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Abstract: Wild barley is abundant, occupying large diversity of sites, ranging from the northern
mesic Mediterranean meadows to the southern xeric deserts in Israel. This is also reflected in its wide
phenotypic heterogeneity. We investigated the dynamics of DNA content changes in seed tissues
in ten wild barley accessions that originated from an environmental gradient in Israel. The flow
cytometric measurements were done from the time shortly after pollination up to the dry seeds. We
show variation in mitotic cell cycle and endoreduplication dynamics in both diploid seed tissues
(represented by seed maternal tissues and embryo) and in the triploid endosperm. We found that
wild barley accessions collected at harsher xeric environmental conditions produce higher proportion
of endoreduplicated nuclei in endosperm tissues. Also, a comparison of wild and cultivated barley
strains revealed a higher endopolyploidy level in the endosperm of wild barley, that is accompanied
by temporal changes in the timing of the major developmental phases. In summary, we present a
new direction of research focusing on connecting spatiotemporal patterns of endoreduplication in
barley seeds and possibly buffering for stress conditions.

Keywords: Endoreduplication; endosperm; Hordeum vulgare ubsp. spontaneum; seed development;
super cycle value

1. Introduction

Cultivated barley (Hordeum vulgare subsp. vulgare, 2n = 2x = 14) was domesticated
about 10,000 years ago from its progenitor wild barley (H. vulgare subsp. spontaneum,
2n = 2x = 14). Barley belongs to the group of “Neolithic founder crops”, and was one
of the first cereals that became a pillar of food and feed for ancient societies [1]. The
Fertile Crescent is the center of barley domestication, distribution, and diversity [1]. A
recent archegenomic study performed on ancient DNA of 6000 years-old barley grains
excavated at a cave in the Judean Desert in Israel, narrowed its domestication region to the
Upper Jordan Valley [2]. Subspecies spontaneum is distributed from eastern North Africa,
through the Middle East to India and west China [1]. It constitutes an important annual
element of open herbaceous and park-like vegetation [3]. Wild barley natural habitats are
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characterized by wide ecogeographical diversity caused mostly by contrasting climatic
and topographic conditions within the East Mediterranean region. This is reflected by
its phenotypic and genetic heterogeneity [4]. During the last century, wild barley was
collected all over its distribution area and seed samples are stored and maintained in ex
situ gene-banks [3,4]. While domestication and modern plant breeding have reduced the
genetic diversity of cultivated barleys, the stocks of subsp. spontaneum form a major source
for variability, novel genes, and alleles for barley breeding [5,6]. For example, wild barley
was found to be an important source of resistance to biotic and abiotic stresses, including
multiple diseases [7], tolerance to cold [8], drought [9], and salt [10].

Cereal grain development includes three major phases, characterized by different
cellular and physiological events (Figure 6a–c quoted from [11]). Phase I starts with double
fertilization and passes smoothly into the cells/nuclei proliferation; phase II comprises
differentiation of embryo and endosperm tissues, and seed mass gain by the accumulation
of storage compounds; phase III corresponds to seed maturation, weight reduction by desic-
cation, and an onset of dormancy. These phases partially overlap with three morphological
caryopsis growth stages named water, milk, and dough, respectively [12].

Cereal grain consists of three major compartments: multilayered seed maternal tissues
(SMTs; nucellar projection, pericarp plus seed coats), endosperm, and embryo. The pericarp
(diploid, 2x) is derived from the ovary wall and adheres strongly to the seed coats of the
ovule [13]. Within the first days after pollination (DAP), the pericarp serves to protect and
support the growing endosperm and embryo by starch deposition and photosynthesis
in cultivated barley [14,15]. During double fertilization, one sperm nucleus fuses with
the egg cell nucleus and gives rise to the diploid embryo (2x), while the second sperm
cell nucleus fuses with the diploid central cell to form a triploid endosperm (3x) with the
peculiar genetic constitution of one paternal and two maternal genomes. Endosperm nuclei
first form syncytium (a.k.a. coenocyte) and later endosperm cellularizes and differentiates
into five specialized tissues: the central starchy endosperm (CSE), the sub-aleurone layer
(SAL), the aleurone layer (AL), the basal endosperm transfer layer (BETL), and the embryo-
surrounding region (ERS) [16]. Endosperm protects and nourishes the embryo. It is the
main caryopsis part accumulating primarily sugars and proteins [13,16]. The cereal kernel
is covered by hulls that consist of the lemma, palea, and glumes of maternal origin and
which remain tightly attached to the grain even after ripening [17].

Both SMTs and endosperm tissues undergo genetically controlled endoreduplication
during seed development in cultivated barley [11]. Endoreduplication (a.k.a. endopoly-
ploidization) occurs via the endocycle and is a variant of the cell cycle, in which cell nuclei
increase their ploidy through repeated rounds of replication without cell divisions (re-
viewed, e.g., in [18,19]). To unravel the mechanism involved in the switch from a mitotic cell
cycle to an endocycle many cyclin-dependent kinases (CDKs), their cyclin partners, CDK
inhibitors (e.g., WEE1), and retinoblastoma-related (RBR) proteins have been studied [20].
Despite many efforts, the knowledge about the molecular control of endoreduplication
is fragmentary. In most Angiosperms, endoreduplication is common in specialized cells
producing secondary metabolites and/or as a means to accelerate cell expansion of specific
tissues [20]. Also, various abiotic and biotic factors affect the endopolyploidy level of
cells and tissues [21,22]. For instance, salinity or the absence of light stimulates extra
endocycles in different Arabidopsis organs [23,24]. Endoreduplication can also be trig-
gered upon symbiotic [25] and also pathogenic [26] plant-microbe interactions. In contrast,
endopolyploidization can be repressed by both very high and very low temperatures [22]
or drought [27].

