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Abstract

Cocktails of drugs can be more effective than single drugs, because they can potentially

work at lower doses and avoid resistance. However, it is impossible to test all drug cocktails

drawn from a large set of drugs because of the huge number of combinations. To overcome

this combinatorial explosion problem, one can sample a relatively small number of combina-

tions and use a model to predict the rest. Recently, Zimmer and Katzir et al. presented a

model that accurately predicted the effects of cocktails at all doses based on measuring

pairs of drugs. This model requires measuring each pair at several different doses and uses

interpolation to reduce experimental noise. However, often, it is not possible to measure

each pair at multiple doses (for example, in scarce patient-derived tumor material or in large

screens). Here, we ask whether measurements at only a single dose can also predict high-

order drug cocktails. To address this, we present a fully factorial experimental dataset on all

drug cocktails built of 6 chemotherapy drugs on 2 cancer cell lines. We develop a formula

that uses only pair measurements at a single dose to predict much of the variation up to 6-

drug cocktails in the present data, outperforming commonly used Bliss independence and

regression approaches. This model, called the pairs model, is an extension of the Bliss inde-

pendence model to pairs: For M drugs, it equals the product of all pair effects to the power 1/

(M−1). The pairs model also shows good agreement with previously published data on anti-

biotic triplets and quadruplets. The present model can only predict combinations at the

same doses in which the pairs were measured and is not able to predict effects at other

doses. This study indicates that pair-based approaches might be able to usefully predict and

prioritize high-order combinations, even in large screens or when material for testing is

limited.

Author summary

Drug cocktails are a promising strategy for diseases such as cancer and infections, because

cocktails can be more effective than individual drugs and can overcome problems of drug

resistance. However, finding the best cocktail comprising a given set of drugs is challeng-

ing because the number of experiments needed is huge and grows exponentially with the

number of drugs. This problem is exacerbated when the experiments are expensive and

the material for testing is rare. Here, we present a way to address this challenge using a
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mathematical formula, called the pairs model, that requires relatively few experimental

tests in order to estimate the effects of cocktails and to predict which cocktail is most effec-

tive. The formula does well on experimental data generated in this study using combina-

tions of between 3 and 6 anticancer drugs, as well as on existing data that use

combinations of antibiotics.

Introduction

Cancer and antibiotic treatments face the problem of drug resistance. Cancer drugs also face

problems of efficacy at the low doses needed to tolerate side effects [1–5]. One strategy to over-

come these challenges is cocktails of several drugs [5–9]. Cocktails overcame the challenges of

resistance and efficacy in diseases such as HIV [10–12] and are used in diverse medical con-

texts. Effective cocktails can, in principle, be designed for each individual patient [13].

Currently, there are approximately 1,000 available compounds to treat cancer [14,15]. Test-

ing all combinations at all doses is impossible, because the number of experiments grows expo-

nentially with the number of drugs and doses. Hence, very effective cocktails may be hidden in

this vast space of possible combinations [1,6,16,17], as recently demonstrated by Horn et al. in

an extensive study of colorectal cancer [5].

Current approaches to overcome the combinatorial explosion problem of drug combina-

tions use mathematical models to predict the effects of combinations based on a small number

of measurements [18–20]. The commonly used Bliss model is a reasonable first approximation

but does not include synergy and antagonism effects. Machine learning approaches have been

proposed, but the large datasets needed to train these models are still not widely available [21–

26]. The Isserlis model proposed by Wood et al. showed excellent results on antibiotic combi-

nations of 3 and 4 drugs [27–29]. Additional studies considered the interactions of multiple

drugs using first- and second-order terms for drug effects [30–38].

Recently, Zimmer and Katzir et al. suggested a model that accurately predicted the multi-

dose response of triplets and quadruplets of antibiotics and cancer drugs [29]. This model

requires measurements of each pair of drugs at a few dose combinations. It uses this multidose

information to fit a smooth drug response curve for all doses, in which each drug changes the

effective dose of the other drugs. This model greatly reduces the number of experiments

needed in order to scan the space of drug cocktails at multiple doses.

Data at multiple doses required for the multidose model of [29] is not always available. This

fact is most pressing when the measurements are made on rare materials whose limited quan-

tity allows only a few tests, such as patient-derived material in individualized medicine applica-

tions [39–42] or in expensive high-throughput screens [43–45]. There is therefore need for a

model that uses measurements at a single dose in order to predict the effects of high-order

combinations (such a model is expected to work only at the measured doses and no other

doses). In particular, previous models were tested only up to triplets and quadruplets of drugs.

Experiments on higher-order combinations are hence of interest [5].

