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Abstract: Prospective identification of robust biomarkers related to prognosis and adjuvant chemother-
apy has become a necessary and critical step to predict the benefits of adjuvant therapy for patients
with stage II–III colorectal cancer (CRC) before clinical treatment. We proposed a single-cell-based
prognostic biomarker recognition approach to identify and construct CRC up- and down-regulated
prognostic signatures (CUPsig and CDPsig) by integrating scRNA-seq and bulk datasets. We found
that most genes in CUPsig and CDPsig were known disease genes, and they had good prognostic
abilities in CRC validation datasets. Multivariate analysis confirmed that they were two independent
prognostic factors of disease-free survival (DFS). Significantly, CUPsig and CDPsig could effectively
predict adjuvant chemotherapy benefits in drug-treated validation datasets. Additionally, they also
performed well in patients with CMS4 subtype. Subsequent analysis of drug sensitivity showed
that expressions of these two signatures were significantly associated with the sensitivities of CRC
cell lines to multiple drugs. In summary, we proposed a novel prognostic biomarker identification
approach, which could be used to identify novel prognostic markers for stage II–III CRC patients
who will undergo adjuvant chemotherapy and facilitate their further personalized treatments.

Keywords: scRNA-seq; bulk data; CRC; prognostic signature

1. Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide, with the sec-
ond highest cancer mortality rate [1]. The survival outcomes of patients with different
stages of CRC vary greatly, and the five-year survival rate of patients with stage I CRC
is 93%, while the corresponding survival rates in stage II, III, and IV CRC patients are
70%, 60%, and 8%, respectively [2,3]. Clinically, patients with stage II–III CRC usually
receive adjuvant chemotherapy to reduce the recurrence rate or prolong the recurrence time
and improve survival [4,5]. Therefore, how to identify and establish robust biomarkers
related to prognosis and adjuvant chemotherapy has become very necessary. A large
number of studies based on bulk expression (microarray or RNA-seq detection) data had
been carried out and provided a broad data basis for seeking these high-risk biomarkers.
For example, Liu et al. developed and validated a robust prognostic signature with six
genes (ELMSAN1, KRT33B, NDRG1, PPP1R13L, PPP2R1B, and WDYHV1). They found
that the prognostic signature could accurately predict recurrence risk in stage II–III CRC
patients and help optimize post-operative monitoring and treatment strategies [6]. Ren et al.
established a CRC prognostic signature, which was named ERG signature and composed
of AXL, TCFL5, KLK6, PDGFD, SOD2, UBD, FUT4, ACTB, RPL10A, and HNRNPK. They
found that the ERG signature was an independent prognostic factor for stage II–III CRC
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patients, and survival analysis results demonstrated that high-risk patients had shorter
recurrence and overall survival time than low-risk patients [7]. What is more, Song et al.
developed a 44 gene pair–based signature (44-GPS), and they confirmed that 44-GPS could
successfully predict post-operative recurrence risk of stage II–III CRC patients in different
microarray data and RNA-seq data [8]. Although some achievements have been made in
the field of discriminating such biomarkers, the samples of traditional bulk data detected
by bulk data were usually mixed with a large number of non-cancer samples, including
tumor microenvironment or paracancerous tissue, which interfered with the identifica-
tion of prognostic gene markers and study of their functional mechanisms in stage II–III
CRC patients.

Fortunately, with the rapid development of sequencing technology, single-cell RNA-
sequencing (scRNA-seq) technology had improved the above-mentioned limitations of bulk
data, and thus provided more powerful technical support for the study of prognostic gene
markers in CRC patients. For example, based on CRC scRNA-seq data, Zheng et al. estab-
lished a cancer-associated fibroblast (CAF)-related prognostic signature, including HSPB1,
S100A13, PPP1R14A, CSRP2, TIPM2, CEBPD, TIMP1, SPINK1, and CXCL1. Univariate
and multivariate Cox regression analysis showed that the signature was an independent
prognostic indicator for predicting overall survival in CRC patients [9]. Tang et al. revealed
the pervasive genomic variation in CRC stromal cells through scRNA-seq technology and
found that BGN, RCN3, TAGLN, MYL9, and TPM2 could be used as specific biomarkers
for CAF patients with poor prognosis [10]. Since current single-cell technologies cannot
directly link cell types to clinical phenotypes of cancer patients, integrating single-cell data
and bulk data to discover more accurate biomarkers is very important and necessitated.
Some algorithms integrated scRNA-seq and bulk datasets have been generated, such as
Scissor (Single-cell Identification of Subpopulations with Bulk Sample Phenotype Corre-
lation) and BayesPrism (Bayesian cell proportion reconstruction inferred using statistical
marginalization). The Scissor algorithm enables to systematically quantify the similarity
between single-cell data and bulk data across single-cell sequencing data, bulk expres-
sion data and corresponding clinical phenotype information, thereby identifying the cell
subgroups that are most relevant to a given phenotype group in the scRNA-seq data [11].
BayesPrism was designed by the Bayesian model for integrative analysis of scRNA-seq and
bulk datasets. It used scRNA-seq data as prior information to infer cell type composition
and gene expression in each bulk RNA-seq sample and can identify common malignant
gene programs by removing gene expression in nonmalignant cells [12].