The development of cereal seeds would not be possible without programmed cell
death (PCD). In phase I, maternal tissues, i.e., components of the embryo sac, nucel-
lus, nucellar projection, seed coats, and pericarp undergo a progressive degeneration by
PCD [28,29]. During phases II and III, mainly two endosperm parts: ESR and CSE undergo
cell death, but the cells remain intact in the mature grain and their contents will not be
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remobilized until germination. Finally, the mature grain contains mainly dead material,
where only the embryo, BETL, and AL tissues remain alive [30–32].

Wild barley is a generalist abundant across diverse habitats ranging from the mesic
Mediterranean meadows to the xeric southern habitats and even penetrating the central
Negev desert in Israel. Such environmental heterogeneity can be a direct driving force
for adaptation [4]. The main objective of this study was to investigate the dynamics of
endoreduplication in seed tissues of wild barley originating from mesic, semi-mesic, semi-
xeric, and xeric ecogeographic sites of Israel. For this purpose, we measured the DNA
contents in diploid seed tissues (embryo and maternal tissues) and triploid endosperm
using flow cytometry. We calculated the proportion of nuclei with different DNA contents
and estimated the level of endoreduplication with a new formula called the super cycle
value (SCV) [11]. For a better understanding of the dynamics of processes associated with
wild barley grain development, we also monitored the morphology of developing seeds and
performed Evans blue cell death assay. We found that wild barley accessions originating
from the xeric environments have on average higher proportion of endoreduplicated nuclei
in seed tissues, and tend to have a higher SCV index. This indicates the impact of harsh
conditions on endoplyploidization. A comparison of wild and cultivated barleys reveals
a higher endopolyploidy level in the endosperm of wild barley that is accompanied by
temporal changes in the timing of the major developmental phases.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Ten wild barley (H. vulgare subsp. spontaneum) accessions originating from Israel
were used in this study. Seeds were obtained from the Institute of Evolution Wild Cereal
Gene Bank (ICGB) at the University of Haifa, Israel, and Leibniz Institute of Plant Genetics
and Crop Plant Research (IPK), Gatersleben, Germany. The ICGB accessions were named
based on the seed collection sites and the type of environment (Figure 1; Table 1). Three
accessions originated from typical xeric (x) environments: Machtesh Gadol (MGx), Mehola
(MHx), and Wadi Qilt (WQx); three from mesic (m) environments: Rosh Pinna (RPm), Tel
Hai (THm), and Zefat (ZFm), and one accession from Bar Giyyora represented semi-mesic
environment (BGsm). Two accessions originated from Nahal Oren (NO) Canyon, also
named “Evolution Canyon” [32]. The first NO accession was collected from the North-
facing slope (NFS) representing a mesic environment (NOm), and the second from the
South-facing slope (SFS) belonging to the semi-xeric group (NOsx). In brief, the xeric
environment is characterized by low annual rainfall and high temperatures, and mesic
by high annual rainfall and lower temperatures. Differences between environments are
mainly reflected at seed development time during March to April. The environmental
conditions at BG are regarded as semi-mesic due to the high rainfall and dry environment
in the Judean mountains. The SFS is regarded as semi-xeric due to higher solar radiation as
compared with the NFS Nahal Oren. The IPK accession HS584 carries the gene bank name
HOR 12560, and the exact site of the collection is unknown.

Also, published data [11] from six cultivars (cv.) of two-rowed spring barley (H. vulgare
subsp. vulgare): Betzes (PI 129430), Compana (PI 539111), Golden Promise (GP; PI 343079),
Ingrid (PI 263574), Klages (CIho 15478) and Mars (PI 599629) and three additional cv. of
six-rowed spring barley: Glacier (CIho 6976), Mars (CIho 7015) and Morex (BCC 906) were
used for comparison.

Grains were stratified in the dark at 4 ◦C for 48 h, evenly spread on wet filter paper in a
Petri dish, covered with a lid, and germinated at 25 ◦C for 3 days in the dark. Germinating
kernels were planted into 5 cm × 5 cm peat pots with a mixture of soil and sand (2:1,
v/v) and grown in an air-conditioned phytochamber with a long day regime (16 h day
with 20◦C and 200 µmol m−2 s−1 light intensity; 8 h night with 16 ◦C; 60% humidity).
After 10 days, wild barley plants were placed into the vernalization chamber (short-day
regime; 8 h day with 4 ◦C, light intensity 200 µmol m−2 s−1; 16 h night with 4 ◦C; humidity
85%) for three weeks. Ten-day-old cultivated barley plants and 31-day-old wild barley
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plants were transferred into the 12 cm × 12 cm pots filled with the above-described soil
mixture and grown under long-day conditions. For each accession five plants were grown.
Day of pollination (DOP) was monitored using the morphology of stigma and anthers
according to the Waddington scale (W10) [33] as we described previously [11,34]. In brief,
the spikelets at DOP were characterized by extended hulls, widely branched stigma, and
the presence of pollen grains on stigmatic hairs. Seeds were collected from the center of
the spikelet at two- and four-day intervals, starting from 4 until 24 days after pollination
(DAP). For this experimental setup, in total seven-time points were examined (i.e., 4, 6,
8, 12, 16, 20, 24 DAP). For three accessions, HS584, RPm, and BGsm collecting the seeds
were extended up to 48 DAP (additional six collection points: 28, 32, 36, 40, 44, 48 DAP).
Mature dry seeds (called ‘dry seeds’ latter in the text) were harvested around 60–65 DAP
from fully dried mother plants, cleaned, and stored first ~30 days at 20 ◦C, then ~60 days
at 4 ◦C, both in darkness. The analysis was performed after 90 ± 5 days after harvesting
the seeds. During collecting the seed from mother plants, kernels were at the hard-dough
phase of barley grain development (87–89 stages according to [12]). It means that grains
were dry and cannot be squeezed out. The maximum dry seed section area was reduced
by approximately 30–40% as compared to 20–28 DAP seeds (Supplementary Figure S5).
Hulls had yellow color.