To address this, we tested all combinations of 6 chemotherapy drugs at a single dose on 2

cell lines (a fully factorial design). We find that synergy and antagonism are cell-line dependent

and are usually consistent with the synergy/antagonism of the pairs that make up each combi-

nation. We developed a simple model for cocktails that is insensitive to experimental noise

and that uses only measurements on drug pairs at a single dose. In addition to the 6-drug com-

binations, we further tested the model on previous fully-factorial datasets of 3 chemotherapy

drugs at 8 doses [29] and of 3 or 4 antibiotics [28], totaling 1,392 additional triplets and 248

Predicting drug cocktails with limited measurements

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002518 October 26, 2017 2 / 16

preparation of the manuscript. Abisch-Frenkel

Professorial Chair received by UA. The funder had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript. Israel Science foundation www.ISF.

org.il (grant number 1349/15) received by UA. The

funder had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: CbPt, Carboplatin; CisPt, Cisplatin;

CPT, Camptothecin; Etopo, Etoposide; LD20, lethal

dose 20%; NCZ, Nocodazole.

https://doi.org/10.1371/journal.pbio.2002518
http://www.ISF.org.il
http://www.ISF.org.il


quadruplets. The pairs model predicts well the effect of these cocktails, with the limitation that

it can only predict effects at the same dose at which the pairs were measured.

Results

Fully factorial experiments on 6 drugs and 2 cell lines

We selected 6 cytotoxic drugs from several clinically employed drug families with different

mechanisms of action (Table 1). We chose drugs that are used in combination in some clinical

settings, such as an alkylating agent with a microtubule poison. For each drug, we measured cell

survival after 48 h using the neutral red assay. A second survival assay, MTT, gave very similar

results (S1 Fig). Each measurement was repeated on at least 6 biological repeats, in triplicate.

We repeated this for 2 human cancer cell lines from different cancers and genetic back-

grounds, H1299 and HeLa. The non-small-cell lung carcinoma line H1299 was derived from

metastatic lymph node from a male patient and characterized by partial homozygous deletion

in the p53 gene, resulting in lack of expression of the p53 protein [46]. HeLa is a cervical cancer

cell line. HeLa cells express p53 at low levels and were derived from a primary tumor from a

female patient [47].

We first measured single-drug dose response curves, which were well described by Hill

functions with moderate cooperativity (Table 1). For each drug, we chose a dose that shows

about 80% survival, lethal dose 20% (LD20; we chose a dose of high survival in order to have

sensitive measurements when combining 6 of the drugs). We then measured all 63 combina-

tions of the six drugs: 6 singles, 15 pairs, 20 triplets, 15 quadruplets, 6 quintuplets, and the sex-

tuplet. In the case of HeLa cells, 17 of the combinations had large variations between repeats

and were not included. The results for all measured drug combinations are shown in Table 2

(and S1 Table), as well as interactions and their confidence intervals based on bootstrapping

the biological repeats.

Some combinations showed synergism in both cell lines, and others

were cell-line specific

We measured the interactions between the drugs by comparing the effects of the combination

to Bliss independence. The effect of drug i, gi, is the fractional reduction in cell survival. In

other contexts, gi is the fractional reduction in cell growth rate [28,29,48] or other measures of

drug impact. Bliss independence is a model in which the combination effect is the product of

the effects of each individual drug

gBliss1::k ¼ g
1
g

2
. . . gk ð1Þ

We quantified the interaction by the logarithmic deviation from the Bliss model,

I = log(1+g1..k − gBliss
1..k) [49] (for other approaches to calculate synergy, see [5]). Negative

numbers indicate synergy, where drugs kill more cells than Bliss independence, and positive

numbers indicate antagonism. We computed 95% confidence intervals for each interaction

term by bootstrapping over the biological repeats of each measurement. We consider inter-

action terms as non-zero when I = 0 is not included in their 95% confidence interval.

We find that 30% of the combinations are synergistic for HeLa cells and 44% for H1299 (S2

Fig). The most synergistic combination for H1299 was Cisplatin, Carboplatin, and Nocodazole

(CisPt+CbPt+NCZ), with I = −0.36. For HeLa, the most synergistic combination was Camp-

tothecin, Carboplatin, and Etoposide (CPT+CbPt+Etopo) with I = −0.14.

We compared the synergy/antagonism of each combination between the 2 cell lines. Fig 1

(and S1 Table) shows each combination plotted by its interaction in HeLa versus H1299.

Predicting drug cocktails with limited measurements
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Overall, there is only a moderate correspondence between the interactions in the 2 cell lines

(R = 0.16). The higher the combination order, the smaller the correlation between the two cell

lines: Two-drug interactions (circles) tend to be more similar between the 2 cell lines (R = 0.5)

than triplets (triangles, R = 0.1) and quadruplets (squares, R = 0.08). This indicates that cell-

line-specific predictions are needed, especially for the high-order cocktails in this sample,

although care is needed with this interpretation due to small number effects and noise.

The synergy/antagonism sign of a combination in a cell line is often

consistent with that of its constituent pairs

To address the possibility of using pairs to model the cocktails, we asked whether the synergy/

antagonism sign of pairs in a combination is informative with regards to the overall synergy/

antagonism sign of the cocktail in a given cell line. For this purpose, we compared the interac-

tion (I) values of each combination of drugs to the interaction of its constituent pairs. The

results for triplets are shown in Fig 2 (and S1 Table).

