI≔
~wEI ~wIE

1þ ~wII
and w≔ ~wEE : ð13Þ

First, we assume that the mean background input I is weak enough to ensure that

rE� 1/(wI β). In this regime the transfer function g is linear such that Eq (7) can be rewritten

to

rE ¼ ð1 � bwIrEÞwrE � wIrE þ I : ð14Þ

Solving this quadratic equation for rE gives the steady-state firing rate with presynaptic inhi-

bition for linear transfer function:

rE ¼
1

2bwIw
w � 1 � wI þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðw � 1 � wIÞ
2
þ 4bwwII

q� �

: ð15Þ

Note that the solution with a negative contribution of the square root does not give positive

firing rates and thus is not relevant for this system.

It can be shown that for mean background input I < 1þwI
bwI

, presynaptic inhibition imposes

an upper bound on the steady-state firing rate with respect to the recurrent excitatory weight
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w. Taking the limit of w to infinity gives

lim
w!1

rE ¼ lim
w!1

1

2bwI
1 �

1

w
�
wI

w
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
1

w
�
wI

w

� �2

þ
4IbwI

w

s0

@

1

A ¼
1

bwI
: ð16Þ

Therefore, the upper bound of the excitatory firing rate for moderate external inputs

depends on the strength of presynaptic inhibition β as well as the total effective inhibitory

weight wI (see definition in Eq (11).

For external input strengths I > 1þwI
bwI

, the excitatory rate rE is larger than 1/(βwI) leading to

p = [1 − βwI rE]+ = 0. In this case the steady-state firing rate reduces to

rp¼0

E ¼
I

1þ wI
ð17Þ

and hence is independent of the excitatory recurrent weight w.

Derivation of critical homeostatic timescale

To derive the critical homeostatic timescales in the presence and absence of presynaptic inhibi-

tion, we revisit the five-dimensional dynamical system given by Eqs (3) and (7)–(10), and fol-

low a similar approach as Zenke et al. [12]: first we reduce the system to two dimensions, then

perform a linear stability analysis around the fixed point and finally determine how the stabil-

ity of the fixed point depends on the timescale of homeostasis.

Reduction to two-dimensional system. As the dynamics of rE, rI and p are much faster

than those of w and �rE (i.e., τE, τI, τp� τw, τc), we can use a separation of timescales approach

to reduce the full system to two dimensions. With respect to the slow plasticity and homeosta-

sis dynamics, the fast variables are at their steady-state. For the excitatory firing rate we can

therefore write

rE ¼ gðwIrEÞwrE � wIrE þ I ; ð18Þ

where we again use the definitions of w and wI from Eq (13) for readability. Taking the deriva-

tive with respect to w on both sides gives

drE
dw
¼ gðwIrEÞðw

drE
dw
þ rEÞ þ wI

drE
dw

g 0ðwIrEÞwrE � wI
drE
dw

; ð19Þ

where g0 is the derivative of g with respect to rE. Solving for
drE
dw leads to

drE
dw
¼

gðwIrEÞrE
1 � ðgðwIrEÞ þ g 0ðwIrEÞwIrEÞwþ wI

: ð20Þ

To eliminate w from the partial derivative above we reorder Eq (18) for w, insert the result

and after simplifying the expression finally obtain

drE
dw
¼

gðwIrEÞr2
E

I � g0ðwIrEÞ
gðwIrEÞ

wIrEðrE þ wIrE � IÞ
: ð21Þ

Using the chain rule
drE
dt ¼

drE
dw

dw
dt , we can express slow dynamics of the BCM-type plasticity

rule in Eq (9) through its effect on the steady-state of rE. Thus the firing rate rE becomes the

slow dynamic variable together with its running estimate �rE and therefore the final two-
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dimensional system is described by

tw
drE
dt

¼
Zw0

k3

gðwIrEÞ
I � g0ðwIrEÞ

gðwIrEÞ
wIrEðrE þ wIrE � IÞ

r4

E rE �
�r2
E

k

� �

ð22Þ

tc
d�rE
dt

¼ � �rE þ rE : ð23Þ

Linear stability analysis. The system described by Eqs (22) and (23) is in the stationary

state if the rate estimate and excitatory firing rate are at the target (�rE ¼ rE ¼ k). To obtain the

Jacobian of the system, we calculate the partial derivates of the right hand side of Eqs (22) and

(23) with respect to rE and �rE and evaluate it at the fixed point ðrE;�rEÞ ¼ ðk;kÞ:

Jjðk;kÞ ¼
Ck4

tw
� 2Ck4

tw

1

tc
� 1

tc

0

@

1

A ; ð24Þ

where we introduced the auxiliary expression

C ¼
Zw0

k3

gðwIkÞ

I � g0ðwIkÞ

gðwIkÞ
wIkðkþ wIk � IÞ

: ð25Þ

The characteristic polynomial then is

ð
Ck4

tw
� lÞð�

1

tc
� lÞ þ

2Ck4

twtc
¼ l

2
þ
tw � Ck

4tc
twtc

lþ
Ck4

twtc
; ð26Þ

which determines the eigenvalues of the system linearised around the fixed point:

l1=2 ¼
1

2twtc
ðCk4tc � twÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCk4tc � twÞ
2
� 4twtcCk

4

q

: ð27Þ

If the real part of both eigenvalues is negative, the fixed point is stable (see for example

[64]). In the following we use analogous reasoning to previous work [12] to prove that this

condition is fulfilled as long as tc <
tw
Ck4. First of all, C is positive for moderate external input (I

< κ(1 + wI)), because g is a monotonously decreasing function and all other variables are posi-

tive. The stability condition follows immediately if the square root is imaginary. In case the

square root is real, we can write the larger eigenvalue as

l1 ¼
1

2twtc
Ck4tc � twð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCk4tc � twÞ
2

1 �
4twtcCk

4

ðCk4tc � twÞ
2

 !v
u
u
t ð28Þ

¼
1

2twtc
Ck4tc � twð Þ þ jCk4tc � twj

ffiffiffi
g
p

; ð29Þ

where γ is the second term of the product in the square root and
ffiffiffi
g
p

has to be real given the

previous assumption. IfCκ4 τc> τw then l1 ¼
1

2twtc
ðCk4tc � twÞð1þ

ffiffiffi
g
p
Þ > 0 and thus the

fixed point is unstable.
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If, on the other hand, Cκ4 τc< τw it follows that

l1 ¼
1

2twtc
ðCk4tc � twÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCk4tc � twÞ
2
� 4twtcCk

4

q

ð30Þ

<
1

2twtc
ðCk4tc � twÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCk4tc � twÞ
2

q

ð31Þ

¼ 0 ; ð32Þ

such that both eigenvalues are negative and therefore the fixed point is stable.

Critical homeostatic timescale. Using the stability condition derived above, we can iden-

tify the critical homeostatic timescale as

tcritc ¼
tw
Ck4

¼
tw
Zw0

1

gðwIkÞ

I
k
�
g 0ðwIkÞ

gðwIkÞ
wIðkþ wIk � IÞ

� �

: ð33Þ

To obtain a more intuitive expression, we reorder Eq (18) at the fixed point (rE = κ) to give

g(wI κ)wκ = κ + wI κ + I and insert this into the Eq (33) to get

tcritc ¼
tplast

gðwIkÞ

I
k
� kwg0ðwIkÞwI

� �

: ð34Þ

In summary, we have shown that stability of the fixed point at the target rate κ is guaranteed

as long as the homeostatic time constant τc is smaller than a critical value tcritc , which depends

on the release factor at the target rate g(wI κ), excitatory recurrence w, the change g0(wI κ) of

release factor with inhibitory acitvity (i.e. GABA spillover) and the dependence wI of this inibi-

tory activity on excitatory firing rate. Note that the critical homeostatic timescale needs to be

seen in relation to the effective time constant of plasticity tplast ¼
tw
Zw0

.

Without presynaptic inhibition the two-dimensional system simplifies to

tw
drE
dt

¼
Zw0

k3I
r4

E rE �
�r2
E

k

� �

ð35Þ

tc
d�rE
dt

¼ � �rE þ rE ; ð36Þ

which was previously analysed by Zenke et al. [12]. We can recover their results by inserting g
(r)�1 (implying g0(r)�0) into Eq (33), which leads to the critical timescale without presynaptic

inhibition

tcritc
;p¼1 ¼

twI
Zw0k

¼ tplast
I
k

: ð37Þ

S5 Fig shows the eigenvalues for increasing homeostatic time constant as well as the phase

plane dynamics with fast and slow homeostasis, both with and without presynaptic inhibition.

Spiking network model

The recurrent spiking network we studied consists of 5000 leaky integrate-and-fire neurons

(4000 excitatory and 1000 inhibitory neurons), which are randomly connected with current-

based synapses [65]. In addition to the recurrent connections, both excitatory and inhibitory

neurons receive random background input from an external population modelled by 2000
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Poisson units with firing rate 5 Hz. Connection probability for recurrent and external connec-

tions is sparse (10%).