Figure 1. Geographic origin of wild barley (H. vulgare subsp. spontaneum) accessions. (a) Examples
of wild barley from the Galilee (mesic) and Judean desert (xeric) in Israel. (b) Collection sites in
Israel. Blue points = mesic sites (THm = Tel Hai, ZFm = Zefat, RPm = Rosh Pinna, NOm = Nahal
Oren northern facing slope); green point = semi-mesic site (BGsm = Bar Giyyora); green-brown
point = semi-xeric site (NOsx = Nahal Oren southern facing slope); orange points = xeric sites
(MHx = Mehola, MGx = Machtesh Gadol, WQx = Wadi Qilt). The map was generated using Google
Maps. Detailed ecogeographical data are presented in Table 1.
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Table 1. Sampling sites and ecogeographical data of the analyzed wild barley accessions.

Locality/Name
(All within Israel) Genebank Acronym Type of

Environment Longitude (N) Latitude (E) Altitude
(a.s.l.)

Maximum
Temperature
in April (◦C)

Rainfall in
April (mm)

Annual
Rainfall (mm)

Average Annual
Humidity at 14:00

Mean ± SD
Annual

Evaporation (cm) Soil Type

Bar Giyyora ICGB BGsm Semi-mesic 35.083333 31.716667 760 22 18 535 47.1 ± 10.8 215 T

HS584 IPK HS584 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Machtesh Gadol ICGB MGx Xeric 35.000000 30.950000 n.a. 25 3 70 n.a. n.a. n.a.

Mehola ICGB MHx Xeric 35.533333 32.350000 −150 30 6 <200 37.5 240 A

Nahal Oren ICGB NOm Mesic 34.966667 32.716667 n. a. 24 13 584 n.a. n.a. n.a.

Nahal Oren ICGB NOsx Semi- xeric 34.966667 32.716667 n. a. 24 13 584 n.a. n.a. n.a.

Rosh Pinna ICGB RPm Mesic 35.550000 32.983333 700 25 20 535 43.6 ± 10.5 220 T

Tel Hai ICGB THm Mesic 35.573979 33.234719 400 26 23 768 46.9 ± 7.6 220 T

Wadi Qilt ICGB WQx Xeric 35.44565 31.859 50 30 6 <200 34.7 ± 9.3 330 A

Zefat ICGB ZFm Mesic 35.496001 32.969206 800 20 27 670 50.4 ± 13.1 220 R

This table was partially prepared based on [35] and https://ims.gov.il/he/ClimateAtlas, accessed on 15 March 2021. ICGB = Institute of Evolution Wild Cereal Gene Bank at the University of Haifa, Israel;
IPK = Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany. Annual rainfall = average for the period 1981–2010. Average maximal temperature and rainfall in April were recorded in
1995–2009. a.s.l.—above sea level; n.a.—not available; SD—standard deviation over mean monthly data; Soil type: A = alluvium, R = rendzina, T = terra rossa.

https://ims.gov.il/he/ClimateAtlas
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2.2. Analysis of Nuclear DNA Content and Calculation of the Super Cycle Value (SCV)

Nuclear DNA contents were estimated using flow cytometry (FCM). For each time
point, five to six individual seeds, freshly collected from one spike were analyzed. The
measurements were repeated three times on different days using seeds harvested from
different mother plants and keeping the same time of day for analysis. The isolation of
nuclei and estimation of nuclear DNA content was performed as previously described [11].
Briefly, seeds directly after harvesting were cleaned by removing hulls using tweezers.
Then, single seeds were immediately homogenized with a razor blade in a Petri dish
containing 500 µL of Otto I solution (0.1 M citric acid, 0.5% Tween 20). The crude suspension
was filtered through 50 µm nylon mesh (Sysmex-Partec) and stained around 15 min with 1
mL of Otto II solution (0.4 M Na2HPO4·12H2O) supplemented with 2 µg mL−1 DAPI (4′,6-
diamidino-2-phenylindole). Nuclei samples were analyzed using either a CyFlow Space
or a Partec PAS I flow cytometers (Sysmex-Partec, Muenster, Germany), both equipped
with UV-led diode lamps. For calibration of the cytometers, the optics were adjusted using
calibration beads (A7304, Invitrogen, Carlsbad, CA, USA) until the coefficient of variation
(CV) reached <2%. At least 5000 particles were acquired per sample, using a log3 scale.
Histograms were evaluated by the FloMax software (Sysmex-Partec, Muenster, Germany).

To estimate amount of endoreduplication, we used super cycle value (SCV) [11].
In SCV, 8C in the diploid and 12C in the triploid tissues were considered as the first
levels of endopolyploid nuclei. Our rationale is, that it is not possible to unambiguously
distinguish by FCM whether a given 4C (or 6C nucleus in endosperm) nucleus just entered
endoreduplication or will mitotically divide [36]. For diploid tissues SCV = ((n 2C × 0)
+ (n 4C × 0) + (n 8C × 1) + (n 16C × 2))/(n 2C + n 4C + n 8C + n 16C), and for triploid
endosperm SCV = ((n 3C × 0) + (n 6C × 0) + (n 12C × 1) + (n 24C × 2))/(n 3C + n 6C + n
12C + n 24C), n = number of counts per given C-value content.

