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The tumor immune microenvironment contributes to tumor initiation, progression and

response to therapy. Among the immune cell subsets that play a role in the tumor

microenvironment, innate-like T cells that express T cell receptors composed of γ and δ

chains (γδ T cells) are of particular interest. Indeed, γδ T cells contribute to the immune

response against many cancers, notably through their powerful effector functions that

lead to the elimination of tumor cells and the recruitment of other immune cells. However,

their presence in the tumor microenvironment has been associated with poor prognosis

in various solid cancers (breast, colon and pancreatic cancer), suggesting that γδ T cells

also display pro-tumor activities. In this review, we outline the current evidences of γδ T

cell pro-tumor functions in human cancer. We also discuss the factors that favor γδ T cell

polarization toward a pro-tumoral phenotype, the characteristics and functions of such

cells, and the impact of pro-tumor subsets on γδ T cell-based therapies.
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INTRODUCTION

Within a tumor, the malignant features of cancer cells are tightly regulated by their local
environment and the reciprocal network they form with host cells (e.g., immune cells, angiogenic
vascular cells, endothelial cells, and cancer-associated fibroblasts) and that define the cancer
ecosystem. The tumor immune microenvironment is a critical determinant of cancer evolution
and outcome. In this context, the nature and frequency of tumor-infiltrating immune cells are
considered to be prognostic factors in many cancers. A better knowledge of this dynamic immune
environment is required to improve prognosis, choose therapies, and evaluate the response
to treatments.

Among the tumor-infiltrating immune cells, T cell sub-populations, especially CD8+ T
lymphocytes, are a key anti-tumor immune component. γδ T cells, a subgroup of T cells that
belong to the non-conventional or innate lymphocyte family, also are found in the tumor
microenvironment and are involved in tumor surveillance. Although they share many properties
with αβ T cells, such as cytotoxic activity and pro-inflammatory cytokine production, the structure
of their T cell receptor (TCR; composed of γ and δ chains) is different as well as their activation
mechanisms that are independent of major histocompatibility complex (MHC) molecules. Human
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γδ T cells can be divided in three main populations, based on
their TCR δ chain (δ1, δ2, δ3) (1, 2). Vδ2 T cells, also known as
Vγ9Vδ2 T cells, are the main γδ T subtype (90%) in peripheral
blood. The Vδ1 and Vδ3 subsets are mostly found in tissues and
mucosa, respectively.

Vγ9Vδ2 T cells display specific properties, such as the TCR-
dependent recognition of non-peptidic phosphorylated antigens,
called phosphoantigens. Phosphoantigens are molecules
produced by the isoprenoid synthesis pathways of prokaryotic
pathogens and by infected or transformed eukaryotic cells.
Although phosphoantigen recognition does not require MHC
molecule presentation, several studies brought evidences of
the involvement of the cell surface butyrophilin 3A (BTN3A)
(3) and the requirement of butyrophilin 2A1 (BTN2A1) (4).
Phosphoantigen-induced TCR activation of Vγ9Vδ2 T cells
triggers their proliferation, cytokine production, and cytotoxic
activity (5). Vγ9Vδ2 T cells also express natural killer (NK)
receptors, such as NKG2A and NKG2D, and their activation is
modulated by the presence of their ligands in the environment
(6, 7).

Vδ1 T cells recognize the stress-inducible MHC class I-related
chain A and B (MICA and MICB) proteins that are expressed
by some tumor and virus-infected cells (8), as well as glycolipid
antigens presented by the CD1c (9) and CD1d proteins (10, 11),
and the algal protein phycoerythrin (12). Additionally, Vδ1 T
cells can be activated independently of their TCR, via ligation of
stimulatory receptors, including NKG2C, NKG2D, NKp30, toll-
like receptors, and the β-glucan receptor dectin 1 (13–17). To
date, little is known on the activation mechanisms of the Vδ3 T
cell subset.

Although the human Vδ1, Vδ2 and Vδ3 T cell subsets
display a strong reactivity against tumor cells, γδ T
cell-based immunotherapies primarily target the Vδ2
subset because they are easily expanded and activated by
synthetic clinical-grade phosphoantigens (e.g., bromohydrin
pyrophosphate) or by pharmacological inhibitors (e.g.,
zoledronate) of the isoprenoid synthesis pathway that produces
these metabolites (18, 19).

Many clinical trials using Vγ9Vδ2 T cells have been carried
out. Although their safety have been proven, response rate was
moderate and only in 10–33% of patients with hematologic
and solid malignancies benefit from Vγ9Vδ2 T cell-based
immunotherapies (20–25). This suggests the presence in the
tumor microenvironment (TME) of suppressive mechanisms
that inhibit/divert Vγ9Vδ2 T cell functions and/or their ability
to infiltrate tumors. New tools to target and boost Vγ9Vδ2 T
cell anti-tumor functions are currently under study (26), while
other γδ T cell subtypes (e.g., Vδ1 T cells) are now tested as new
therapeutic candidates (27). Although therapies using γδ T cells
received a new burst of interest due to these new research axes,
the existence of γδ T cell subsets with pro-tumor functions has
also been suggested.

In this review, we will discuss the evidences concerning γδ

T cell pro-tumor functions in human cancer, and the factors
that could favor γδ T cell polarization toward a pro-tumoral
phenotype, the characteristics and functions of these cells, and
also the possible consequences for γδ T cell-based therapies.