The combination of single cell data and bulk data can provide new insights into
the identification of prognosis-related biomarkers, resulting in generating more reliable
biomarkers that can be further used for the prediction of the benefits of adjuvant chemother-
apy. Therefore, we proposed a single-cell-based prognostic marker recognition method
by integrating two single-cell datasets (GSE132465, GSE144735) and three bulk datasets
(GSE17538, GSE39582, and GSE37892). We used the Scissor algorithm embedded in our ap-
proach to correlate cancer cells in scRNA-seq data with prognosis phenotypes of stage II–III
CRC patients in bulk validation data to construct two CRC prognostic signatures, common
up-regulated signature (CUPsig) and common down-regulated signature (CDPsig). We
then evaluated these two signatures in multiple perspectives, such as functional enrichment
analysis, prognostic validation in multi-dataset, adjuvant chemotherapy analysis, CMS4
subtype analysis, and drug sensitivity analysis. Most of the genes in CUPsig and CDPsig
were found to be CRC disease genes, and prognostic analysis results showed that CUPsig
and CDPsig could effectively predict disease-free survival (DFS) in patients with stage
II–III CRC. Multivariate analysis indicated that they were two independent prognostic
factors. Notably, CUPsig and CDPsig still had good predictive effects for patients who have
received adjuvant chemotherapy. In addition, our prognostic signatures also performed
well in patients with CMS4 subtype. Additionally, through drug sensitivity analysis, we
found that the expressions of CUPsig and CDPsig were closely related to the sensitivities
of CRC cell lines to multiple drugs.
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2. Results
2.1. Construction of a scRNA-Seq-Based Prognostic Model for Stage II–III CRC Patients
2.1.1. Identification of Prognosis-Related Cell Subgroups in CRC scRNA-Seq Data

To eliminate the effects of non-disease cells in scRNA-seq data, we obtained 13,822 and
2778 stage II–III CRC tumor epithelial cells from GSE132465 and GSE144735, respectively
(Table 1 and Figures 1 and 2A,B). After that, based on the bulk detection expression data
of 145, 461, and 130 stage II–III CRC patients with DFS survival information in GSE17538,
GSE39582, and GSE37892, we used the Scissor algorithm to identify associations of CRC
tumor epithelial cells in two scRNA-seq datasets with prognostic phenotypes of three bulk
datasets and further to classify them into different Scissor+ and Scissor− cell subgroups.
Within them, we considered that Scissor+ cell groups are related to poor prognosis of
CRC, while Scissor− groups are associated with good prognosis. Prediction of 13,822 stage
II–III tumor epithelial cells in GSE132465 based on GSE17538, GSE39582, and GSE37892,
1124 Scissor+ and 1410 Scissor− cells, 685 Scissor+ and 541 Scissor− cells, and 710 Scissor+
and 1353 Scissor− cells were identified. For 2778 stage II–III tumor epithelial cells of
GSE144735, based on GSE17538, GSE39582, and GSE37892, 210 Scissor+ and 459 Scissor−
cells, 275 Scissor+ and 154 Scissor− cells, and 381 Scissor+ and 401 Scissor− cells were
recognized (Supplementary Table S1).

Table 1. Summary of scRNA-seq datasets and validation datasets.

Datasets Sample Types Cells/
Patients

Stage II–III Tumor
Epithelial

Cells/Patients

Adjuvant
Chemotherapy

Patients

Adjuvant Chemotherapy
Drugs Platforms PMID

scRNA-seq datasets

GSE132465 Colorectal
cancer

63,689
(23)

13,822
(19) GPL20301 32451460 [13]

GSE144735 Colorectal
cancer

27,414
(6)

2778
(4) GPL24676 32451460

Validation datasets
GSE17538 Colon cancer 200 145 GPL570 19914252 [14]
GSE37892 Colon cancer 130 130 GPL570 22917480 [15]

GSE38832 Colon cancer 122 74 GPL570 25320007
[16]

GSE92921 Colon cancer 59 59 GPL570

GSE161158 Colorectal
cancer 250 154 GPL570 34114372 [17]

GSE17536 Colon cancer 145 111 GPL570 19914252
GSE17537 Colon cancer 55 34 GPL570 19914252

TCGA Colorectal
cancer 234 72 15

Oxaliplatin/C-apecitabine/
Fluorouracil/5-FU/FolFox/

Calcium Foliatum,
fluorouracilu, oxaliplatinum,

dexamethassone/Xelo-da

Illumina
HiSeq 2000

GSE39582 Colon cancer 566 461 202 fluorouracil and folinic acid GPL570 23700391
[18]

GSE14333 Colorectal
cancer 226 185 85

5-fluouracil/
capecitabine/

5-fluouracil and oxalplatin
GPL570 19996206

[19]

GSE29621 Colon cancer 65 40 23 5-fluouracil GPL570 22362069
[20]

GSE31595 Colon cancer 37 37 11 Drug-unknown GPL570 22710688
[21]
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Figure 1. The flowchart for the identification of CRC prognosis-related gene signatures CUPsig
and CDPsig.

2.1.2. Identification of CRC Prognosis-Related Genes

To further effectively identify prognosis-related gene signatures in stage II–III CRC
patients, we performed differential expression analysis on the six pairs of Scissor+ and
Scissor− cell subgroups obtained above, and the corresponding differential gene lists were
generated (Supplementary Table S2). We then integrated them by the RRA algorithm
based on the corresponding logFC values (Supplementary Table S3) [22]. Finally, 2584 up-
regulated genes and 3200 down-regulated genes with RRA score less than 0.05 were selected as
prognosis-related candidate genes of scRNA-seq data (Figure 1 and Supplementary Table S4).
Meanwhile, we performed univariate Cox regression analysis in GSE17538, GSE37892, and
GSE39582 and selected genes with p < 0.01 to constitute prognosis-related gene sets of
bulk data (Figure 1). After intersection, we obtained eight and seven common up- and
down-regulated risk genes, which were respectively marked with CUPsig and CDPsig.
The CUPsig includes CTSB, TIMP2, AHNAK2, ARHGAP5, ARL4C, UNC5B, TGFB1I1, and
HOPX, and CDPsig includes DUS3L, AGMAT, POP1, POLR1A, DDX31, ACTR3B, and
NCOA5. Notably, we found that the majority of genes in the CUPsig and CDPsig were
cancer related. CTSB, TIMP2, ARL4C, UNC5B, TGFB1I1, and HOPX, NCOA5, and AGMAT
have been recorded in the DisGeNET database (https://www.disgenet.org/ (accessed on
11 November 2021)) as CRC known disease genes (Supplementary Table S5). For example,
Bian et al. found that secretion of CTSB-encoded proteins was increased in the extracellular
environment of CRC, thereby promoting cancer invasion and metastasis. In addition,