2.3. Determination of Seed Morphology Parameters

Analysis of dry seed morphology parameters was performed in three biological repli-
cates, each with at least 20 seeds collected from four to five spikes of different plants. Dry
kernels were peeled off, weighed with an analytical scale (Sartorius, Göttingen, Germany),
and photographed using a SZX16 binocular microscope (Olympus, Tokyo, Japan) bonded
with a Regita 1300 QImaging camera and QCapture ×64 software (Olympus). Seed length
and width were measured using ImageJ calibrated with internal size control. Seeds from 4
to 48 DAP and dry seeds were peeled off and cut with a razor blade along the longitudinal
and transverse axis. At least 20 individual seeds were photographed as described above
using a binocular microscope. Hulled seeds that possessed awns were photographed with a
D5600 (Nikon, Tokyo, Japan) digital camera equipped with an 80 mm Nikkor objective. All
photo-matrix were composed of separately taken photos of individual seeds and merged
in Adobe Photoshop CS5 (Adobe Inc., San Jose, CA, USA).

2.4. Cell Death Assay by Evans Blue Staining

Seeds from 4 to 48 DAP and dry seeds were peeled off and cut with a razor blade
along the longitudinal and transverse axis. At least 20 individual seeds bulked from four
to five spikes of different plants were stained in 0.1% (w/v) Evans blue (314-13-6, Sigma-
Aldrich, St. Louis, MO, USA) for 2 min. Stained sections were washed twice for 10 min
with distilled water [31]. Transverse and sagittal sections of samples were analyzed with
an SZX16 binocular microscope (Olympus). Images were captured with a Regita 1300
QImaging camera and QCapture ×64 software (Olympus) using the same settings and
proceeded in Adobe Photoshop CS5 (Adobe Inc.).

2.5. Statistical Analysis

All data after testing for normal distribution were examined by one- or two-way
analysis of variance (ANOVA), after which post hoc comparison was performed using
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Duncan’s multiple ranges (p ≤ 0.05) test. Data expressed as percentages were first trans-
formed using arcsine transformation. Principal component (PC) analysis was used to
analyze relations between variables. Statistical analyses were performed in Statistica v. 12
(Stat Soft Inc., Tulsa, OK, USA), Minitab v. 18 (Minitab, LLC, State College, PA, USA) or
RStudio programs.

3. Results
3.1. Variation in Mature Dry Seed Morphology of Wild Barley

We used samples from nine geographically distant sites from North to South Israel
along with the aridity gradient (Figure 1b; Table 1). Also, we included a commonly used
gene-bank accession of wild barley named HS584 from an unknown origin in Israel. The
wild barley accessions varied as to their mature dry seed weight, length, width, and
awn length (Figure 2a–d; Supplementary Figure S1). For example, the TKW in wild
barleys ranged from 14.2 g (MHx) to 40.5 g (NOm). We noted that seeds of wild barley
were longer than those of cultivars (wild barley seed length ≥ 9 mm, cultivars seed
length ~7–8 mm) (Supplementary Figure S1a). However, only slight differences between
wild barleys appeared for seed width (Supplementary Figure S1b). Seeds of wild barley
accessions had longer awn. We also noted an intraspecific variation with xeric accessions
having shorter awns than the mesic ones (Supplementary Figure S1c). ANOVA results
showed that the values of observed variables between wild barley depended on the
accession (genotype), and except for seed length, also from the type of environment
(Figure 2d). Using these seed phenotypic data, we performed principal component (PC)
analysis (Figure 2c; Supplementary Figure S2). However, this analysis did not reveal any
specific group. We noted that one xeric accession MHx varied from the rest of the wild
barleys. In addition, barley cultivars were separated from wild accessions.

Collectively, these data show a phenotypic variation of wild barley seeds. The short-
ened seed awn length is the most pronounced feature differentiating xeric barley accessions.

3.2. Variation in Endoreduplication Dynamics in Developing Wild Barley Seeds
3.2.1. Diploid Seed Tissues

We used whole peeled seeds (hulls were manually removed) to study the degree
of endopolyploidy in the seeds of wild barley. We measured C-values of diploid nuclei
from the embryo (EMB) and seed maternal tissues (SMTs, containing: nucellar projection,
pericarp, and seed coats) and of triploid nuclei fraction represented by endosperm (END)
(Supplementary Figure S3). These measurements were performed for a period 4–24 DAP
and then in dry seeds (Results for endosperm are presented in the next subsection num-
bered 3.2.2.). Diploid seed tissues contained 2C and 4C nuclei representing G1 and G2
phases of the cell cycle, and 8C and 16C endoreduplicated nuclei originating from one and
two endocycles, respectively (Supplementary Figure S3).