EVIDENCE OF PRO-TUMORAL γδ T CELLS
IN HUMAN CANCER (TABLE 1)

In line with the potent anti-tumor properties of γδ T cells, a large
study of publicly available gene expression data from bulk tumors
showed that the γδ T cell signature is associated with the most
significant favorable prognosis in 25 malignancies (37). However,
it was later demonstrated that the sorting algorithm used in this
study could not accurately differentiate γδ T cells from CD8+
and NK cells due to the transcriptome overlaps in these three
cell types (38). Using a refined signature for the Vγ9Vδ2 T cells
subset based on sorted cells, the authors found that a high-level
infiltration of γδ T cells in tumors was not always associated
with a positive outcome (38). In line with these results, recent
studies suggested that these cells may also have a pro-tumor role
in some cancers.

In breast cancer, high Vδ1 T cell prevalence has been
associated with immunosuppressive functions, such as inhibition
of naive T cell proliferation and the impairment of dendritic
cell (DC) maturation and function (28). Moreover, γδ T cell
infiltration level in breast cancer was the most significant
independent prognostic factor of disease severity, in terms of
survival and relapse (29).

In colorectal cancer, CD39+ Vδ1 T cell infiltration establishes
an immunosuppressive microenvironment through the
adenosine pathway and the recruitment of myeloid-derived
suppressive cells (MDSCs). The presence of these cells has
been associated with the disease severity (31). Another study
demonstrated the pro-tumor functions of IL-17-producing
γδ T cells in colon cancer through their capacity to recruit
MDSCs (33). Moreover, pro-inflammatory Vδ2 T cells might
participate in colorectal cancer pathogenesis by supporting
chronic inflammation (39). Besides breast and colon cancer,
several studies have shown a potentially deleterious role of
γδ T cell subsets in pancreatic, ovarian, gallbladder and renal
cancer (32, 34–36).

POLARIZATION OF γδ T CELLS TOWARD A
PRO-TUMOR FUNCTIONAL PHENOTYPE
(FIGURE 1)

Although γδ T cells have been originally described as
pro-inflammatory cells with a Th1-like phenotype, they
display high plasticity and can be polarized toward different
functional phenotypes, depending on their environment (40).
Understanding precisely the influence of different environmental
factors, such as cytokines, on γδ T cells and the limits of their
plasticity is crucial to determine how the TME can skew γδ T
cells toward a pro-tumor function that will directly or indirectly
impair the anti-tumor immune response and support tumor
growth. Although studying T cell functional plasticity within
tumors is a complex endeavor, several ex vivo studies involving
the activation of naive γδ T cells in the presence of various
cytokines have brought some insights into how γδ T cells can
be skewed toward a pro-tumoral activity. Specifically, it has
been shown that TGF-β, IL-4 and more recently IL-21 favor the

Frontiers in Immunology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 2186

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chabab et al. Pro-tumor γδ T Cells

TABLE 1 | Pro-tumoral characteristics of infiltrating γδ T cells in human cancer.

Type of cancer γδ sub-

populations

Phenotype

(surface

markers)

Mode of action Pro-

tumoral/suppression

factors

Prognosis value References

Breast cancer Vδ1

(predominantly)

CD8αα+, CD25–,

FoxP3– (TILs

clones)

Suppression of T

cells and DC

Undefined soluble

factor (not TGF-β or

IL-10)

Correlation with

advanced tumor

stages, inverse

correlation with OS and

RFS

(28, 29)

Vδ1 and Vδ2 CD39+, CD73+ n/a n/a Associated with late

stage disease

(30)

Colorectal cancer Vδ1

(predominantly)

CD39+, CD25+,

FoxP3+

Suppression of T

cells

Adenosine Correlation with

malignant

clinicopathological

features

(31)

Vδ1 (Vδ2

defined as

anti-tumoral)

n/a Suppression of T

cells

n/a Correlation of Vδ1 with

disease T stage

(negative correlation

with Vδ2)

(32)

Vδ1

(predominantly)

CD45RO+,

CD161+, CCR6+,

CD69+ TEM

phenotype

CD45RA–, CD27–

Attraction of

PMN-MDSCs

IL-17A, IL-8, GM-CSF Correlation with

advanced

clinicopathological

features

(33)

Gallbladder cancer γδ n/a (CXCR3) Angiogenesis,

suspected

attraction of

MDSCs

IL-17A Associated with poor

survival

(34)

Ovarian cancer Vδ1

(predominantly)

n/a Suppression of T

cells, suspected

promotion of

pro-tumoral

myeloid cells

Suppressive factor not

determined, production

of IL-17A

Correlation with

advanced

clinicopathological

features

(35)

Pancreatic ductal

adeno carcinoma

Non Vγ9 TEM phenotype

CD45RA–, CD27–,

CD62L–

Suppression of T

cells (mouse

model)

PD-L1, Galectin-9 n/a (36)

acquisition of pro-tumoral properties by human and mouse γδ T
cells. Moreover, various cytokine combinations can polarize γδ T
cells into Th17-like cells with pro-tumor effects.