An indication of high-order interactions is when the signs of the pair interactions do not

correspond to the interaction sign of the combination. Such high-order interactions would

make it difficult to use pairs to model higher-order combinations, especially if the interaction

sign of all pairs is opposite to that of the combination. We find that for HeLa cells all of the

cocktails (of 3–6 drugs) that are antagonistic had at least 1 antagonistic pair (16/16), and all the

synergistic cocktails had at least 1 synergistic pair (10/10). For H1299, all of the antagonistic

cocktails had at least 1 antagonistic pair (7/7), and all but 3 of the synergistic combinations had

at least 1 synergistic pair (19/22). The 3 exceptions are all triplets, underlined in Fig 2, and may

be candidates for exploring third-order interactions. Taking all data together, the synergy/

antagonism sign of the combinations is different from all of the pairs only rarely (6% overall)

in this sample, suggesting that drug pairs may carry useful information about the cocktail

effects [5,28,29].

Table 1. Cytotoxic drugs and their mechanisms of action, LD20 concentrations, and Hill coefficients. LD20 concentrations are the drug concentra-

tions in μM that kill 20% of the cells, and n is the Hill coefficient of the dose response curves.

H1299 HeLa

Drug name Abbreviation Target Target and damage mode LD20

[uM]

n LD20

[uM]

n

Camptothecin CPT Topoisomerase

I

Topoisomerase I poison, that binds and stabilizes the topoisomerase

I-DNA complex, causing DNA damage and cell death.

0.1 0.5 0.15 0.3

Cisplatinum CisPt DNA Crosslinks DNA in several different ways, making it impossible for

rapidly dividing cells to duplicate their DNA for mitosis and leading to

DNA damage and cell death.

13.8 2.2 7 2.1

Nocodazole NCZ Tubulin An antimitotic drug that binds tubulin at high affinity and inhibits

microtubule assembly thus promoting microtubule depolymerization.

50 0.6 0.01 0.95

Etoposide Etopo Topoisomerase

II

Binds to and inhibits topoisomerase II, resulting in the accumulation

of single- or double-strand DNA breaks. This results in the inhibition

of DNA replication and transcription and apoptotic cell death.

10 0.85 6 0.5

Carboplatin CbPT DNA Thought to act similarly to cisplatinum though with reduced side

effects.

200 2.2 165 1.6

Proteasome

inhibitor

MG132 Proteasome Proteasome inhibitor. 0.15 1.5 0.38 1.2

Abbreviations: CbPt, Carboplatin; CisPt, Cisplatin; CPT, Camptothecin; Etopo, Etoposide; LD20, lethal dose 20%; NCZ, Nocodazole

https://doi.org/10.1371/journal.pbio.2002518.t001
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Table 2. Cell survival and interactions of all drug combinations in the present study. Viability was measured using the neutral read assay. 5% CI and

95% CI mark 5% and 95% confidence intervals from bootstrapping. Interaction is I = log(1 + viability − Bliss) where Bliss is the product of the single-drug viabil-

ity values. Antagonism and synergy are marked in blue and pink and denote cases where I > 0 or I < 0 together with the demand that I = 0 is outside the 95%

confidence interval. Cocktails in bold are synergistic/antagonistic for both cell lines.

H1299 HeLa

Drug cocktail viability ste Interaction 5% CI 95% CI viability ste Interaction 5% CI 95% CI