We found that all wild barleys contained similar amounts of 2C and 4C nuclei, each
oscillating between 40% to 50%, with a minimal amount ≤ 10% of endoreduplicated
nuclei at 4 DAP. Up to 12 DAP the number of endopolyploid nuclei increased to reach the
maximum, i.e., 10–24% for 8C and 5–11% for 16C. After 20 DAP, the 2C nuclei fraction
increased, while the proportion of 4C, 8C, and 16C was gradually reduced. Finally, in
mature dry seeds, 2C nuclei amounted to around half (50–60%), 4C nuclei around 30%, and
8C and 16C nuclei < 20% (Figure 3a; Supplementary Tables S1). AVOVA results showed
that the values of these variables depended on both the type of environment and DAP and
the interaction between these two factors (Figure 3c).
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Figure 2. Dry seed phenotypes of wild barley accessions. (a) Dorsal views of hulled dry seeds with
awns (upper panel; Scale bar = 10 cm) and peeled dry seeds (lower panel; scale bar = 10 mm). Mesic
accessions: THm = Tel Hai, ZFm = Zefat, RPm = Rosh Pinna, NOm = Nahal Oren NSF; semi-mesic
accession: BGsm = Bar Giyyora; semi-xeric accession: NOsx = Nahal Oren SFS; xeric accessions: MHx
= Mehola, MGx = Machtesh Gadol, WQx = Wadi Qilt. All genotypes were grown in phytochamber
under the same conditions. (b) Quantitative data for the thousand-kernel weight (TKW). Data are
the means (±SD) from three biological replicates. Values marked with the same letter do not differ
according to Duncan multiple range tests (p ≤ 0.05). (c) Principal component (PC) analysis of TKW,
seed length, and width for peeled seeds, and awn length. The positions represent contribution rates
of the two PCs (Source data are shown in Supplementary Figure S1, other combinations of PCs are
presented in Supplementary Figure S2). The ecological conditions at the sampling site of HS584 are
unknown. Compana and Morex represent two- and six-rowed cultivated barley controls, respectively.
(d) Summary of ANOVA performed for seed traits. The sources of variance were as follows: nine
accessions and four environment types. *** Significant at p ≤ 0.001; ns—not significant.

To estimate the degree of endoreduplication, we calculated the SCV parameter (Figure 3b;
Supplementary Table S2). At 4 DAP, a very low SCV of ≤0.09 was observed for all
accessions. From 6 DAP onwards, the SCV increased to reach the peak at 12–24 DAP
depending on the genotype. The highest SCV of 0.42, appeared in the two xeric accessions
MGx and WQx, at 16 and 24 DAP, respectively. Both accessions originate from the most
southern collection sites (Figure 1). Similar to the previous observation, the values of these
variables depended on the environment type and DAP, as well as the interaction between
these two components (Figure 3c). The SCV curve for HS584 had a very smooth profile
without any abrupt changes between neighborhood time points, and resembled the THm
SCV line (Figure 3b).

Taken together, these data show endoreduplication variation in developing embryos
and/or SMTs of wild barley seeds. The most southern xeric accessions show a tendency
for a higher endopolyploidy level.
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Figure 3. Estimation of C-values in diploid seed tissues represented by the embryo (EMB) and seed maternal tissues (SMTs) of
ten wild barley accessions originating from Israel. (a) Percentage of 2C, 4C, 8C and 16C nuclei at a given day after pollination
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(DAP) and in dry seeds. Mesic accessions: THm = Tel Hai, ZFm = Zefat, RPm = Rosh Pinna, NOm = Nahal Oren NSF;
semi-mesic accession: BGsm = Bar Giyyora; semi-xeric accession: NOsx = Nahal Oren SFS; xeric accessions: MHx = Mehola,
MGx = Machtesh Gadol, WQx = Wadi Qilt. The ecological conditions at the sampling site of HS584 are unknown. Data are
the means (±SD) from three biological replicates, each with at least 5 individual measurements (seeds). Data marked with
the same letter do not differ according to the Duncan test (p ≤ 0.05) (Source data are shown in Supplementary Table S1
(b) Super cycle values at a given DAP calculated based on the data from (a), D = dry seed. The dashed line between 24 DAP
and dry seed samples indicates further seed development after 24 DAP (Source data are shown in Supplementary Table S2)
(c) Summary of ANOVA performed for (a) and (b). The sources of variance were as follows: four environment types,
eight-time point (DAP), and interaction between environment and DAP. *, *** Significant at p ≤ 0.05, 0.001, respectively;
ns—not significant.

3.2.2. Triploid Endosperm Tissues

Endosperm seed tissues contained four populations of nuclei, where 3C and 6C values
reflected G1 and G2 phases of the mitotic cell cycle, and 12C and 24C nuclei resulted
from one and two endocycles, respectively (Supplementary Figure S3). We calculated the
frequencies of individual C-values in all ten wild barley accessions up to 24 DAP, and
then in dry seeds (Figure 4a; Supplementary Table S3). The inter-accession differences in
endosperm C-values were striking already from the beginning of seed development. For
instance, the frequency of 3C nuclei ranged from 50% to 80% (MHx vs. MGx, respectively),
and 6C nuclei from 14% to 40% (inversely MGx vs. MHx, respectively) at 4 DAP. Only
at this time point, all accessions contained a similar amount of endoreduplicated nuclei
(≤9%). From 6 to 24 DAP, the amount of 3C decreased approximately two times (from
~60% to ~25%), the fraction of 6C nuclei maintained a constant level (around ~30%), and
the amount of 12C and 24C nuclei continuously increased up to 50% for MHx, MGx and
WQx (all xeric accessions). In dry seeds, the fraction of 3C nuclei ranged from 31% to 47%
(HS584 and NOm, respectively), 6C from 37% to 57% (NOsx vs. MHx, respectively), and
endoreduplicated nuclei from 12% to 22% (NOsx vs. HS584, respectively). ANOVA results
showed that the values of these variables depended on the environment type or DAP, but
not the interaction between these two factors (Figure 4c).