https://www.disgenet.org/
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Campo et al. found that high expression levels of CTSB in tumor epithelial cells of CRC
patients were associated with significantly shorter survival of patients. Wang et al. showed
that TIMP2 was a prognostic biomarker in CRC patients, and they confirmed that TIMP2
could directly affect cell invasion, migration, and angiogenesis in CRC patients and play an
important role in prognosis. UNC5B was down-regulated in about 20% of CRC patients,
and patients with low expression of UNC5B had a significantly higher recurrence rate
after curative surgery. Similar to CTSB, CRC patients with high expression of ARL4C
often showed poor survival rates and studies suggested that ARL4C could be used as a
new therapeutic target to inhibit the proliferation and invasion of CRC cells. TGFB1I1
was considered a tumor suppressor gene in CRC and downregulated in CRC tissues and
cell lines, its overexpression inhibited CRC cell proliferation, migration, invasion, and
induced apoptosis. Meanwhile, overexpression of TGFB1I1 in CRC cells inhibited the
TGF-β pathway and the progression of epithelial-mesenchymal transition (EMT). HOPX
had also been shown to have tumor suppressor functions in various cancers including
CRC, and HOPX might be involved in inhibiting CRC metastasis. Tian et al. found that
ARHGAP5 expression was significantly increased in metastatic CRC tissues and negatively
correlated with overall survival rates of patients, and ARHGAP5 promoted CRC cell EMT
by negatively regulating RhoA activity. NCOA5 exhibited an oncogenic role in CRC and
promoted CRC cell proliferation, migration, and invasion, while activating the PI3K/AKT
signaling pathway. Zhu et al. mentioned that AGMAT could promote the progression
of CRC by inducing chronic inflammation. To investigate the mutation status of these
genes, we also downloaded mutation data of 344 stage II–III CRC patient samples in TCGA.
Mutation analysis result showed that genes having the highest mutation frequencies in
CUPsig and CDPsig were AHNAK2 and POLR1A, which respectively were 13% and
5% (Figure 2E,F).

Next, we performed Reactome enrichment analysis for CUPsig and CDPsig to explore
what biological functions and related pathways they play. We found that CUPsig were
significantly enriched in some pathways, such as RND3 GTPase cycle, RHOB GTPase cycle,
Caspase activation via extrinsic apoptotic signaling pathway, and Activation of Matrix
Metalloproteinases (Figure 2C and Supplementary Table S5). These pathways have been
proved to be closely related to the occurrence or progression of cancer. Several studies have
found that RND3 played an active role in human CRC invasion and metastasis, which was
an independent prognostic marker of CRC [23–25]. In addition, studies on CRC patient
biopsies have shown that RHOB was significantly under-expressed in CRC [26–30]. While
Buttacavoli et al. found that Matrix Metalloproteinases were targeted in colon cancer and
might serve as new biomarkers involved in immune response [31]. Most of genes of the
CDPsig were enriched in tRNA-related pathways (Figure 2D). Additionally, normal tRNA
metabolism is critical for maintaining the stability and function of tRNA molecules, but
defects in certain tRNA biogenesis proteins contributed to a variety of human diseases,
including cancer, neurological disorders, immunodeficiency, and diabetes [32].

2.2. Validation of CUPsig and CDPsig
2.2.1. Prognostic Assessment of CUPsig and CDPsig

To further evaluate and verify whether the CUPsig and CDPsig have good perfor-
mance in predicting the risk of tumor recurrence for stage II–III CRC patients, we performed
survival analysis on 12 bulk data with DFS time, including TCGA, GSE17538, GSE39582,
GSE37892, GSE38832, GSE14333, GSE31595, GSE29621, GSE92921, GSE161158, GSE17536,
and GSE17537. Among them, the number of stage II–III CRC patients contained in these
CRC validation datasets was 145, 461, 130, 74, 185, 37, 40, 59, 154, 111, 34, and 72, respec-
tively (Table 1).
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datasets: (A) GSE132465, (B) GSE144735. (C,D) Results of Reactome enrichment analysis for CUPsig
and CDPsig: (C) CUPsig, (D) CDPsig. (E,F) The mutation analysis of CUPsig and CDPsig in TCGA
stage II–III CRC samples: (E) CUPsig, (F) CDPsig.

We found that CUPsig had good prognostic performance and this signature could
effectively classify stage II–III CRC patients into high- and low-risk groups in 11 CRC
validation datasets, including GSE17538 (p = 1.1 × 10−4), GSE39582 (p = 1.1 × 10−4),
GSE37892 (p = 3.9 × 10−4), GSE38832 (p = 8.9 × 10−3), GSE14333 (p = 7.7 × 10−3),
GSE29621 (p = 6.1 × 10−3), GSE92921 (p = 4.4 × 10−4), GSE161158 (p < 1 × 10−3), GSE17536
(p < 1 × 10−3), GSE17537 (p = 4.2 × 10−3), and TCGA (p = 0.011) (Figure 3A and Supplemen-
tary Figure S1A). Similarly, CDPsig performed well in classifying high- and low-risk patient
groups with significantly different DFS in GSE17538, GSE39582, GSE37892, GSE38832,
GSE31595, GSE29621, GSE92921, GSE161158, GSE17536, and GSE17537, log-rank p-values
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were <1 × 10−3, <1 × 10−3, <1 × 10−3, <1 × 10−3, 8.2 × 10−3, 1.5 × 10−3, 6.2 × 10−3,
<1 × 10−3, <1 × 10−3, and 0.021, respectively. However, in GSE14333 and TCGA, the
log-rank p-values of Kaplan–Meier survival analysis were 0.099 and 0.089 (Figure 3B and
Supplementary Figure S1B).
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Figure 3. Kaplan–Meier survival curves of DFS between high-risk and low-risk groups in CRC
validation datasets: (A) CUPsig, (B) CDPsig.