Singles CPT 0.77 0.01 0.73 0.02

CisPt 0.82 0.01 0.65 0.03

CbPt 0.77 0.01 0.27 0.04

NCZ 0.73 0.02 0.83 0.02

MG132 0.68 0.02 0.70 0.02

Etopo 0.72 0.01 0.71 0.02

Pairs CPT+CisPt 0.67 0.02 0.04 0.01 0.08 0.62 0.02 0.13 0.10 0.16

CPT+CbPt 0.58 0.02 −0.01 −0.05 0.02 0.09 0.01 −0.14 −0.19 −0.09

CPT+NCZ 0.66 0.02 0.07 0.04 0.09 0.66 0.03 0.10 0.07 0.13

CPT+MG132 0.66 0.01 0.12 0.09 0.15 0.76 0.02 0.21 0.17 0.24

CPT+Etopo 0.51 0.01 −0.05 −0.08 −0.02 0.60 0.02 0.07 0.04 0.10

CisPt+CbPt 0.73 0.02 0.08 0.05 0.11 0.11 0.02 −0.07 −0.09 −0.05

CisPt+NCZ 0.72 0.02 0.10 0.07 0.12 0.87 0.04 0.24 0.19 0.29

CisPt+MG132 0.74 0.02 0.15 0.12 0.18 0.80 0.03 0.28 0.24 0.32

CisPt+Etopo 0.68 0.02 0.08 0.06 0.11 0.63 0.01 0.15 0.11 0.18

CbPt+NCZ 0.41 0.02 −0.17 −0.23 −0.11 - - - - -

CbPt+MG132 0.58 0.02 0.06 0.03 0.09 0.25 0.03 0.05 0.03 0.07

CbPt+Etopo 0.64 0.02 0.08 0.06 0.11 0.17 0.01 −0.02 −0.06 0.01

NCZ+MG132 0.47 0.02 −0.04 −0.08 −0.01 0.78 0.02 0.15 0.11 0.19

NCZ+Etopo 0.78 0.02 0.23 0.20 0.25 0.77 0.03 0.18 0.13 0.22

MG132+Etopo 0.72 0.02 0.21 0.18 0.24 0.83 0.02 0.28 0.23 0.32

Triplets CPT+CisPt+CbPt 0.37 0.04 −0.07 −0.13 −0.01 0.08 0.00 −0.07 −0.10 −0.04

CPT+CisPt+NCZ 0.31 0.03 −0.16 -0.26 −0.07 0.60 0.02 0.19 0.13 0.23

CPT+CisPt+MG132 0.37 0.01 −0.04 −0.10 0.02 0.55 0.01 0.18 0.14 0.22

CPT+CisPt+Etopo 0.40 0.04 −0.03 −0.12 0.07 0.41 0.01 0.06 0.03 0.09

CPT+CbPt+NCZ 0.53 0.01 0.05 −0.01 0.12 - - - - -

CPT+CbPt+MG132 0.31 0.02 −0.06 −0.13 0.00 0.08 0.04 −0.07 −0.09 −0.05

CPT+CbPt+Etopo 0.32 0.03 −0.08 −0.20 0.04 0.02 0.00 −0.14 −0.19 −0.10

CPT+NCZ+MG132 0.28 0.05 −0.11 −0.18 −0.05 0.63 0.02 0.19 0.17 0.22

CPT+NCZ+Etopo 0.34 0.00 −0.08 −0.14 −0.02 0.54 0.00 0.14 0.10 0.19

CPT+MG132+Etopo 0.58 0.03 0.14 0.05 0.25 0.64 0.01 0.22 0.16 0.27

CisPt+CbPt+NCZ 0.18 0.01 −0.35 −0.45 −0.26 - - - - -

CisPt+CbPt+MG132 0.55 0.01 0.08 −0.02 0.17 0.10 0.00 −0.04 −0.06 −0.01

CisPt+CbPt+Etopo 0.52 0.02 0.02 −0.03 0.07 0.07 0.01 −0.07 −0.09 −0.04

CisPt+NCZ+MG132 0.22 0.01 −0.25 −0.42 −0.10 0.74 0.02 0.26 0.23 0.30

CisPt+NCZ+Etopo 0.68 0.01 0.20 0.15 0.25 0.64 0.01 0.20 0.17 0.24

CisPt+MG132+Etopo 0.72 0.01 0.26 0.21 0.31 0.61 0.01 0.24 0.21 0.27

CbPt+NCZ+MG132 0.15 0.01 −0.30 −0.51 −0.14 - - - - -

CbPt+NCZ+Etopo 0.29 0.01 −0.05 −0.12 0.02 - - - - -

CbPt+MG132+Etopo 0.50 0.01 0.17 0.12 0.23 0.19 0.00 0.05 0.02 0.07

NCZ+MG132+Etopo 0.30 0.01 0.02 −0.01 0.05 0.71 0.02 0.25 0.20 0.30

(Continued )
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We scanned a family of mathematical models to predict high-order

cocktails based on pairs

We next asked to what extent data on drug pairs can improve on the Bliss formula to

predict the effect of cocktails. This requires mathematical formula to properly utilize pair data.

There are several existing approaches for such pair-based predictions. A widely used machine

learning approach is based on logarithmic regression [21–26]. For triplets, regression yields

gRegression
123 = g12g23g13/g1g2g3, and for quadruplets gRegression

1234 ¼
Y

gij=
Y

gi
2 [29].

A second approach employs the Isserlis formula introduced by Wood et al. based on maxi-

mum entropy considerations [28]. For triplets, the Isserlis formula is gIsserlis
123 = g1g23 +

g2g13+g3g12 − 2g1g2g3, and for quadruplets, gIsserlis
1234 = g12g34 + g13g24 + g14g23 − 2g1g2g3g4.

The Isserlis formula showed excellent agreement with data on antibiotic triplets and quadru-

plets [28]. The regression and Isserlis formulas have the desirable mathematical property that

if all pairs are Bliss (that is, if for all pairs gij = gi gj), then the predicted cocktail is also Bliss

g123..k = g1g2g3 . . .gk. We call this property Bliss conservation.