TGF-β
TGF-β is a pleiotropic cytokine that is produced by most cells
in a latent form. TGF-β1 (subsequently referred to as TGF-
β), the most studied isoform, is a potent suppressor of the
immune system. It can be secreted in a complex with latent TGF-
beta binding proteins (LTBP) and deposited in the extracellular
matrix, or tethered to the surface of cells when bound in a
covalent manner to glycoprotein A repetitions predominant
(GARP) or leucine-rich-repeat-containing protein 33 (LRRC33).
Active TGF-β needs to be released from the latent complex
through the interaction with other partners, such as integrins, to
act on its target cells through binding to TGF-β receptors (41, 42).
TGF-β can induce the differentiation of naive CD4+ T cells into
regulatory T cells (Tregs) or Th17 cells, depending on the context,
and is often enriched in tumors. Therefore, TGF-β could play a
crucial role in γδ T cell polarization toward pro-tumoral cells in
the TME (43, 44). In vitro, human peripheral blood mononuclear

cells (PBMCs) can be stimulated with phosphoantigens and
cultured with IL-2 to selectively expand Vγ9Vδ2 T cells. Addition
of TGF-β to the culture increases FOXP3 expression in these
cells. FOXP3 expression remains stable for at least 10 days.
Sorted FOXP3+ Vγ9Vδ2 T cells inhibit the proliferation of
TCR-stimulated PBMCs (45). Another study confirmed TGF-
β role in the development of FOXP3+ Vγ9Vδ2 T cells and
demonstrated that decitabin, a DNA hypomethylating agent,
promotes the generation and the immunosuppressive activity of
FOXP3+ Vγ9Vδ2 T cells induced by TGF-β (46). Importantly,
the relevance of FOXP3 as a regulatory marker depends on the
type of stimulation. Indeed, Vδ2 cell activation using anti-CD3
and anti-CD28 antibodies instead of phosphoantigens leads to
transient FOXP3 expression that does not correlate with the
regulatory phenotype (47, 48). Interestingly, vitamin C increases
the stability of TGF-β-induced FOXP3 expression in Vδ2 cells
through an epigenetic modification of the FOXP3 gene, and
enhances their suppressive capacities (49). Li et al. demonstrated
that upon TCR stimulation Vδ1 T cells can be polarized toward
a suppressive phenotype in the presence of IL-2 and TGF-β.
These Vδ1 cells express FOXP3 and suppress the proliferation
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FIGURE 1 | γδ T cell polarization into pro-tumor cells. Cytokines present in the tumor microenvironment induce the differentiation of γδ T cells into pro-tumor cells: (A)

Th17-like γδ T cells (Th17 γδ), (B) FOXP3+γδ T cells (FOXP3+γδ), (C) IL-10-producing γδ T cells (IL-10+ γδ), and (D) regulatory γδ T cells that express CD39 and/or

CD73 (Supp γδ).

of activated CD4+ T cells (50). In human colorectal cancer,
tumor-infiltrating CD39+ γδ T cells were described as regulatory
γδ T cells that express FOXP3 and act mainly through the
adenosine pathway (31). The authors found that TGF-B1 mRNA
level is higher in the tumor than in the associated normal tissue.
Moreover, CD39+ γδ T cells from normal tissue incubated with
tumor supernatant acquire a potent suppressive capacity through
increased adenosine production. This effect can be abrogated by
incubation with an anti-TGF-β antibody, and can be reproduced
by stimulating cells with recombinant TGF-β. TGF-β-induced
polarization of γδ T cells toward FOXP3+ suppressive cells was
also demonstrated in the mouse (51). Additionally, TGF-β is
required for the polarization of Vγ9Vδ2 into IL-17-producing
γδ T cells, together with IL-1β, IL-6 and IL-23, as described
below (52). Overall, these results suggest that TGF-β could be one
of the key factors responsible for conversion of γδ T cells into
suppressive and/or IL-17-producing cells.

IL-4
IL-4 is a potent regulator of the humoral response and more
generally of the adaptive immunity, particularly through the
differentiation of naive T cells into Th2 cells. In cancer, IL-4
has been associated with tumor aggressiveness, and IL-4 pathway
blockade is currently investigated as anti-cancer strategy (53).
IL-4 is often enriched in the microenvironment of human solid
tumors, notably in cancers with high γδ T cell infiltration,
such as breast cancer (54). In vitro, human Vδ2 cells isolated
from peripheral blood and activated by phosphoantigens in the
presence of IL-4 produce low levels of interferon γ (IFN-γ) and
high levels of IL-4, although this production is not stable over
time (55). In a more recent study, Mao et al. showed that IL-
4 inhibits in vitro the activation of blood γδ T cells induced by
TCR stimulation (54). Nevertheless, IL-4 promotes the growth

of activated γδ T cells and increases the levels of Vδ1 T cells,
which in turn inhibit Vδ2 T-cell growth via significant IL-10
secretion (54). IL-4 inhibits γδ T cell activation when present at
the moment of the stimulation, but enhances their proliferation
when added later. Moreover, concanavalin A-stimulated Vδ1 T
cells cultured with IL-4 retain their cytotoxic properties against
tumor cells. This suggests a complex and context-dependent role
of IL-4 in γδ T cell polarization (56).