2.2.2. Independent Prognostic Factors Assessment and Nomogram Construction

To further investigate whether CUPsig and CDPsig were independent clinical prog-
nostic factors that were independent of other factors, such as age and sex, we performed
univariate and multivariate Cox regression analysis on 11 CRC validation datasets that
CUPsig successfully divided into high- and low-risk groups with significantly different
DFS and the 10 CRC validation datasets that CDPsig successfully divided into high- and
low-risk groups. The results of univariate analysis showed that CUPsig was significantly
correlated with DFS in nine CRC validation datasets, including GSE17538 (HR = 0.272;
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p < 0.001), GSE39582 (HR = 0.524; p < 0.001), GE37892 (HR = 0.233; p = 0.001), GSE14333
(HR = 0.625; p = 0.008), GSE29621 ((HR = 0.137; p = 0.018), GSE92921 (HR = 0.089;
p = 0.005), GSE161158 (HR = 0.286; p < 0.001), GSE17536 (HR = 0.235; p < 0.001), and TCGA
(HR = 0.264; p = 0.018). Multivariate analysis was further carried out, and the results
showed that CUPsig could be used as an independent prognostic factor for CRC pa-
tients in seven CRC validation datasets, including GSE17538 (HR = 0.628; p < 0.001),
GSE39582 (HR = 0.519; p < 0.001), GE37892 (HR = 0.233; p = 0.001), GSE14333 (HR = 1.473;
p = 0.033), GSE29621 (HR = 0.106; p = 0.014), GSE17536 (HR = 0.24; p < 0.001), and TCGA
(HR = 0.263; p = 0.019) (Table 2). The univariate analysis results for CDPsig indicated
that it was significantly correlated with DFS in six CRC validation datasets, containing
GSE17538 (HR = 0.163; p < 0.001), GSE39582 (HR = 0.337; p < 0.001), GE37892 (HR = 0.283;
p = 0.001), GSE92921 (HR = 0.145; p = 0.018), GSE161158 (HR = 0.177; p < 0.001), and
GSE17536 (HR = 0.19; p < 0.001). Similarly, we then conducted multivariate analysis
and found that CDPsig was an independent prognostic factor in GSE17538 (HR = 0.156;
p < 0.001), GSE39582 (HR = 0.359; p < 0.001), GE37892 (HR = 0.272; p = 0.001), GSE161158
(HR = 0.178; p < 0.001), and GSE17536 (HR = 0.189; p < 0.001) (Table 3).

Table 2. Univariate and multivariate Cox regression analysis results of CUPsig in validation datasets.
* p < 0.05.

Risk Factor Univariate Analysis Multivariate Analysis

HR 95% CI p Value HR 95% CI p Value

TCGA
CUPsig (high vs. low) 0.264 0.088–0.793 0.018 * 0.263 0.086–0.805 0.019 *

Age 1.01 0.969–1.053 0.631 1.001 0.953–1.015 0.979
Sex 5.18 1.127–23.821 0.035 * 5.068 1.031–24.907 0.046 *

GSE17538
CUPsig (high vs. low) 0.272 0.134–0.551 <0.001 * 0.268 0.132–0.545 <0.001 *

Age 0.991 0.967–1.016 0.481 0.989 0.964–1.015 0.397
Sex 1.011 0.516–1.982 0.975 0.866 0.427–1.754 0.689

GSE39582
CUPsig (high vs. low) 0.524 0.376–0.731 <0.001 * 0.519 0.37–0729 <0.001 *

Age 1.007 0.994–1.021 0.284 1.017 1.002–1.032 0.022 *
Sex 1.316 0.935–1.854 0.116 1.436 1.015–2.031 0.041 *

Adjuvant-Chemo (Y vs. N) 1.582 1.132–2.211 0.007 * 1.598 1.122–2.274 0.009 *
GSE37892

CUPsig (high vs. low) 0.233 0.097–0.56 0.001 * 0.233 0.097–0.56 0.001 *
Age 0.991 0.967–1.016 0.49 0.994 0.971–1.018 0.643
Sex 1.15 0.599–2.206 0.675 1.203 0.624–2.319 0.58

GSE38832
CUPsig (high vs. low) 0.998

GSE14333
CUPsig (high vs. low) 0.625 0.441–0.886 0.008 * 1.473 1.032–2.103 0.033 *

Age 1.017 1.003–1.031 0.019 * 1.012 0.998–1.027 0.092
Sex 0.978 0.695–1.374 0.897 1 0.71–1.409 0.999

Adjuvant-Chemo (Y vs. N) 0.696 0.494–0.98 0.038 * 0.805 0.562–1.152 0.235
GSE29621

CUPsig (high vs. low) 0.137 0.026–0.715 0.018 * 0.106 0.018–0.631 0.014 *
Age 1.628 0.311–8.531 0.564 1.621 0.314–8.382 0.564
Sex 1.083 0.242–4.849 0.917 0.489 0.093–2.582 0.399

GSE92921
CUPsig (high vs. low) 0.089 0.016–0.488 0.005 *

GSE161158
CUPsig (high vs. low) 0.286 0.151–0.542 <0.001 * 0.285 0.15–0.54 <0.001 *
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Table 2. Cont.

Risk Factor Univariate Analysis Multivariate Analysis

HR 95% CI p Value HR 95% CI p Value

Age 0.286 0.151–0.542 <0.001 * 0.992 0.969–1.015 0.473
GSE17536

CUPsig (high vs. low) 0.235 0.111–0.5 <0.001 * 0.24 0.112–0.514 <0.001 *
Age 0.986 0.963–1.01 0.25 0.99 0.963–1.018 0.471
Sex 1.138 0.562–2.304 0.72 0.873 0.409–1.863 0.725

GSE17537
CUPsig (high vs. low) 0.999 0.999

Age 1.063 0.952–1.186 0.28 1.382 1.171–1.631 <0.001 *
Sex 0.569 0.051–6.33 0.65 261.793 11.193–6123.202 <0.001 *

Table 3. Univariate and multivariate Cox regression analysis results of CDPsig in validation datasets.
* p < 0.05.