We sought to test additional models that use single drugs and drug pairs as inputs, mea-

sured at a single dose. We therefore sought a family of models that generalize the Bliss and

regression formulas. We choose the family of log-linear combinations of single and pair mea-

surements, which smoothly interpolates between Bliss and regression. For triplets, we tested

g123 = (g12g23g13)α(g1g2g3)β, where α and β are parameters. To preserve the Bliss conservation

Table 2. (Continued)

H1299 HeLa

Drug cocktail viability ste Interaction 5% CI 95% CI viability ste Interaction 5% CI 95% CI

Quadruplets CPT+CisPt+CbPt+NCZ 0.14 0.00 −0.15 −0.21 −0.10 - - - - -

CPT+CisPt+CbPt+MG132 0.19 0.01 −0.07 v0.14 0.00 0.03 0.00 −0.09 −0.13 −0.05

CPT+CisPt+CbPt+Etopo 0.10 0.02 −0.22 −0.28 −0.15 0.02 0.00 −0.09 −0.11 −0.06

CPT+CisPt+NCZ+MG132 0.17 0.01 −0.06 −0.11 −0.01 0.48 0.02 0.17 0.14 0.20

CPT+CisPt+NCZ+Etopo 0.15 0.01 −0.13 −0.17 −0.09 0.41 0.01 0.12 0.09 0.16

CPT+CisPt+MG132+Etopo 0.16 0.01 −0.09 −0.15 −0.02 - - - - -

CPT+CbPt+NCZ+MG132 0.16 0.00 −0.14 −0.23 −0.07 - - - - -

CPT+CbPt+NCZ+Etopo 0.14 0.01 −0.22 −0.28 −0.15 - - - - -

CPT+CbPt+MG132+Etopo 0.25 0.01 −0.03 −0.09 0.03 0.03 0.00 −0.06 −0.09 −0.03

CPT+NCZ+MG132+Etopo 0.21 0.01 −0.08 −0.12 −0.04 0.77 0.02 0.40 0.37 0.42

CisPt+CbPt+NCZ+MG132 0.10 0.00 −0.24 −0.32 −0.16 - - - - -

CisPt+CbPt+NCZ+Etopo 0.21 0.01 −0.10 −0.17 −0.03 - - - - -

CisPt+CbPt+MG132+Etopo 0.55 0.01 0.22 0.19 0.26 0.04 0.01 −0.06 −0.09 −0.04

CisPt+NCZ+MG132+Etopo 0.37 0.01 0.08 0.03 0.13 0.80 0.01 0.40 0.37 0.43

CbPt+NCZ+MG132+Etopo 0.11 0.01 −0.20 −0.25 −0.14 - - - - -

Quintuplets CPT+CisPt+CbPt+NCZ+MG132 0.22 0.04 −0.19 −0.27 −0.11 - - - - -

CPT+CisPt+CbPt+NCZ+Etopo 0.27 0.02 0.00 −0.06 0.05 - - - - -

CPT+CisPt+CbPt+MG132+Etopo 0.43 0.01 0.06 0.00 0.13 0.00 0.00 −0.06 −0.08 −0.04

CPT+CisPt+NCZ+MG132+Etopo 0.26 0.01 0.01 −0.06 0.08 0.58 0.01 0.32 0.30 0.34

CPT+CbPt+NCZ+MG132+Etopo 0.17 0.03 −0.15 −0.25 −0.06 - - - - -

CisPt+CbPt+NCZ+MG132+Etopo 0.20 0.01 −0.09 −0.14 −0.03 - - - - -

Sextuplet CPT+CisPt+CbPt+NCZ+MG132+Etopo 0.29 0.03 0.04 −0.01 0.09 - - - - -

Abbreviations: CbPt, Carboplatin; CisPt, Cisplatin; CPT, Camptothecin; Etopo, Etoposide; LD20, NCZ, Nocodazole

https://doi.org/10.1371/journal.pbio.2002518.t002
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property requires β = 1 − 2α. Generalizing to M drugs, we have g1...M ¼ ð
Q

gijÞ
a
ð
Q

giÞ
b

with

β = 1 − (M − 1)α. The Bliss formula is obtained when α = 0 and the regression formula when

α = 1.

We scanned the value of the parameter α, setting β = 1 − (M − 1)α to preserve Bliss conser-

vation, and compared the R2 values for the fully factorial datasets described above. We find

that a simple formula shows nearly maximal R2 values and outperforms Bliss, Isserlis, and

regression (see next section) (Fig 3, S1 Data). This formula includes only pair data (β = 0, α =

1/(M − 1)), and we hence name it the pairs model:

gpairs
1...M ¼ ð

Y
gijÞ

1=ðM� 1Þ
ð2Þ

Thus, for triplets, the pairs model is the square root of the product of the 3 pair effects. One

feature of the pairs model is that it is less sensitive to experimental noise than most other

Fig 1. A comparison of drug interactions between the 2 cell lines. Circles stand for cocktails of pairs of drugs, triangles for triplets,

squares for quadruplets, and stars for cocktails of 5 drugs. The error bars are 95% confidence intervals of the measurements. The number in

each shape identifies the cocktail according to the list on the right. CbPt, Carboplatin; CisPt, Cisplatin; CPT, Camptothecin; Etopo,

Etoposide; NCZ, Nocodazole.

https://doi.org/10.1371/journal.pbio.2002518.g001
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Fig 2. The synergy/antagonism sign of triplets is mostly consistent with that of their constituent pairs. Shown are all triplets of HeLa