IL-21
IL-21 is a potent immunomodulatory cytokine, mainly produced
by activated CD4+ T cells and NKT cells. IL-21 enhances the
effector functions of NK cells, helper CD4+ T cells and cytotoxic
T cells (CTL), but also inhibits Tregs (57). Therefore, it is often
defined as a pro-inflammatory cytokine. In colorectal cancer,
IL-21 is strongly associated with chronic inflammatory colitis
that precedes the malignant disease (57–59). A similar pro-
inflammatory effect of IL-21 on γδ T cells was initially described.
Upon in vitro expansion with IL-21, human Vγ9Vδ2 cells display
increased levels of granzyme B and increased production of
IFN-γ after activation, resulting in enhanced cytotoxic activity
toward tumor cells (60). However, IL-21 modulatory role may
depend on the cell type and the duration of the exposure. For
example, IL-21 enhances IL-10 production by regulatory B cells
and their proliferation. Similarly, our group recently found that
IL-21 is implicated in the polarization of human Vγ9Vδ2 T
cells and Vδ1 T cells toward a regulatory phenotype (30, 61).
We isolated a subpopulation of CD73+ regulatory Vγ9Vδ2 T
cells following their expansion in the presence of IL-21. We
demonstrated that this subset can synthetize adenosine through
CD73 enzymatic activity, and produces the suppressive cytokine
IL-10 and the chemokine IL-8 (also known as CXCL8) that is
involved in the recruitment of polymorphonuclear leukocytes
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FIGURE 2 | Pro-tumor functions of γδ T cells. (A) Th17-like γδ T cells. Th17γδ cells promote angiogenesis indirectly by inducing the production of angiogenic factors

by cancer cells (a), or directly by producing angiogenic factors (b). They also induce myeloid-derived suppressor cell (MDSC) recruitment through GM-CSF and IL-8

production (c), and recruit or polarize M2 macrophages (d) and suppressive neutrophils (e). (B) Pro-tumor γδ T cells. CD39+/CD73+ γδ T cells produce adenosine

that inhibits αβ T cell proliferation and anti-tumor functions (a). γδ T cells can express PD-L1 and inhibit the function of PD1-expressing cells, such as CD8 + cells (b).

IL-10 produced by γδ T cells inhibits CD8 + cell proliferation and cytotoxicity (c). They also favor MDSC recruitment via IL-8 (d) and inhibit dendritic cell (DC)

maturation and functions through not identified mechanisms (e). NK, natural killer cells; Mφ, macrophages, APC, antigen-presenting cell.

(PMN)-MDSCs. This CD73+ cell subpopulation can suppress
the T cell immune response directly in an adenosine- and IL-
10-dependent manner, and indirectly by impairing DC antigen
presentation (61). We then extended these observations to
Vδ1 T cells. We identified in the blood of healthy donors a
Vδ1 T cell subpopulation that expresses CD73 and displays
immunosuppressive phenotype and functions (i.e., production
of immunosuppressive molecules, such as IL-10, adenosine and
IL-8). As shown for Vγ9Vδ2 T cells, incubation with IL-21
favors the development and amplification of this Vδ1 subset.
Importantly, we detected CD73+ γδ T cells in breast cancer
biopsies, suggesting that they could interfere with the anti-
tumor response (30). Moreover, in mouse γδ T cells, CD73
expression is increased after exposure to IL-21, suggesting that
this polarization could be a commonmechanism among different
species (61). Interestingly, after infection with Mycobacterium
bovis Bacillus Calmette-Guerin (BCG), the number of IL-17-
producing γδ T cells was higher in IL-21 receptor knockout mice
than wild type animals. IL-21 induces the apoptosis of these
cells, suggesting the existence of a balance between IL-21-induced
regulatory γδ T cells and IL-17-producing γδ T cells, at least in
some contexts (62).

Polarization Into Th17-Like Cells
IL-17 production was first described in helper CD4+ cells, called
Th17 cells. Th17 cell cytokine secretion, transcription regulation
and effects on the immune system are now well-characterized.
Their development is controlled by the transcription factors
RORγt (63) and STAT3, and also by IRF4 in some cases when

the differentiation is induced by cytokines (64). In mice, TGF-
β, IL-6, IL-21 and IL-23 play a critical role in the differentiation
or polarization of CD4+ cells into Th17 cells. In humans, IL-
1 and IL-23 seem to have the most important role in Th17
cell differentiation, followed by TGF-β and IL-6 (65–67). IL-
17 is produced by murine γδ T cells (68) and also by human
γδ T cells (69). In both species, IL-7 strongly promotes the
expansion of IL-17-producing γδ T cells (Th17 γδ T cells) (70).
Moreover, several studies have shown that when cultured in
the presence of various cytokine combinations, naive Vγ9Vδ2 T
cells acquire an IL-17-secreting Th17-like phenotype or a mixed
Th1/Th17 phenotype, and produce both IFN-γ and IL-17 (52,
71, 72). Human cord blood-derived Vγ9Vδ2 T cells stimulated
with the phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl
pyrophosphate (HMBPP) require IL-6, IL-1β and TGF-β to
differentiate into Th17 γδ cells, and also IL-23 for differentiation
into γδ Th1/Th17 cells (71, 72). In adults, differentiation of naive
γδ T cells into memory γδ Th1/Th17T cells and Th17 γδ T
cells requires IL-23, IL-1β and TGF-β, but not IL-6. γδ Th17
cells can also produce IL-22 (especially cells in the cord blood)
(71, 72). The pro-tumor role of IL-17 has been well established in
some contexts, and the pro-tumor role of Th17 γδ T cells will be
developed in the next part.