At 4 and 6 DAP, the SCV corresponded to ~0.10. From 8 DAP, the SCV started to
increase to reach the peak at 12–24 DAP. During this period, xeric accessions showed gener-
ally higher SCV. For example, it was 0.78 for MHx (16 DAP), 0.61 for MGx (16–24 DAP), and
0.66 for WQx (20 DAP). In turn, accessions from the mesic environments showed a slightly
lower SCV peak, ranging from 0.47 to 0.63 for RPm (20–24 DAP) and ZFm (16 DAP), respec-
tively. The semi-mesic BGsm and semi-xeric NOsx accessions reached the maximum SCV
of 0.60 (20–24 DAP) and 0.54 (6 DAP), respectively (Figure 4b; Supplementary Table S4).
ANOVA analysis revealed that the values of these variables were both environment- and
DAP-, but not additively, dependent (Figure 4c). For HS584, the endosperm SCV profile
was the most similar to THm and NO (Figure 4b).

Collectively, these results demonstrated that wild barley accessions reached the peak
of endosperm endoreduplication at 12–24 DAP, and endopolyploidy level tended to be
higher in xeric accessions.
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Figure 4. Estimation of C-values in triploid endosperm (END) tissues of ten analyzed wild barley accessions. (a) Percentage
of 3C, 6C, 12C and 32C nuclei at a given day after pollination (DAP) and in dry seeds. Mesic accessions: THm = Tel Hai,
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ZFm = Zefat, RPm = Rosh Pinna, NOm = Nahal Oren NSF; semi-mesic accession: BGsm = Bar Giyyora; semi-xeric accession:
NOsx = Nahal Oren SFS; xeric accessions: MHx = Mehola, MGx = Machtesh Gadol, WQx = Wadi Qilt. The ecological
conditions at the sampling site of HS584 are unknown. Data are the means (±SD) from three biological replicates, each with
at least 5 individual measurements (seeds). Data marked with the same letter do not differ according to the Duncan test
(p ≤ 0.05) (Source data are shown in Supplementary Table S3) (b) Super cycle values at a given DAP calculated based on the
data from (a), D = dry seed. The dashed line between 24 DAP and dry seed samples indicates further seed development
after 24 DAP (Source data are shown in Supplementary Table S4). (c) Summary of ANOVA performed for (a) and (b). The
sources of variance were as follows: four environment types, eight-time point (DAP), and interaction between environment
and DAP. *, *** Significant at p ≤ 0.05, 0.001, respectively; ns—not significant.

3.3. Comparison of Endoreduplication Dynamics in Developing Seeds of Wild and Cultivated Barley

Finding the differences between wild barley accessions, raised the question of whether
it differs from cultivated barley. Therefore, we compared the data from the wild and the
cultivated barley [11].

To provide a representative picture, we calculated the mean SCV at different DAP
for diploid tissues (embryo and SMTs) and triploid endosperm for all ten wild barley
accessions and nine barley cultivars (Figure 5a; Supplementary Table S5). The cultivars
were represented by six two-rowed [11] and three six-rowed genotypes (Supplementary
Figure S4). We performed ANOVA to investigate the influence of two parameters: type of
the sample (wild barley vs. cultivars) and age of the seeds (Figure 5a). For diploid tissues,
ANOVA revealed differences depending on DAP and on the interaction of the sample type
and DAP. Both wild and cultivated barleys achieved the highest mean SCV at 12 DAP
(0.32—cultivars; 0.33—wild barley). The mean SCV for these two types varied significantly
at 4–8 DAP, 20–24 DAP and in dry seeds.

For endosperm tissues, ANOVA revealed dependency of the SCV values on the sample
type and DAP, and the interactions between these two factors. Mean SCV for endosperm
tissues was higher for wild barley. In wild barley, SCV peaked at 16–20 DAP reaching the
value ~0.55. Cultivated barley reached a sharp peak at 16 DAP with SCV ~0.46. The mean
SCV for these two types varied significantly at 16–24 DAP and in dry seeds (Figure 5a).

To gain insight into the SCV relationships among the wild and cultivated barley, we
performed PC analysis (Figure 5b). The first component (PC1) grouped samples based on
DAP and showed similarity between individual experimental points of diploid tissues and
endosperm development. For the mix of embryo/SMT nuclei, the SCV analysis revealed
two groups: (i) 4 to 8 DAP and (ii) after 16 DAP. Similar sample distribution occurred
for endosperm, excluding dry seed sample separated from the rest of time points. The
second component (PC2) displayed the associations between the genotypes. The SCV
data revealed two groups, the first formed by wild barley accessions and the second by
barley cultivars.

Taken together, these data highlight the large inherent variation between wild and
cultivated barley. Interestingly, the level of endoreduplication in endosperm tissues is
higher in wild barley.
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Figure 5. Comparison of the super cycle values (SCVs) for diploid seed tissues (EMB + SMTs) versus
triploid endosperm (END) at given DAP between wild and cultivated barley. (a) Mean SCVs of EMB
+ SMTs and endosperm. Wild barley is represented by ten accessions (solid brown lines). Cultivated
barley includes six two-rowed and three six-rowed cultivars (dashed green lines). Data for six-rowed
cultivars are presented in Supplementary Figure S4. Data are the means (±SD) from three biological
replicates, each with at least 5 individual measurements (Source data are presented in Supplementary
Table S5). Data marked with the same letter do not differ according to the Duncan test (p ≤ 0.05). The
sources of variance were as follows: two types of barley (wild and cultivated), eight-time point (DAP),
and interaction between type and DAP. *, *** Significant at p ≤ 0.05, 0.001, respectively; ns—not
significant. (b) Principal component (PC) analysis of SCVs in wild and cultivated barley. Numbers in
the plots indicate DAP. The positions represent the contribution rates of the two main PCs to a given
character. The dashed-line areas were added to highlight sample similarity.