The membrane potential Vi of neuron i evolves according to

tm
dVi

dt
¼ VR � Vi þ IE þ II þ Iext ; ð38Þ

with reversal potential VR, membrane time constant τm and synaptic input currents from

excitatory (IE), inhibitory (II) and external populations (Iext). If a voltage trace crosses the

threshold VT, the neuron emits a spike and the voltage is reset to VR for an absolute refractory

period of τref (see Table 3 for an overview of neuron and network parameters). The spike train

of a single neuron i is defined as a sum over spikes k given by Si ¼
P

kdðt � tki Þ with spike

times tki . Input currents are given by a temporally filtered, linear, weighted sum of the spikes

from the respective population to neuron i:

tI
dIiI
dt
¼ � IiI þ

X

j2Inh

wijSjðtÞ and

tE
dIiext
dt

¼ � Iiext þ
X

j2Ext

wijSjðtÞ;

where wij are synaptic weights from neuron j to neuron i.
Presynaptic inhibition by GABA spillover. In analogy to the rate network, the effect of

presynaptic inhibition on synaptic transmission is modelled as a multiplicative factor (“release

factor”) onto excitatory synaptic weights. However, in the spiking network we consider a more

local version of the mechanism with neuron-specific release factors pi that are modulated by

GABA spillover. More specifically, excitatory synaptic inputs follow

tE
dIiE
dt

¼ � IiE þ pi
X

j2Exc

wijSjðtÞ:

We estimate local GABA levels (can also be interpreted as concentration) by accumulating

a fixed amount of GABA—given by AGABA—for every inhibitory spike according to

tI
dCi

GABA

dt
¼ � Ci

GABA þ
X

j2inh

AGABASjðtÞ:

The local GABA levels are neuron-specific and affected by all inhibitory neurons projecting

to the respective neuron. Thus, an inhibitory spike leads to both an inhibitory current and an

increase in local GABA level at downstream excitatory neurons. The inhibition of release

through GABA spillover is then again modelled by a linear decrease in release factor with

Table 3. Neuron and network parameters.

neuron parameter value network parameter value

VR −70 mV NE 4000

VT −50 mV NI 1000

τm 20 ms Next, rext 2000, 5 Hz

τref 5 ms connectivity c 0.1

τE = τI 10 ms

https://doi.org/10.1371/journal.pcbi.1008118.t003
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increasing GABA levels, that is

tp
dp
dt
¼ � pþ ½1 � bCGABA�þ: ð39Þ

We set the time constant of this process to τp = 300 ms to roughly match the timescale of

presynaptic inhibition observed experimentally [18]. As before, the slope β determines the

strength of presynaptic inhibition and p� 1 recovers the traditionally used current-based

network.

Although we consider CGABA to be related to local GABA concentration, it is unitless and

can not be mapped to any specific biophysical quantity. Nevertheless, we normalise AGABA by

the number of ingoing inhibitory synapses, such that the local GABA level CGABA roughly

relates to the inhibitory firing rate. This allows us to use a presynaptic inhibition strength pare-

meter β on the same order of magnitude as in the rate and mean population model (without

further scaling). Table 4 contains a parameter summary for presynaptic inhibition and the syn-

aptic weights. We omitted the units of the weights as they have no biophysical meaning in this

simple current-based spiking model. Note that for consistency in the units of Eq (38) the unit

would theoretically have to be Volt.

The triplet plasticity rule. We model plasticity of excitatory synapses in the spiking net-

work using the minimal triplet STDP model tuned to visual cortex data [27] and metaplasticity

implemented by homoeostatically regulating the amount of long-term depression (LTD)

depending on the postsynaptic firing rates [12, 27]. The amplitude of LTD is given by

A�i ðtÞ ¼
Aþtþtslow

t� k
�riðtÞ

2
; ð40Þ

where A+ is the amount of long-term potentiation (LTP), τ+, τslow and τ− timescales of the trip-

let STDP model (see [12]) and κ the target rate at which the definition of A�i ðtÞ ensures balance

of LTD and LTP. Changes in the LTD amplitude of neuron i are driven by the moving average

of its postsynaptic firing rate

tc
d�ri
dt
¼ � �ri þ SiðtÞ: ð41Þ

The overall timescale of this homoeostatic component of the metaplastic triplet STDP rule

is therefore given by τc and as in the rate network a crucial parameter for network stability

[12].

Weight modifications at excitatory recurrent synapses are limited to the interval 0< wij <

wmax during ongoing plasticity, whereas structural changes are not allowed (synapses initia-

lised at zero strength remain absent). A summary of parameters related to plasticity is shown

in Table 5. The effective time constant of plasticity can be approximated in a mean field model

from the plasticity parameters by considering the expected mean weight update. Given the

Table 4. Synaptic connection and spillover parameters.

connection value parameter value

wEE free parameter wext 2.0

wIE 0.5 AGABA 1/(cNI)

wEI −2.75 β 0.1 or free parameter

wII −2.75 τp 300 ms

https://doi.org/10.1371/journal.pcbi.1008118.t004
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default parameters of this network, the effective timescale of plasticity amounts to τw = 2975 s

(see [12] for details).