Risk Factor Univariate Analysis Multivariate Analysis

HR 95% CI p Value HR 95% CI p Value

GSE17538
CDPsig (high vs. low) 0.163 0.071–0.376 <0.001 * 0.156 0.067–0.362 <0.001 *

Age 0.991 0.967–1.016 0.481 0.983 0.956–1.011 0.235
Sex 0.163 0.071–0.376 <0.001 * 0.96 0.485–1.899 0.906

GSE39582
CDPsig (high vs. low) 0.337 0.21–0.542 <0.001 * 0.359 0.223–0.578 <0.001 *

Age 1.007 0.994–1.021 0.284 1.012 0.998–1.026 0.101
Sex 1.943 1.388–2.721 <0.001 * 1.565 1.037–2.36 0.033 *

Adjuvant-Chemo (Y vs. N) 1.582 1.132–2.211 0.007 1.263 0.826–1.933 0.282
GSE37892

CDPsig (high vs. low) 0.283 0.147–0.544 <0.001 * 0.272 0.14–0.526 <0.001 *
Age 0.991 0.967–1.016 0.49 0.993 0.971–1.015 0.532
Sex 1.15 0.599–2.206 0.675 1.335 0.689–2.589 0.392

GSE38832
CDPsig (high vs. low) 0.073 0.015–0.371 0.002 *

GSE31595
CDPsig (high vs. low) 0.099 0.012–0.814 0.031 * 0.058 0.006–0.573 0.015 *

Age 1.026 0.955–1.103 0.48 1.09 0.982–1.209 0.105
Sex 1.008 0.239–4.256 0.992 0.924 0.201–4.246 0.919

Adjuvant-Chemo (Y vs. N) 2.138 0.532–8.602 0.285 4.012 0.708–22.742 0.117
GSE29621

CDPsig (high vs. low) 0.999 0.999
Sex 0.999 1.743 0.379–8.019 0.475

Adjuvant-Chemo (Y vs. N) 1.628 0.311–8.531 0.564 1.58 0.287–8.714 0.599
GSE92921

CDPsig (high vs. low) 0.145 0.029–0.721 0.018 *
GSE161158

CDPsig (high vs. low) 0.177 0.091–0.345 <0.001 * 0.178 0.092–0.346 <0.001 *
Age 0.993 0.97–1.015 0.52 0.994 0.969–1.019 0.612

GSE17536
CDPsig (high vs. low) 0.19 0.089–0.407 <0.001 * 0.189 0.088–0.405 <0.001 *

Age 0.986 0.963–1.01 0.25 0.988 0.962–1.016 0.401
Sex 0.19 0.089–0.407 <0.001 * 1.211 0.579–2.533 0.611

GSE17537
CDPsig (high vs. low) 0.999 0.999

Age 1.063 0.926–1.255 0.279 1.078 0.926–1.255 0.333
Sex 0.999 1.522 0.090–25.849 0.771
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After multivariate Cox analysis of clinical parameters, CUPsig, sex, age, and adju-
vant chemotherapy were still strong independent factors in predicting DFS in GSE39582.
Based on this, a nomogram was developed by integrating CUPsig, sex, age, and adjuvant
chemotherapy to predict DFS (Figure 4A). The usefulness of the comprehensive nomogram
was also confirmed in the time-dependent ROC analysis, with 3- and 5-year areas under
the curve (AUC) of 0.64 and 0.628 for predicting DFS, respectively (Figure 4B). In addition,
the calibration curve showed the high accuracy of the comprehensive nomogram model to
predict DFS (Figure 4C).
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Figure 4. (A–C) Nomogram, calibration curve, and the AUC of nomogram model based on ROC
curve used to predict the disease-free survival time of patients with stage II–III CRC in GSE39582:
(A) nomogram, (B) calibration curve, (C) ROC curve. (D,E) Evaluation of the predictive power of
CUPsig and CDPsig in stage II–III CRC patients receiving adjuvant chemotherapy. Kaplan–Meier
survival curves of DFS in high-risk and low-risk patients with stage II–III CRC in the five drug-treated
validation datasets (TCGA-5FU-based, GSE39582-5FU-based, GSE14333-5FU-based, GSE29621-5FU-
based, and GSE31595-drug-unknown), while other seven datasets without adjuvant chemotherapy
information were not used: (D) CUPsig, (E) CDPsig.

2.3. Predictive Power of CUPsig and CDPsig in Patients Receiving Adjuvant Chemotherapy

Surgery is the mainstay of treatment for CRC, and adjuvant chemotherapy is clinically
recommended in high-risk stage II and III CRC patients to reduce the risk of local recurrence
and prolong DFS for them [33,34]. Therefore, we further investigated the predictive powers
of CUPsig and CDPsig for patients receiving adjuvant chemotherapy in five drug-treated
validation datasets containing adjuvant chemotherapy information, including GSE39582
(n = 202), GSE14333 (n = 85), GSE31595 (n = 11), TCGA (n = 15), and GSE29621 (n = 23).
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The clinical information of the first four datasets showed that patients in them were treated
with 5-FU based adjuvant chemotherapy (Table 1), while the last one had no drug infor-
mation. Therefore, we used the combined name with the GSE accession number and the
adjuvant chemotherapy drug to label them. We found that CUPsig successfully classified
stage II–III patients receiving adjuvant chemotherapy into high- and low-risk groups with
markedly different DFS in five drug-treated validation datasets: GSE39582-5FU-based
(p = 5.7 × 10−4), GSE14333-5FU-based (p = 0.031), GSE29621-5FU-based (p = 0.043), TCGA-
5FU-based (p = 0.018), and GSE31595-drug-unknown (p = 0.047) (Figure 4D). In addition,
CDPsig had good performance in stratifying stage II–III CRC patients receiving adjuvant
chemotherapy into high- and low-risk groups in GSE29621-5FU-based (p = 3.5 × 10−3)
and GSE39582-5FU-based (p < 1 × 10−3) (Figure 4E). The results showed that CUPsig and
CDPsig established by our method had good ability to predict DFS in stage II–III CRC
patients who received adjuvant chemotherapy.