(upper panel) and H1299 (lower panel). Drug names are at the vertices of the triangles. The number inside the triangle is the triplet interaction (I123 =

log(1 + g123 − g1g2g3)), and edges are marked by the pair interactions. Color indicates the interaction sign: red is antagonistic, blue is synergistic, and

white is additive (that is, I = 0 is included in the 95% confidence interval). The triangles are ordered from the most antagonistic triplet to the most

synergistic one. The underlined H1299 triplet is the only triplet where the sign of I123 is not consistent with the sign of the 3 pair interactions, a possible
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models in this class, because it uses only data for pairs; other models use both pair and single

drug data, increasing the number of variables and hence the sensitivity to noise. Assuming

independent multiplicative experimental noise for each measurement with standard deviation

σ, the Bliss formula has total experimental noise of
ffiffiffiffiffi
M
p

s, the regression formula has larger

noise of s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðM� 1Þ

2
þMðM � 2Þ

2
q

, and the pairs formula has noise of only s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=2ðM � 1Þ

p
.

For triplets (M = 3), for example, these noise terms are
ffiffiffi
3
p
¼ 1:7,

ffiffiffi
6
p
¼ 2:5, and

ffiffiffiffiffiffiffiffi
3=4

p
¼ 0:9

times σ for Bliss, regression, and pairs, respectively. The pairs model is expected to be most

useful when data is noisy.

The pairs formula improves on the Bliss approximation for high-order

cocktail effects

We plot the agreement of different formulas to the present dataset in Fig 4 and S1 Data. The

Isserlis and regression formulas are far from the data, as evidenced by their negative R2 values

indication of third-order interaction. Two other synergistic H1299 triplets are marginally inconsistent in the sense that they contain 2 antagonistic pairs

and 1 pair that is judged additive according to the present experimental variation. I, interaction. CbPt, Carboplatin; CisPt, Cisplatin; CPT, Camptothecin;

Etopo, Etoposide; NCZ, Nocodazole.

https://doi.org/10.1371/journal.pbio.2002518.g002

Fig 3. To define different models, we scanned the log-linear model family over αwhile setting β = 1 − (M − 1)α and calculated the

R2 values. The maximal R2 occurs close to α = 1/(M − 1) and β = 0, which is the definition of the pairs model. The left panel is a comparison

between the pairs model, the Bliss model, and the model defined by the αwith the highest R2. The left panel is the R2 values of α = 0:0.05:1.

The rows are for M = 3, 4, and 5, respectively.

https://doi.org/10.1371/journal.pbio.2002518.g003

Predicting drug cocktails with limited measurements

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002518 October 26, 2017 9 / 16

https://doi.org/10.1371/journal.pbio.2002518.g002
https://doi.org/10.1371/journal.pbio.2002518.g003
https://doi.org/10.1371/journal.pbio.2002518


R2 = −0.79 and R2 = −12.1, respectively (negative R2 indicates lack of accuracy for the data

mean since R2 ¼ 1 �
P

iðyi � fiÞ
2
=
P

iðyi � �yiÞ
2

for data yi and prediction fi). Bliss indepen-

dence has R2 = 0.29. The pairs model improves this to R2 = 0.54. This value of R2 is reasonable

given the experimental noise in these measurements, which adds up when considering combi-

nations of 4 to 6 drugs. Also, the higher the number of drugs, the more the potential for high-

order effects above pairs, which cannot be captured by the present model.

We tested the pairs model also on previously published data for 1,360 antibiotic triplets and

quadruplets by Wood et al. [28] The pairs model shows good fit to this data (R2 = 0.78), com-

parable to the Isserlis formula (R2 = 0.88). In this dataset, errors may be smaller than the pres-

ent dataset (S3 and S5 Figs).

This antibiotic data are extensive enough to ask how well the models can rank the combina-

tions in terms of efficacy. Efficacy ranking is of interest if one needs to prioritize potential

cocktails based on measuring the pairs. We find that the pairs model shows 85% accuracy in

identifying the top 10% most effective triplets (that is, triplets with lowest bacterial growth

rate), compared to 75% accuracy in the Isserlis model, 22% for Bliss, and 10% for random (S6

Fig). The regression model shows worse accuracy than random.

The pairs model also describes the multidose cancer drug-triplet dataset by Zimmer et al.

[29], with R2 = 0.7 compared to R2 = −0.29, −2.03, and 0.58 for Bliss, regression, and Isserlis

Fig 4. The pairs model improves on the Bliss approximation and other models for cancer drug cocktails. The plots compare the

experimental data and the prediction of the indicated models.

https://doi.org/10.1371/journal.pbio.2002518.g004
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formulae, respectively (S4 and S5 Figs). The model of [29] that uses multiple doses outper-

forms the pairs model (reaching R2 = 0.82).