PRO-TUMORAL FUNCTIONS OF γδ T
CELLS (FIGURE 2)

Th17 γδ T Cells
IL-17 is detected in mice and human tumor (73–75), and αβ

Th17 cells are not the only source of IL-17. Indeed, NK cells,
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neutrophils and γδ T cells also produce IL-17. Notably, Th17
γδ T cells are the first and major source of IL-17 at sites of
inflammation or infection, and also in tumors.

Although Ma et al. showed that IL-17-producing γδ T cells
(Vγ4 and Vγ6) contribute to the chemotherapy-induced anti-
cancer immune response (76), many studies found that Th17 γδ

cells display pro-tumor functions in mouse models and human
solid cancers.

Inmousemodels of fibrosarcoma (77), ovarian (78) and breast
cancers (79), γδ T cells are the main IL-17 producers at the
tumor site, and promote tumor growth. Th17 γδ T cells increase
the expression of the angiogenic factors VEGF-2 and ANG-
2 at the tumor sites, suggesting that tumor-infiltrating IL-17-
producing γδ T cells promote tumor development by enhancing
angiogenesis (77). They also participate in the establishment of
an immunosuppressive TME through the recruitment, expansion
and polarization of neutrophils that can suppress cytotoxic T
lymphocyte (CTL) activities (79), and the recruitment of MDSCs
or small peritoneal macrophages in ovarian cancer. All these
cells also induce the expression of pro-tumor and pro-angiogenic
factors that promote tumor growth.

In human solid cancers,Wu et al. were the first to demonstrate
the pro-tumor role of IL-17-producing γδ T cells in human
colorectal cancer (33). They showed that the main IL-17
producers in colon cancer are γδ T cells (up to 83% of
Vδ1 T cells). In this cancer, Th17 γδ T cell differentiation and
activation are triggered by IL-23 produced by activated DCs
present at the tumor site. Colon cancer-infiltrating Th17 γδ T
cells produce also IL-8 that participates in tumor progression
through its role in angiogenesis and in MDSC recruitment.
These MDSCs contribute to establishing an immunosuppressive
microenvironment that favors tumor development. Interestingly,
the strong and positive correlation between tumor-infiltrating
Th17 γδ T cells and TNM stage (tumor size, lymphatic invasion,
and metastases) strengthens the pro-tumor activities of Th17
γδ T cells in human colorectal cancer (33). Studies in patients
with gallbladder cancer showed an increase of Th17 γδ T cells
in the blood (compared with healthy individuals), and also of
tumor-infiltrating lymphocytes in patients who did not receive
any treatment. They confirmed the implication of Th17 γδ T
cells in angiogenesis promotion (induction of VEGF production
by gallbladder cancer cells) and tumor progression. Moreover,
the presence of Th17 γδ T cells in the blood of patients is
associated with poor survival compared with patients with few
or without Th17 γδ T cells (34). Lo Presti et al. showed that
γδ T cells are increased in the blood and at the tumor site
in patients with squamous cell carcinoma. Interestingly, tumor-
infiltrating γδ T cells are functionally different depending on
the tumor stage (80). At early stages, γδ T cells produce mainly
IFN-γ, while at late stages, they produce IL-17. Indeed, higher
numbers of IL-17-producing cells (both Vδ1 and Vδ2 γδ T cell
subsets) are found in advanced-stage squamous cell carcinoma
compared with early stage tumors. They also showed that both
Vδ1 and Vδ2 cell subsets produce high levels of IL-17 at the
tumor site. Moreover, Vδ2 T cells produce IFN-γ in the blood,
suggesting that Th17 γδ T polarizing factors are present in
the TME (80).

Overall, many reports demonstrated the pro-tumor functions
of γδ T cells with a Th17 γδ T phenotype. To date, it is not
possible to say whether this Th17 γδ T cell sub-population is
recruited at the tumor site or is polarized in situ toward IL-17-
producing cells due to the presence of Th17-polarizing cytokines
in the TME (e.g., IL-1β, IL-23, TGF- β, IL-6). Nevertheless,
it is now well-established that Th17 γδ T cells favor tumor
growth by promoting angiogenesis, metastasis development,
and the recruitment of other immunosuppressive cells, such as
suppressive neutrophils and MDSCs.

Production of Suppressive Cytokines
As discussed in the polarization section, upon exposure to
specific stimuli γδ T cells can acquire potent regulatory functions,
particularly through the production of IL-10 and TGF-β, two
strongly suppressive cytokines.