2.4. Predictive Power of CUPsig and CDPsig in CMS4 Subtype Patients

The consensus molecular subtypes (CMS) proposed by Guinney et al. is of great
significance for the clinical diagnosis and prognosis of CRC [35]. Previous clinical analyses
had shown that adjuvant chemotherapy had poor efficacy on CMS4 subtype cells, and
patients with CMS4 subtype had the worst five-year overall survival (62%) and relapse-free
survival (60%) [36]. According to this assumption, we further evaluated the prognostic
performance of CUPsig and CDPsig in CMS4 subtype patients. Before this step, we per-
formed the CMS subtype prediction in patients of 12 CRC validation datasets. In total,
1371 CMS subtype patients were obtained (Supplementary Table S6). We then selected 455
CMS4 subtype patients with stage II–III CRC (27 from TCGA, 43 from GSE17538, 138 from
GSE39582, 43 from GSE37892, 23 from GSE38832, 54 from GSE14333, 12 from GSE31595,
13 from GSE29621, 20 from GSE92921, 41 from GSE161158, 34 from GSE17536, and 7 from
GSE17537) for the following analysis (Table 4). Through survival analysis results, we
found that CUPsig could divide CMS4 subtype patients from multiple CRC validation
datasets into high- and low-risk groups with significantly different DFS, including TCGA
(p = 0.032), GSE17538 (p = 0.029), GSE39582 (p = 1.2 × 10−3), GSE37892 (p = 9.5 × 10−3),
GSE38832 (p < 1 × 10−3), GSE31595 (p = 0.046), GSE92921 (p = 3.5 × 10−3), GSE161158
(p = 0.022), and GSE17536 (p = 0.02) (Figure 5A and Supplementary Figure S1C). Similarly,
CDPsig could successfully stratify CMS4 subtype patients into high- and low-risk groups
in nine CRC validation datasets, containing TCGA (p = 0.028), GSE17538 (p = 4.3 × 10−3),
GSE39582 (p = 8.6 × 10−4), GSE37892 (p = 0.018), GSE38832 (p = 5.8 × 10−3), GSE31595
(p = 0.046), GSE92921 (p = 3.5 × 10−3), GSE161158 (p = 1.5 × 10−3), and GSE17536
(p = 2.1 × 10−3) (Figure 5B and Supplementary Figure S1D). These results indicated that
CUPsig and CDPsig still have certain power for predicting DFS in CMS4 subtype patients,
which could provide references for further research in CMS4 subtype patients with stage
II–III CRC.

Table 4. Summary of CMS subtype patients with stage II–III CRC.

CMS1 CMS2 CMS3 CMS4 TOTAL

TCGA 12 17 9 27 65
GSE17538 32 42 18 43 135
GSE39582 74 134 69 138 415
GSE37892 11 40 22 43 116
GSE38832 15 23 11 23 72
GSE14333 35 49 27 54 165
GSE31595 7 5 11 12 35
GSE29621 10 7 7 13 37
GSE92921 5 16 10 20 51
GSE161158 37 43 22 41 143
GSE17536 25 31 13 34 103
GSE17537 9 10 7 7 34
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Figure 5. Evaluation of the predictive power of CUPsig and CDPsig in CMS4 subtype patients with
stage II–III CRC. Kaplan–Meier survival curves of DFS in high-risk and low-risk patients with stage
II–III CRC in validation datasets: (A) CUPsig, (B) CDPsig.

2.5. The Relationship between CUPsig and CDPsig Expression and Drug Sensitivity

Based on expression profile data of 20 CRC cell lines from the Cancer Cell Line
Encyclopedia (CCLE, https://sites.broadinstitute.org/ccle/ (accessed on 13 June 2022))
and drug sensitivity (IC50) data from Genomics of Drug Sensitivity in Cancer (GDSC,
https://www.cancerrxgene.org/ (accessed on 6 September 2021)), we performed the drug
sensitivity analysis and found that the IC50 values of six drugs in CUPsig low-expression
group were significantly lower than CUPsig high-expression group, which contained
MetAP2 Inhibitor (p = 5.7 × 10−3), NSC319726 (p = 0.013), Flavopiridol (p = 0.017), LDN-
193189 (p = 0.022), Phenformin (p = 0.028), and Panobinostat (p = 0.028). This result
indicated that CRC cell lines with low expression of CUPsig were more sensitive to the
above six drugs (Figure 6A) [37,38]. Meanwhile, IC50 values of two drugs (PI-103 and
Bleomycin (10 µM)) in the CUPsig high-expression group were significantly lower than

https://sites.broadinstitute.org/ccle/
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those in the CUPsig low-expression group (p = 0.043 and 0.015), illustrating that CRC cell
lines with high expression of CUPsig were more sensitive to them (Figure 6B). In addition,
analysis results for CDPsig showed that CRC cell lines with high expression of CDPsig were
more sensitive to Apitolisib (p = 0.013), AT7867 (p = 0.043), CI-1040 (p = 0.024), EHT-1864
(p = 0.043), GSK1059615 (p = 0.043), JNK-9L (p = 0.017), PFI-1 (p = 0.043), PLX-47209
(p = 2.5 × 10−3), Refametinib (p = 0.01), SN-38 (p = 1.6 × 10−3), and Torin 2 (p = 0.043)
(Figure 6C).
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Figure 6. The relationships between CUPsig and CDPsig expressions and drug sensitivities:
(A,B) Differences in IC50 values of CRC cell lines treated with eight drug components between
CUPsig high- and low-expression groups; (C) differences in IC50 values of CRC cell lines treated with
11 drug components between CDPsig high- and low-expression groups; (D,E) correlations between
CUPsig and CDPsig expression levels and drug sensitivity (IC50). A positive (or negative) correlation
means that the CRC cell line with high expression of CUPsig and CDPsig was resistant (or sensitive)
to the drug: (D) CUPsig, (E) CDPsig.
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Next, drug sensitivity analysis was performed. We found that CUPsig and CDPsig
expressions were significantly associated with sensitivities in CRC cell lines to multiple
drugs (p < 0.05). For instance, higher expression levels of CUPsig were associated with
increased resistance of CRC cell lines to Flavopiridol, MetAP2 Inhibitor, LDN-193189,
and Phenformin; however, it resulted in increased sensitivity of cell lines to TANK_1366,
PARP_9482, XAV939, Cisplatin, PARP_9495, PI-103, Bleomycin (50 µM), Bleomycin (10 µM),
and A-770041 (Figure 6D). What is more, CRC cell lines with higher CDPsig expression
were more sensitive to SN−38, PLX−4720, CI−1040, Tretinoin, Apitolisib, and JNK−9L
(Figure 6E).