Discussion

We presented a fully factorial experiment on the effect of combinations of 6 chemotherapy

drugs on viability of 2 cancer cell lines. The combinations showed varying degrees of synergy

or antagonism. The synergy/antagonism of each combination was mostly consistent with that

of the drug pairs that made up the combination. This led us to test models that predict combi-

nations using only data on pairs and single drugs at a single dose per drug. We screened a

class of log-linear models to develop a model for combinations based on pairs called the pairs

model. In the pairs model, the effect of a combination of M drugs is equal to the product of the

pair effects to the power 1/(M − 1). The pairs model improves on the predictions of the com-

monly used regression and Bliss models.

In addition to the 6 cancer drug combinations measured here, we also tested the pairs

model on an additional 1,640 combinations form previous studies: 280 cocktails of 3 cancer

drugs at 8 doses [29], 1,112 cocktails of 3 antibiotics, and 248 quadruplets of antibiotics [28].

The model predicts these combinations reasonably well. The model only works at the mea-

sured doses and is not able to predict effects of combinations at doses in which the pairs were

not measured.

The synergy and antagonism of some of the combinations showed cell-line-specific effects;

for example, the quadruplet CPT, CisPt, NCZ, and Etoposide is synergistic in H1299 but

antagonistic in HeLa cells. A few combinations, however, showed synergy/antagonism that is

consistent between the 2 cell lines tested. For instance, the pair MG132 and Etoposide is antag-

onistic in both cell lines, and the quadruplet CPT, CisPt, CbPt, and Etoposide is synergistic in

both lines. If such cocktails turn out to be generally synergistic on a large number of cell lines

and patient-derived samples, they may be a promising direction for therapy. The experimental

dataset presented here is limited, and these findings must be tested on a broader number of

cell lines and at multiple doses, as exemplified by the recent study by Horn et al. [5] on combi-

nations of up to 6 drugs on multiple colorectal cancer cell lines.

The ability to use single and pair measurements to predict the effects of high-order combi-

nations is a way to overcome the problem of combinatorial explosion. When measurements at

several doses are available for pairs, the recent dose model of Zimmer and Katzir et al. provides

excellent predictions for triplets and quadruplets of drugs as a function of dose [29]. That

model uses multiple dose measurements to define response surfaces and therefore reduces the

effect of measurement noise. In addition, the dose model provides interpolation of the effects

of drug cocktails at different doses and therefore can be used to scan the combinatorial space

of drug doses to find the most synergistic cocktails. The present study addresses the case where

only a single dose is measured and suggests the pairs model as an improvement over Bliss

independence and regression, especially in the presence of experimental noise. The pair model

estimates the effect of cocktails based on the measured pairs, but it cannot provide estimates

for doses for which the pairs were not measured. This single-dose scenario may be relevant to

tests of drug combinations in large screens or on rare patient-derived material for personalized

medicine applications [39–42].

Materials and methods

Cell lines

H1299 is a non-small-cell lung carcinoma cell line (clone 310806pl1H11 LMNA) described in

Cohen et al. 2008. HeLa S3 cells were obtained from the American Type Culture Collection.
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Drugs

Drugs were treated as described in Geva-Zatorsky et al. 2011 [50]. Cisplatinum (P4394 Sigma)

was dissolved in DMSO (hybri-max, D2650 Sigma), giving a stock solution of 25 mM; Noco-

dazole (M1404, Sigma) was dissolved in DMSO, giving a stock solution of 10 mM; Camptothe-

cin (CPT, C9911 Sigma) and Etoposide (E1383 Sigma) were dissolved in DMSO, giving a

stock solution of 0.3 mM; Carboplatin (C2538 Sigma) was dissolved in DDW, giving a stock

solution of 500 mM; and MG132 (C2211 Sigma) was dissolved in DMSO, giving a stock solu-

tion of 0.32 mM. In each experiment, each drug was diluted to the desired concentration in

transparent growth medium (RPMI 1640, 0.05% Penicillin-Streptomycin antibiotics, 10%

FCS, with L-Glutamine, lacking riboflavin and phenol red, Bet Haemek, Biological Industries,

catalog number 06-1100-26-1A). Normal transparent growth medium was replaced by the

diluted drug solution [50].

Viability assays

Neutral red. Cell viability was determined by neutral red assay (as described in Geva-

Zatorsky et al. 2011 [50], Fluka Chemie, catalog number 72210, Buchs, Switzerland), (Zhang

et al., 1990) as follows: Cells were plated in 96-well plates (Nunc, 164588) at 1.5 × 104 cells per

well. Cells were incubated at 37˚C with 8% CO2 for 24 h in membrane-filtered growth media

composed of RPMI 1640 with (+) L-Glutamine (GIBCO, catalog number 21875), 10% Fetal

Calf Serum (certified fetal bovine serum, Biological Industries, catalog number 04-001-1A),

and 0.05% Penicillin-Streptomycin antibiotics (Biological Industries, catalog number 03-031-

1B). Next, cells were treated with the drugs and incubated for 48 h. Medium was then

removed, and 100 μl neutral red reagent (diluted 1:100 in growth medium) was added to cells

for a 1-h incubation. Neutral red buffer was washed, and 100 μl per well fixation buffer (1%

CaCl2, 0.5% formaldehyde) was added. To extract the remaining cells, extraction buffer (1%

glacial acetic acid, 50% ethanol) was added (100 μl per well). Cells were shaken for 20 s, and

optical density (570 nm) was read by an ELISA reader. Following subtraction of blanks (wells

with no cells), an average of replicates was calculated. Cell survival was determined as the per-

centage of the OD read in the untreated controls [50].