Numerical simulations

The numerical equations of the rate network were integrated using forward Euler with a time-

step of 1 ms. Simulations were run in Python with support of Cython for speed improvement.

The spiking network was simulated using the Brian2 package [66] for Python. Numerical

equations were integrated using Runge-Kutta method of 4th order for the neuron equations

and forward Euler for synaptic interactions. The integration timestep was 0.1 ms. Source code

for the network models is available on Github.

Supporting information

S1 Fig. Presynaptic inhibition also compensates for increases in recurrent excitation in

alternative circuit motifs. Top: Mean population models in which presynaptic inhibition not

only affects excitatory recurrent synapses, but also A. inhibitory synapses onto excitatory cells,

B. excitatory synapses onto inhibitory cells C., all recurrent synapses (including recurrent

inhibitory connections) or D. background input. Bottom: Firing rate of excitatory population

in respective circuit model as a function of excitatory recurrence for increasing strengths of

presynaptic inhibition (β).

(TIF)

S2 Fig. The homeostatic timescale affects the distribution and temporal correlation of sin-

gle neuron firing rates. Fast homeostasis (τc = 30 s) produces a narrow distribution around

the target rate of 5 Hz. Slower homeostasis leads to a broad long-tailed distribution of firing

rates with an inherent turnover but no temporal oscillations. A. Mean (solid line) and standard

deviation (shaded area) of firing rate over time. Plasticity is switched on after 6 minutes of sim-

ulation time (asterisk). B. Distribution of single neuron firing rates. C. Firing rate of single

neurons over time. Target rate is indicated by yellow colour. D. Temporal correlation of single

neuron firing rates.

(TIF)

S3 Fig. Removing heterogeneity from the network improves the fit of simulated to theoret-

ical critical homeostatic timescale. With heterogeneity in the initial excitatory recurrent

weights, the theory holds as long as presynaptic inhibition is not too strong. Removing this

source of heterogeneity from the network increases the critical timescale for strong presynaptic

inhibition, and thereby provides a better match to the analytically determined critical time-

scales. A. Critical homeostatic time scale as a function of the presynaptic inhibition strength β
in networks with (left) and without (right) heterogeneity. For simulations the vertical bars

indicate the range between largest stable and smallest unstable timescale tested. B. Temporal

evolution of the average firing rate for different homeostatic time constants τc with (left) and

Table 5. Plasticity parameters.

parameter value parameter value

A+ 6.5 × 10−3 κ 5 Hz

τ+ 11.8 ms w0 1 (0.5 without pre. inh.)

τslow 114 ms wmax 5w0

τ− 33.7 ms τc free parameter

https://doi.org/10.1371/journal.pcbi.1008118.t005
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without (right) heterogeneity in the network for different strengths of presynaptic inhibition β.

(TIF)

S4 Fig. The stabilising effect of presynaptic inhibition is robust to details of the transfer

function. We qualitatively recover the results obtained for linear transfer functions if the

release probability decreases exponentially or as a sigmoid with increasing inhibitory rate. A.

Exponentially decreasing (top) and sigmoid transfer functions (bottom two) linking inhibitory

firing rate to release factor for different slope parameters (βe = 0.05, 0.1, 0.15, βs = 0.1, 0.2, 0.3,

shift of sigmoid: 4 (middle) and 5 (bottom). Target rate of 5 Hz is indicated by gray dashed

line. B. Increase in analytical critical homeostatic timescale as a function of transfer function

slope at the target rate. Parametrisation in A indicated by markers of same colour. C. Release

factor at target rate as a function of increase in homeostatic time constant. Markers correspond

to transfer functions shown in A. D. Temporal evolution of the average firing rate in networks

with presynaptic inhibition for different homeostatic time constants τc. Plasticity is switched

on after 6 minutes of simulation time (asterisk). Coloured marker in top right corner specifies

parametrisation of transfer function (see A).

(TIF)

S5 Fig. Linear stability in the reduced (two-dimensional) mean population model critically

depends on the time constant of homeostasis. Besides increasing the critical homeostatic

time constant, presynaptic inhibition preserves low firing rates beyond the point of stability.

Systems without presynaptic inhibition trajectories diverge away from the fixed point (i.e. tar-

get rate, 5 Hz) if homeostasis is close to the timescale of plasticity, whereas systems with pre-

synaptic inhibition merely oscillate around it. A. Eigenvalues of reduced system with

compared to without presynaptic inhibition as a function of homeostatic time constant. The

time constant is given in units of effective plasticity time constant τplast. The critical homeo-

static timescale (where the eigenvalues become positive) is marked by a red dashed line. B.

Phase plane dynamics with nullclines and example trajectories for short and long homeostatic

timescales in systems with and without presynaptic inhibition.

(TIF)
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