3. Discussion

Effectively identifying the prognosis and adjuvant chemotherapy-related gene sig-
natures is the key to guiding the prognostic treatment for stage II–III CRC patients who
need adjuvant chemotherapy in clinical application. Therefore, in this study, we developed
a scRNA-seq-based prognostic signature identification method by integrating single-cell
and bulk data to identify two novel prognosis-related signatures (CUPsig and CDPsig).
Through comprehensive evaluation and verification, we found that CUPsig and CDPsig
had broad and good prognostic efficacy, suggesting that these two signatures may be
potential predictive biomarkers for adjuvant-treated stage II–III CRC.

Due to the samples in bulk data detected by traditional RNA-seq or microarray,
they generally are mixed with a large number of non-cancer samples, such as tumor
microenvironment or adjacent tissue samples. In addition, the gene biomarker expression
values detected by these techniques are usually averaged across all samples. The scRNA-
seq technology improves the limitations of the above traditional detection methods to a
certain extent, but this technology cannot effectively identify the associations between cells
and the prognosis of cancer patients at the cellular level. Therefore, we systematically
integrated scRNA-seq and bulk data by our method to identify and establish two more
accurate prognostic signatures, a CUPsig and a CDPsig. Through extensive text mining
and data searching, we found that CTSB, TIMP2, ARHGAP5, ARL4C, UNC5B, TGFB1I1,
and HOPX in CUPsig have been confirmed as CRC-related genes. Among these genes
NCOA5, AGMAT, POP1, ACTR3B, DDX31, POLR1A, and DUS3L in CDPsig, NCOA5
and AGMAT have been confirmed to be related to CRC. There was a study found that
POP1 was differentially expressed in CRC and an up-regulated trend in CRC tissues,
which could be used as a prognostic factor in CRC [39]. Yu et al. found for the first
time that ACTR3B expression was significantly increased in CRC tissues compared with
matched normal tissues and confirmed that AC009022.1 promoted ACTR3B expression by
inhibiting miR-497-5p and enhanced CRC cell proliferation, migration, and invasion [40].
Furthermore, we analyzed our prognostic signatures in stage II–III adjuvant radiotherapy
patients with GSE14333 (n = 22), where CDPsig (p = 1.9 × 10−3) successfully divided
adjuvant radiotherapy patients into high- and low-risk groups (Supplementary Figure
S2A,B). We also compared the expression differences of CUPsig and CDPsig among the
four CMS subtypes, respectively, and found that CUPsig was significantly overexpressed
in the CMS4 subtype, while CDPsig was generally highly expressed in the CMS2 subtype
(Supplementary Figure S2C,D). Considering that CRC is essentially composed of colon
and rectum cancers (CC and RC), we re-evaluated and verified whether CUPsig and
CDPsig can effectively predict the benefits of adjuvant chemotherapy during the adjuvant
chemotherapy analysis. In all CRC validation datasets, only GSE14333 has phenotypes;
therefore, we divided CRC patient samples (n = 85) in GSE14333 into CC (n = 77) and RC
(n = 8) and reperformed the prognosis analysis based on them. The log-rank p-values
of CUPsig and CDPsig in CC and RC are 0.16 and 0.98, and 0.26 and 0.13, respectively.
No significant results were found, which may be caused by the smaller sample size of
CC and RC after the classification. Moreover, through the DrugBank database (https:
//go.drugbank.com/ (accessed on 5 October 2022)), we searched known drug targets for
genes in CUPsig and CDPsig. We found CTSB in CUPsig was a target of Trastuzumab

https://go.drugbank.com/
https://go.drugbank.com/
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deruxtecan, which had been approved for certain types of metastatic or unresectable breast
cancer [41,42]. The result indicated that the gene might be a potential drug target and
provide a direction for the targeted therapy of CRC.

In summary, we developed a bioinformatics approach to identify and establish an
eight-gene prognostic signature CUPsig and a seven-gene prognostic signature CDPsig.
Our findings indicated that the two prognostic-related signatures could be used as novel
and potential prognostic factors for prognostic diagnosis of stage II–III CRC patients, which
could provide potential and effective prognostic tools for the optimization of treatment
decisions for stage II–III CRC patients who received adjuvant chemotherapy.

4. Materials and Methods
4.1. Data Collection and Preprocessing
4.1.1. scRNA-Seq Datasets

We downloaded current available CRC-associated scRNA-seq datasets from Gene
Expression Omnibus (GEO) and received GSE132465 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE132465 (accessed on 24 March 2021)) and GSE144735 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144735 (accessed on 24 March 2021)),
which were separately detected by Illumina HiSeq 4000 (GPL20301) and Illumina NovaSeq
6000 (GPL24676) platforms. These two datasets, respectively, include 63,689 and 27,414
cells of 23 and 6 CRC patients, and 33,694 genes were obtained after scRNA-seq data and
were aligned to the human reference genome (GRCh38) (Table 1).

Next, we performed quality control on each scRNA-seq data to filter low-quality
cells based on the following criteria: cells with unique molecular identifier (UMI) counts
>1000, gene counts between 200 and 6000, and mitochondrial gene expression below 20%
in UMI counts. Similar quality control was performed on genes; protein-coding genes were
extracted, and genes expressed in at least 3 cells were retained. Finally, 19 and 4 stage II–III
patients with 13,822 and 2778 tumor epithelial cells were obtained. After that, 16,845 and
16,513 protein-coding genes in GSE132465 and GSE144735 were remained. The above step
was completed by the R package “Seurat” [43].