MTT assay. Cells were grown in 96-well plates as described above and were incubated

with combinations of drugs for 48 h. Then, viability assay was done using the in vitro toxicol-

ogy assay kit (MTT-based, TOX1 SIGMA). Cells were incubated with reconstituted MTT for 4

h, and absorbance was measured at 570 nm.

Computation of drug interaction. To determine the synergism/antagonism of a cocktail,

we calculated I = log(1 + g1..k − gBliss
1..k) for all biological repetitions of the drug cocktail g1..k

(the number of biological repeats ranged between 6 and 23). Then we used Matlab bootstrap-

ping to calculate the mean of I and the 5/95 percentile confidence interval. If I> 0 and the

5th percentile > 0, we determine that the cocktail is antagonistic. If I< 0 and the 95th

percentile < 0, we determine that the cocktail is synergistic. Otherwise, we determine that the

cocktail is additive.

This interaction score is based on Bliss independence. We note that there are other ways to

score synergy, which differ from Bliss in certain ways. First, Bliss does not account for dose

additivity (for which Loewe models are most widely used), so a drug-with-itself combination

could be scored as “synergy” or “antagonism.” Second, Bliss independence is a strong require-

ment for combinations, which may limit its utility as a synergy reference. Other scores include

versions of HSA “best single agent”-referenced scores for absolute synergy and for differential

synergy as described in Lehar et al. 2009 [6]. The absolute HSA synergy score typically shows a
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more balanced distribution of pair interactions. Differential synergy scores can avoid shifts

towards positive absolute synergy at higher dimensions expected due to dose adding.

Supporting information

S1 Fig. Cell viability was measured using two different assays—MTT (blue line), and neu-

tral red (red line), and showed similar results. A) Cell viability was measured in H1299 cell,

48h following MG132 drug treatment at several doses to determine LD20. B) Same as A) for

Camptothecin (CPT).

(DOCX)

S2 Fig. The distribution of drug interactions for the two cell lines. Ant denotes antagonism

(I>0), Syn denotes synergism (I<0), and Add denotes additivity (I = 0 in the sense that zero

lies in the 95% confidence interval of I).

(DOCX)

S3 Fig. The pairs model shows a good fit for cocktails of antibiotics. The different plots

show the comparison between the experimental data and the prediction of the indicated mod-

els. Experimental data from Wood et al [28].

(DOCX)

S4 Fig. The pairs model shows the best fit among models for cocktails of three chemother-

apy drugs on A549 cells. The different plots show the comparison between the experimental

data and the prediction of the indicated models. Experimental data from Zimmer and Katzir

et al [29].

(DOCX)

S5 Fig. When scanning over to define different modes shows that the maximal R2 is

received close to α = 1/(M-1) β = 0, which is the definition of the pairs model. The left panel

is a comparison between the Pairs model, the Bliss model and the model defined by the α with

the highest R2. The left panel is the R2 values of α = 0:0.05:1. The first row is for triplets of anti-

biotics- data taken from Wood et al. [28], the second row is cocktails of chemotherapy with

A549 cells, data taken from Zimmer and Katzir et al. [29].

(DOCX)

S6 Fig. The pairs model has the height rate of accuracy in ranking 10% of the most syner-

gistic antibiotic triplets. We ranked the efficacy of 1112 cocktails of 3 antibiotics presented by

wood et al 2012. We calculated the different models for this data, and ranked the models pre-

dictions. We compared the ranking of the experimental data and the ranks of the different

model and calculated the rate of success. For 10% of the data (the enlarged image) the Pairs

model show 85% rates of success, the Isserlis model shows 75%, the Bliss independence model

show 22%, randomized data showed 10% success rate—as expected, and the regression model

showed success rate which is lower than random. We randomized the data in two ways– 1)

randomization over the pair measurements, calculating the Pairs model and ranking it (The

green error bars). We did this procedure 1000 times and calculated the mean success rate and

its std. 2) we randomized the ranks 1000 times and calculated the mean and std (light blue

error bars).

(DOCX)

S1 Table. Cell survival and interactions of all drug combinations in the present study. Via-

bility was measured using the neutral read assay. 5%CI and 95%CI mark 5% and 95% confi-

dence intervals from bootstrapping. Interaction is I = log(1+viability-Bliss) where Bliss is the
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product of the single drugs effects. Antagonism and synergy are marked in blue and pink, and

denote cases where I>0 or I<0 together with the demand that I = 0 is outside the 95% confi-

dence interval. Cocktails in bold are synergistic/antagonistic for both cell lines.

(XLSX)

S1 Data. The data that was used to generate Figs 3 and 4.

(XLSX)

S1 Code. The code that was used to generate Fig 3.

(M)
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