IL-10 is a key anti-inflammatory cytokine that inhibits the
production of pro-inflammatory cytokines and the expression
of co-stimulatory molecules by Th1 and antigen-presenting cells
(81). In vitro, IL-4-polarized Vδ1 T cells produce IL-10 and
inhibit the growth of Vδ2 T cells in an IL-10-dependent manner.
Similarly, Vδ1 T cells activated with anti-TCR antibodies strongly
secrete IL-10 (54, 82). In the presence of IL-21, the CD73+ Vδ2
and Vδ1 T cell subsets secrete high levels of IL-10 upon activation
(30, 61). In human colorectal cancer, infiltrating CD39+ γδ T
cells, which are mainly Vδ1+ cells, produce more IL-10 than
CD39- γδ T cells and CD39+ γδ T cells from the tumor-adjacent
normal tissue. However, after several days of culture ex vivo,
these cells do not maintain IL-10 production and lose their ability
to suppress the proliferation of activated T cells (31). In mice,
IL-10-producing γδ T cells have been identified in tumors. In
a breast cancer model, supernatant from infiltrating γδ T cells
suppresses the proliferation of anti-tumor CTLs in an IL-10-
dependent manner (83). In a syngeneic model of OVA-expressing
EL4 tumors (lymphoma), IL-10-producing γδ T cells suppress
the CD8-dependent anti-tumor response, and their depletion
significantly reduces tumor growth (84). Similarly, IL-10+ γδ

T cells are observed in the spleen and tumors of mice grafted
with TC1 cells (transformed lung epithelial cells) (61). IL-10-
producing γδ T cells are also observed in other conditions, for
instance during pregnancy (both human and mouse), and in
oral tolerance and infection in the mouse (85–87). Collectively,
these results suggest that Vδ1 and Vδ2 T cells can produce IL-10;
however, the amount and the impact of this production in human
tumors has not been clearly established yet.

TGF-β is a potent immunosuppressive factor that is tightly
regulated, particularly at the post-translational level. To be active,
the mature part of the protein needs to be released from the
latent peptide (LAP) through interaction with the integrin αvβ6
or αvβ8, the main activating partners of TGF-β. In vitro, TGFβ
mRNA level and LAP surface expression are increased in Vδ1 T
cells sorted from PBMCs and activated with anti-CD3 and anti-
CD28 antibodies (88). High TGF-β level has also been detected
in the supernatant of PBMCs stimulated with an anti-TCR Vδ1
antibody (82), and in the supernatant of Vδ2 T cells stimulated
with the ligand isopentenyl pyrophosphate and expanded with
TGF-β and IL-15 (45). In colorectal cancer, TGF-β surface

Frontiers in Immunology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 2186

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Chabab et al. Pro-tumor γδ T Cells

expression is higher in γδ T cells isolated from tumors than
from normal tissue (31). Interestingly, in the mouse tumor
model MM2, infiltrating γδ T cells suppress the anti-MM2 CTLs
through TGF-β in addition to IL-10 (83). However, it is unclear
whether total or active TGF-β was measured in these studies.
While total TGF-β is a measure of the whole TGF-β production
by the cells, only active TGF-β quantification indicates the actual
suppressive potential of such cells through TGF-β. Indeed, in
these studies, γδ T cell suppressive properties were not affected by
a neutralizing anti-TGF-β antibody, despite their supposed high
level of TGF-β production, or the impact of TGF-β neutralization
was not explored. A possible explanation for this discrepancy is
that only total TGF-β was measured and not active TGF-β. This
argument is supported by the reported high concentration that
is more consistent with the measurement of total TGF-β. These
results suggest that human γδ T cells, particularly Vδ1 T cells,
can produce and present latent TGF-β at their surface in some
contexts. However, because of the lack of αvβ6 or αvβ8 integrin
expression, γδ T cells might not be able to produce active TGF-β
on their own, unlike conventional Tregs (89, 90). Nonetheless,
the presence of latent TGF-β at the γδ T cell surface is highly
relevant because they represent a new source of latent TGF-
β that may be activated by integrin-expressing partners within
the tumor.

Besides the production of directly suppressive cytokines,
γδ T cells also support the establishment of a suppressive
TME through the production of other cytokines, such as IL-
8 and granulocyte macrophage-colony stimulating factor (GM-
CSF) that favor PMN-MDSC accumulation and expansion in
colorectal cancer (33). Interestingly, IL-21, which is highly
expressed in this cancer type, increases the production of IL-8 by
CD73+ Vδ2 T cells and Vδ1 T cells in vitro (30, 61).

Involvement of the Adenosine Pathway
Extracellular ATP and adenosine are considered potent
modulators of the anti-tumor immune response. Extracellular
ATP, released by apoptotic cells for example, induces
inflammation and promotes strong anti-tumor responses
because it increases the immunogenicity of dying cancer
cells (91, 92). It favors the recruitment of phagocytes, the
recruitment and maturation of DC, inhibits the proliferation
of tumor cells but not of healthy cells, and promotes cancer
cell death (91, 93, 94). Conversely, extracellular adenosine
inhibits the anti-tumor immune response and induces the
establishment of an immunosuppressive microenvironment
(95). The adenosine pathway involves the ectonucleoside
triphosphate diphosphohydrolase 1 (ENTPD1 or CD39) that
catalyzes the phosphohydrolysis of extracellular ATP into ADP
and of ADP into AMP, and the ecto-5′-nucleotidase CD73 that
completes AMP conversion into adenosine (92, 96, 97). It has
been shown that γδ T cells express CD39 and/or CD73 during
inflammation and in the TME. Their expression is associated
with suppression or inhibition of the immune response (98–
100). In murine pancreatic cancer, Daley et al. found that
tumor-infiltrating γδ T cells upregulate CD39 expression (among
other immunosuppressive molecules) and promote tumor
progression by restricting αβ T cell activation (36). Hu and

colleagues described in human colorectal cancer a subpopulation
of regulatory γδ T cells that express CD39 (31). CD39+ γδ T
cells are enriched at the tumor site and produce high levels of
adenosine in the TME, compared with other regulatory cells such
as conventional Tregs. Furthermore, they showed that infiltration
of CD39+ γδ T cells is positively correlated with the TNM stage,
suggesting that these cells participate in the establishment of an
immunosuppressive TME, thus promoting tumor growth (31).
In vitro, our group identified subpopulations of regulatory γδ