4.1.2. Bulk Datasets for Validation

Totally, 1753 frozen tissue samples from 9 stage I-IV CRC bulk datasets, including
GSE17538, GSE39582, GSE37892, GSE38832, GSE14333, GSE31595, GSE29621, GSE92921,
and GSE161158 were collected from GEO, all of them were detected by the Affymetrix
Human Genome U133 Plus 2.0 Array (GPL570) platform (Table 1). Among them, 145,
461, 130, 74, 185, 37, 40, 59, and 154 stage II–III CRC patients were received. GSE17536
and GSE17537 belonging to the GSE17538 contain 111 and 34 stage II–III CRC patients,
respectively. Normalization was then performed to these validation datasets by R package
“fRMA” [44].

An additional CRC bulk dataset for validation (Table 1) was obtained from TCGA
(UCSC Xena; https://xenabrowser.net/ (accessed on 18 November 2021)), which was
sequenced by the Illumina platform. In TCGA dataset, 72 out of 234 stage II–III CRC
patients were collected and raw counts for each gene were log2(count + 1) transformed.
In all CRC validation datasets, drug-treated validation datasets, including GSE39582,
GSE14333, GSE31595, TCGA, and GSE29621, were used for the adjuvant chemotherapy
analysis, while the remaining datasets lacking specific adjuvant chemotherapy and drug
information were deleted.

4.2. Integration of scRNA-Seq Datasets and Bulk Datasets to Identify CRC Prognostic
Associated Signatures
4.2.1. Identification of Prognostic Associated Cells

The three microarray datasets of GSE39582, GSE17538, and GSE37892 have relatively
comprehensive stage II–III CRC expression data and DFS prognostic information. We
integrated them with scRNA-seq datasets of GSE132465 and GSE144735 by the Scissor

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132465
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132465
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144735
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144735
https://xenabrowser.net/


Int. J. Mol. Sci. 2022, 23, 12460 16 of 19

algorithm to identify cell subgroups that are most highly associated with the stage II–III
CRC patients’ prognostic phenotypes.

After that, Scissor+, Scissor−, and the prognostic-unrelated background cell subgroups
corresponding to GSE132465 and GSE144735 were identified.

4.2.2. Selection of Differential Genes between Scissor+ and Scissor− Cell Subgroups

Subsequently, we calculated the differential genes for Scissor+ and Scissor− cell
subgroups using the R package “limma” and obtained six differential expression gene lists.
Then, the RobustRankAggreg (RRA) algorithm was used to integrate them according to the
logFC values; after that, we obtained a list of up-regulated differential genes and a list of
down-regulated differential genes. The common up-regulated or down-regulated genes
with RRA score less than 0.05 were regarded as candidate genes.

4.2.3. Identification and Construction of Prognostic Associated Signatures

Meanwhile, we separately performed univariate Cox regression in GSE39582, GSE17538,
and GSE37892 stage II–III expression data to obtain risk genes that were significantly
associated with the DFS of CRC patients (p < 0.01). The overlap genes of common risk
genes of the three datasets and candidate genes were used to construct a CUPsig and a
CDPsig. We downloaded TCGA mutation data from UCSC (https://xenabrowser.net/
(accessed on 18 November 2021)), after extracting 344 stage II–III samples. The R pack-
age “maftools” was used to perform mutation analysis [45]. Then, we performed Reac-
tome enrichment analysis for CUPsig and CDPsig by using the R package “ReactomePA”
(p < 0.05) [46].

4.3. CRC Prognostic Signatures Validation
4.3.1. Evaluation of CUPsig and CDPsig in the Validation Cohorts

For the bulk CRC validation datasets TCGA, GSE17538, GSE39582, GSE37892, GSE38832,
GSE14333, GSE31595, GSE29621, GSE92921, GSE161158, GSE17536, and GSE17537, the R
package “pROC” was used to choose the best risk score thresholds to classify high- and
low-risk groups [47]. The risk score formula was used to calculate the risk score for each
stage II–III CRC patient based on a linear combination of expression values weighted by
regression coefficients from univariate Cox regression analysis as shown below:

Risk score =
n

∑
i=1

riExp(i)

where ri is the Cox regression coefficient for gene i in CUPsig or CDPsig, n is the number
of genes included in CUPsig or CDPsig, and Exp(i) is the expression value of gene i in the
corresponding patient [48].

For all the above bulk validation datasets, Kaplan–Meier analysis and log-rank test
were performed to assess the differences in DFS between high- and low-risk groups using
R package “survival”.

To verify whether CUPsig and CDPsig can act as independent prognostic factors,
univariate and multivariate Cox regression analysis were performed on CUPsig and CDPsig
and several clinical parameters (age, sex, and adjuvant chemotherapy) by the R package
“survival”. After that, a nomogram was constructed to predict DFS for patients with stage
II–III CRC. Calibration curve and time-dependent ROC curve analysis were used to validate
the accuracy of the nomogram model for predicting 3- and 5-year DFS of patients with
stage II–III CRC.

4.3.2. Adjuvant Chemotherapy Analysis

For five drug-treated validation datasets, we also divided high- and low-risk groups
according to the risk score thresholds and performed survival analysis.

https://xenabrowser.net/


Int. J. Mol. Sci. 2022, 23, 12460 17 of 19

4.3.3. CMS4 Subtype Analysis

We performed CMS subtype identification on patients in all CRC validation datasets
by using the R package “CMScaller”; then, survival analysis was performed on patients
with stage II–III CMS4 subtype CRC [49].

4.3.4. Drug Sensitivity Analysis

We investigated the relations between CUPsig and CDPsig expressions and drug
sensitivities. We downloaded the expression profile data of 20 CRC cell lines from the
Cancer Cell Line Encyclopedia. The corresponding medication and IC50 information
were downloaded from Genomics of Drug Sensitivity in Cancer. CRC cell lines were,
respectively, divided into high- and low-expression groups according to the median ex-
pression value of CUPsig and CDPsig, and we compared the differences in IC50 values
of compounds between these two groups by the Wilcoxon rank sum test. Next, we used
Spearman correlation coefficients to assess relationships between CUPsig and CDPsig ex-
pression levels and drug sensitivity of 345 compounds, respectively (p < 0.05 was considered
significantly related).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms232012460/s1. References [50–60] are cited in the Supplementary Materials.
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