3.4. Morphological and Cellular Changes during 48 Days of Wild Barley Seed Development

The need to explain the reasons for wild vs. cultivated barley endopolyploidy varia-
tion, inspired us to extend wild barley seed analysis in a broader experimental context and
time. First, we monitored the dynamics of seed growth for HS584 from 4 to 48 DAP, and in
dry seeds (Figure 6a; Supplementary Figure S5). At 4 DAP, SMTs constituted the dominant
part of the seed. Both sagittal and transverse seed plans showed endosperm expansion,
which accelerated seed growth from 6 DAP onwards (Supplementary Figure S5) and wild
barley seeds reached the maximum growth (whole seed sagittal section areal ~20 mm2) at
DAP 24. Interestingly, the endosperm changed color from green to gray from DAP 32, and
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the desiccation started to be visible from DAP 40. The most intense growth of the embryo
occurred around DAP 16 (Supplementary Figure S5).

Figure 6. Time-course study of morphological and cellular events in developing wild barley seeds from 4 to 48 days after
pollination (DAP). (a,b) Representative seed sections of HS584 (a) without and (b) with 0.1% Evans blue staining. The seeds
shown are representative of at least 20 individuals not stained (a) and stained seed (b). Scale bar = 5 mm. (c) Endosperm
super cycle values of three wild barley accessions: HS584, Rosh Pinna and Bar Giyyora. Complementary data for diploid
seed tissues are presented in Supplementary Figure S7. Data are the means (±SD) from three biological replicates, each with
at least 5 individual measurements (seeds). The dashed line between 48 DAP and dry seeds (D) samples represents the
desiccation stage that was not analyzed in detail here.

Next, we analyzed cell death which is a crucial cellular process during cereal seed
development. To detect viable and non-viable cells, we performed Evans blue staining
(Figure 6b). The stain penetrates the intracellular spaces of dead tissues and dyes them
blue. Cell death followed a specific pattern in developing wild barley seeds. We detected
regions of blue staining in the top (seed brush) and bottom parts of SMTs, but not in
the longitudinal elongation zone from 6 DAP onwards. In endosperm, very weak blue
signals appeared in the central part at 12 DAP, and the area of staining and color intensity
increased over time. AL was the only endosperm tissue free of staining at the end of seed
development (Supplementary Figure S6). No staining was observed in the embryo at any
stage of seed development.

Finally, we continued the measurement of nuclear C-values in seed tissues up to
48 DAP for the HS584, RPm, and BGsm accessions (Figure 6c; Supplementary Figure S7).
For diploid seed tissues, the SCV profile differed between accessions. HS584 contained
two peaks, at 12 and 32 DAP, reflecting probably the accumulation of endoreduplicated
nuclei in SMTs and embryos, respectively. The RPm genotype had one symmetrical peak
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of endoreduplication from 6 to 28 DAP, which contrasted to very irregular peak of BGsm
(Supplementary Figure S7). The SCV curve had a single broad peak profile for three
studied accessions in endosperm tissues (Figure 6c). The differences concerned its width,
reflecting the shifts between the start and end of the endopolyploidy period. Interestingly,
the transition between low SCV at 48 DAP and its higher value in dry seed was very clear
in both diploid and triploid seed tissues.

To summarize, these results demonstrate that (i) wild barley seed reaches the accumu-
lation of growth at 20–24 DAP; (ii) SMTs and endosperm cells undergo cell death from 6 and
12 DAP, respectively; (iii) endoreduplication is more variable in a mixture of SMTs/embryo.
All our observations suggest that wild barley seed ripening and dessication continue after
48 DAP.

4. Discussion

Wild barley, H. vulgare subsp. spontaneum is abundant in diverse ecogeographic
regions in the Middle East and has been studied extensively from the phenotypic, genetic,
and agronomic perspectives [37–40]. Wild barley plants growing in habitats with diverse
environmental conditions, are exposed to numerous stressors, which directly influence
their seed yield [39]. In wild barley, spike and seed traits were expressed so far only by
spike length, grain number per spike or TKW [39]. Here, we focused on the size and
biomass of dry wild barley kernels. We noted that the ranges of seed traits were much
wider in subsp. spontaneum than in cultivated barley [11]. Interestingly, dry seeds of wild
barleys were on average longer than in the cultivars. It seems that the wild barley seed
length might be an interesting trait utilized by the breeders for seed yield improvement
per se. One desert genotype—MHx deserves special attention. It is characterized by the
lowest values of all measured seed features, which might be a result of a region-specific
separation [40]. As expected, the seed biomass was higher in the cultivated barley because
this is the main yield-related trait used during breeding [39]. The subsp. spontaneum
accessions had on average longer awns than cultivated barleys, which is in agreement
with previous observation [39]. Interestingly all accessions originating from the xeric
environments possessed shorter awns, which is an example of an adaptation mechanism
adjusting plants to the environment [40].

Until now, advanced methods detecting morphological and cellular changes during
seed development have not been used, either from a domestication or stress adaptation
point of view, in wild barley. Therefore, we investigated the dynamics of endoreduplication
in the diploid and triploid seed tissues from the time shortly after pollination until dry
seeds. In parallel, we monitored the morphological and PCD changes accompanying
endoreduplication to understand better the complexity of wild barley seed formation
(Figure 7).
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Figure 7. The model of phase transitions during wild (brown, solid lines) and cultivated barley [11] (green, dashed lines) seed
development. Overview of (a) phase of barley grain development (based on [20,41], and (b) grain morphological changes
(based on [12]), (c) developmental events (based on [20,41,42] and (d) endoreduplication dynamics. EMB + SMTs = embryo
and seed maternal tissues and END = endosperm.