T cells isolated from peripheral blood that express CD73 and
can produce adenosine. These CD73+ populations (Vγ9Vδ2
or Vδ1) also express CD39 and catalyze the transformation
of ATP into adenosine, thus displaying immunosuppressive
functions, as revealed by their capacity to inhibit αβ T cell
proliferation (30, 61). These regulatory CD73+ γδ T cells are
found in human breast cancer samples, suggesting that they
could interfere with the anti-tumor immune response and favor
tumor progression (30). Altogether, these studies indicate that
the CD39/CD73/adenosine pathway is a major component of γδ

T cell regulatory/immunosuppressive functions in the TME.

Other Suppressive Mechanisms of γδ T
Cells
The previously described regulatory γδ T cells can contribute to
the establishment of an immunosuppressive microenvironment
and to the inhibition of the anti-tumor response in different
manners, for instance by producing inhibitory factors (e.g., IL-10,
IL-8, TGF-β and adenosine) or by recruiting immunosuppressive
cells (e.g., MDSCs and neutrophils). γδ T cells can also exert
their regulatory functions by providing negative co-stimulatory
signals to T cells in the TME through expression of immune
checkpoint proteins. Programmed cell death 1 (PD1) and its
ligand programmed cell death 1 ligand 1 (PD-L1) play a
major role in the negative regulation of cell-mediated immune
responses. Indeed, PD1 is expressed by T cells, and upon binding
to its ligand (expressed by B cells, macrophages and cancer
cells), it inhibits T cell activation, thus impairing the anti-tumor
T cell response. Peters et al. showed that Vδ2 T cells obtained
from the blood of healthy donors can express PD-L1 following
activation (47). These cells inhibit αβ T cell proliferation in co-
culture experiments, and this effect can be abrogated by PD-
L1 blockade (47). This could be another mechanism by which
regulatory γδT cells exert their immunosuppressive activities and
promote tumor growth. In agreement, Daley et al. showed in a
pancreatic cancer mouse model that PD-L1 expression is higher
in tumor-infiltrating γδ T cells than in splenic γδ T cells (36).
In co-culture experiments, they found that tumor-infiltrating
γδ T cells prevent αβ T cell activation and that this inhibition
is reversed by an anti-PD-L1 antibody (36). Interestingly, the
same regulatory phenotype is observed in pancreatic ductal
adenocarcinoma (PDAC). Indeed, PD-L1 is strongly expressed
in γδ T cells from the blood of patients with pancreatic cancer
compared with healthy donors. Tumor-infiltrating γδ T cells
also express PD-L1 in human PDAC (50% of infiltrating γδ T
cells), suggesting that γδ T cells can promote tumor progression
through the PD1/PD-L1 axis (36).
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T-cell immunoglobulin mucin receptor 3 (TIM-3) and
its ligand galectin-9 (GAL-9) are other immune checkpoint
molecules that participate in T cell response inhibition. TIM-
3 interaction with GAL-9 limits T cell expansion and effector
function in the TME (101, 102). GAL-9 expression is upregulated
on tumor-infiltrating γδ T cells in human and mouse PDAC, and
γδ T cell-mediated suppression is dependent on GAL-9 (36).

Little is known about the expression of other immune
checkpoint molecules, such as PD-L2, CD80/86 and CTLA-4,
by γδ T cells in cancer. More studies are needed to investigate
the expression of these and other suppressive molecules to fully
understand the mechanisms of action of regulatory γδ T cells.

IMPLICATIONS FOR γδ T CELL-BASED
TUMOR IMMUNOTHERAPY

The discovery of γδ T cell-mediated tumor immune surveillance
has led to much research to understand the underlying
mechanisms and to harness their potent anti-tumor properties.
It is now firmly established that γδ T cells are well-equipped to
recognize and eliminate malignant cells (20, 103). Thus, much
effort has focused on the development of therapeutics using
γδ T cells, especially the Vγ9Vδ2 subset because they can be
easily obtained and expanded from the blood (104, 105). Two
main strategies were first investigated: (i) in vivo expansion of
Vγ9Vδ2 T cells by injection of phosphoantigens and low-dose IL-
2 in the patient, and (ii) adoptive transfer of ex vivo expanded
Vγ9Vδ2 T cells. Clinical trials using both strategies in patients
with hematological or solid cancers confirmed the safety of this
immunotherapy (well-tolerated and no toxicity), but showed
moderate clinical success (106–109). Indeed, the results were not
as good as expected because only few patients showed complete
response to the therapy. Among the reasons of these relatively
modest clinical results were the skewing of γδ T cells toward
a non-reactive or even a pro-tumor phenotype. For example,
Hoeres et al. showed that incubation of PBMCs from patients
with leukemia with IL-2 and/or zoledronic acid, which are used
to activate γδ T cells, induces PD-1 expression by γδ T cells and
impairs their anti-tumor functions (110). Similarly, Castella et al.
reported PD-1 expression by γδ T cells in patients with myeloma
after phosphoantigen activation (111). Several in vitro and in
vivo studies, summarized here, have demonstrated that γδ T cell
polarization toward suppressive and/or IL-17-producing cells is
a real possibility and that anti- and pro-tumor γδ T cells might
co-exist in the tumor.

After these first clinical trials, new refined approaches
based on recent discoveries are currently being developed.
Aminobisphosphonate activation of γδ T cells in combination
with chemotherapy or with FDA-approved antibodies is one
of these axes. Hoeres et al. and Castella et al. showed that
incubation with an anti-PD-1 antibody restores the proliferative
and anti-tumor properties of Vγ9Vδ2 T cells from patients
with leukemia or lymphoma (110, 111). However, Castella
et al. then found that phosphoantigen stimulation of anergic
PD-1+ Vγ9Vδ2 combined with PD-1 blockade increases the
expression of PD-1 and of two other immune checkpoint

molecules (TIM-3 and LAG-3), leading to a “super-anergic” state
(112). Thus, although the combination of γδ T cell stimulation
and immune checkpoint blockade is an interesting and easily
feasible therapeutic alternative, it still needs to be improved,
by combining for example two or more antibodies against
immune checkpoint molecules. The use of bi-specific T-cell
engagers (BITEs), tribodies, and engineered T cells harboring a
chimeric antigen receptor (CAR) are other interesting options.
For instance, the redirection of Vγ9Vδ2 T cells against tumor
cells using bispecific antibodies or tribodies is efficient in HER-
2-positive PDAC and ovarian cancer (113). TEGs are αβ T
cells engineered to express tumor-specific Vγ9Vδ2 TCRs. In in
vitro models and in humanized mouse cancer models, TEGs
reduce colony formation of progenitor cells of primary acute
myeloid leukemia blasts and inhibit leukemia growth (114).
TEGs engineered from patients with myeloma can recognize
and efficiently kill myeloma cells in a 3D bone marrow niche
model. Phase 1 clinical trials are currently in development to test
TEGs, CAR γδ T cells, and antibodies (bispecific antibodies or
anti-BTN3A antibodies) to specifically “engage” γδ T cells in the
anti-tumor immune response (26).

Another strategy would be to focus on Vδ1 T cells, the
main subpopulation that infiltrates the TME of solid tumors.
Despite their potent anti-tumor properties, Vδ1 T cells had
never been tested in the clinic due to lack of suitable
expansion/differentiation protocols. Recently, Silva-Santos’ team
developed a new and robust clinical-grade method for selective
and large-scale expansion and differentiation of cytotoxic Vδ1 T
cells, and showed that these cells can inhibit tumor growth
and dissemination in preclinical models of chronic lymphocytic
leukemia (27).

On the basis of reports demonstrating γδ T cell pro-tumor
functions, regulatory γδ T cell subsets could be a thorn in the
side of these newly developed therapies and need to be taken
into account. Unfortunately, no clear phenotypic marker of such
cells has emerged yet. Vδ1 cells have been associated with pro-
tumor T cells, but when cultured in proper conditions they
show very high potential for anti-tumor therapies due to their
strong reactivity and cytotoxicity toward tumor cells. Adenosine
pathway markers (e.g., CD39 and CD73) are interesting, but do
not characterize pro-tumor γδT cells on their own. Indeed, CD39
can be considered as an activation marker for T cells (115, 116),
and CD73 is also expressed by naive γδ T cells (117, 118). More
studies are needed to better characterize γδ T cell pro-tumor
phenotypes and to identify markers or marker combinations that
will allow the depletion of pro-tumor subsets in the whole γδ T
cell population.

In the absence of such specific phenotypic markers to deplete
or sort out the pro-tumor γδ T cells before cell therapy, targeting
polarizing cytokines or pro-tumor cytokines produced by pro-
tumor γδ T cells could be of interest. While IL-21 expression
might favor the emergence of a regulatory γδT cell population, its
positive role on the cytotoxicity of other cell types, such as CTL
and NK cells, might be important for the anti-tumor response.
Alternatively, targeting TGF-β as a pro-tumor cytokine and a
polarizing factor for γδ T cells toward both suppressive and IL-
17-producing cells might be of interest. Newly developed highly
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selective approaches targeting the TGF-β-anchoring protein
GARP or the latent TGF-β peptide LAP could be employed in
pro-tumor γδ T cell-rich tumors, such as colorectal cancer, or
with γδ T cell-based therapies to avoid their polarization (119,
120).While no anti-human IL-10 antibody has been approved for
cancer treatment, the production of IL-17A and adenosine could
be targeted in tumors that are highly infiltrated by pro-tumor γδ

T cells, such as breast and colorectal cancer.

CONCLUDING REMARKS

Although γδ T cells offer interesting perspectives for clinical
applications in cell-based immunotherapy, their pro-tumor
functions have to be taken into account. Indeed, environmental
factors can polarize or repolarize γδ T cells, leading to loss of the
anti-tumor function. Moreover, important advances in γδ T cell
immunobiology have revealed a large diversity in functionality
and activation modes of these cells. The new challenge is to better
characterize and understand the role of the various γδ T cell
subsets in function of the specific context.
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