There are several parameters for quantification endoreduplication level [43]. Com-
monly use indicator is cycle value (a.k.a. endoreduplication index) [44]. However, this
formula considers 4C (and 6C endosperm) nuclei as already endoreduplicated. Although
some 4C nuclei (6C) might already be programmed for endoreduplication, others will be
regularly cycling G2 nuclei. FCM does not recognize which 4C nuclei will undergo the
mitotic cell cycle and which endocycle. Therefore, we recently introduced a new conser-
vative formula, which considers that 8C nuclei (and 12C nuclei in endosperm) as the first
unambiguous level of endoreduplication [11].

Many dicots possess non-endospermic seeds, where the developing embryo consumes
most of the endosperm before the seed maturation. For the non-endospermic seeds,
endoreduplication intensity is a marker of seed quality and maturation [36,45]. In contrast,
grasses (Poaceae) have endospermic seeds which means that the endosperm forms the
major and embryo the minor tissue mass of the fully developed seed. Besides, the high
nutritional value of endosperm makes cereals the main crops worldwide to produce energy
for humans and livestock. Endoreduplication appears during endosperm development
and is correlated with the rapid growth of the caryopsis, the synthesis and accumulation
of storage compounds, mainly starch and proteins in cereals [20]. We found that during
seed development, both wild and cultivated barley endosperm underwent two rounds
of endoreduplication resulting in 12C and 24C nuclei, respectively [11]. Two endocycles
also appeared during wheat [46] and rice [47] endosperm development. Four and up
to seven rounds of endoreduplication were found in the endosperm of sorghum [48]
and maize [49], respectively. This suggests that the upper level of endopolyploidization
is genetically regulated in the cereal endoserm, including H. vulgare. Further genetic
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variation most likely exists in the kinetics of endoreduplication which is suggested by
the different SCV profiles observed in our study for different genotypes when grown
under identical cultivation conditions. In wild barley, the major endoreduplication activity
started ~8 DAP, i.e., two days later compared to the cultivated barley [11]. In both taxa,
the SCV decreased after 32 DAP. The study performed in cultivated barley has already
shown that endosperm endoreduplication nuclei were progressively degraded during the
accumulation of the storage materials and ripening. This degeneration was initiated in
highly endopolyploid nuclei and accompanied by accumulation of DNA damage and cell
death [11]. Interestingly, we detected high proportion of endoreduplicated nuclei in dry
seeds for subsp. spontaneum. Admittedly, desiccating and dry seeds of cultivated barley
also contained endoreduplicated nuclei [11], but not in such proportion as in wild barley.
Microscopic observations confirmed that endoreduplicated nuclei originated from AL in
dry barley seeds [50]. Endoreduplicated AL nuclei are not observed in other cereals except
for barley [50].

Here, we also found that wild barley has shifted the major seed/endosperm mor-
phological and developmental phases and needs more time to complete seed ripening
comparing to cultivated barley (Figure 6a–c) [11]. Delayed desiccation period and en-
trance into dough phases were the most obvious differences between wild and cultivated
strains [12]. Our findings complement previous observations of several days difference
in the heading and anthesis in wild versus cultivated barley [39]. Furthermore, the gray
color of maturating endosperm in subsp. spontaneum, comparing to the white-yellow
color of endosperm in cultivated barley [11], may reflect distinct compositions of storage
compounds. So far, transcriptomic and metabolomic profiles of seed storage compounds
are available for cultivated but not for wild barley [51]. The darker color of wild barley
endosperm may also indicate the presence of secondary metabolites, e.g., anthocyanins
or other reactive oxygen species scavenging molecules [52,53]. Taken together, all results
collected for wild and cultivated barleys raised the question whether there is a link between
higher endoreduplication level and different color of endosperm in wild barley. However,
solving this question will require further studies, for example examination of the secondary
metabolites using high-performance liquid chromatography. Extended analysis may help
to better understand the mechanisms of stress adaptation and cereal seed improvement.

Based on the studies in cultivated barley, we concluded that endoreduplication in
SMTs is correlated with starch deposition, and in embryos with differentiation of the
tissues [11]. We detected two populations of endopolyploid nuclei (8C and 16C reflecting
one and two endocycles, respectively) in a mixture of diploid seed tissues of wild barley
which is similar to cultivated barley [11]. This is additional evidence suggesting that
the number of endocycles is genetically controlled and species-specific [54]. We noted
that in the mixture of SMTs/embryo of subsp. spontaneum seeds, that endoreduplication
peaked two times at 12 and 24 DAP. Comparing wild and cultivated barley, the level of
endoreplication expressed by SCV was the same, however, the peaks were shifted. We
assign the first endoreduplication peak to SMTs, which correlates with their intensive
growth. We assume that the second endoreduplication peak should be attributed to the
embryo, and correlate with its rapid growth and tissue differentiation. Similarly to the
endosperm, wild barley dry seed tissues contained higher proportion of endoreduplicated
nuclei as compared to 48 DAP sample. However, this observation was exclusive only
for wild, not cultivated barley (Figure 6). Among ten wild barley accessions, we found
variation in the dynamics of SMTs/embryo and endosperm endopolyploidization. On
the one hand, some accessions had shifted in time the endoreduplication peak, on the
other hand, there were differences with SCV throughout the entire seed development. This
finding unravels a new level of variation between wild barley populations. However, it
has to be noted that the accessions used in our report represent only a limited diversity and
that the variation is probably much greater in wild barley. Intra-specific endpolyoploidy
variation is quite common in both cultivated [39,40] and wild [55] plants. Studies performed
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in Arabidopsis revealed that endoreduplication levels are controlled by the interaction of
multiple mostly cell cycle-related genes [55].

Importantly, we detected a link between the amount of endoreduplicated nuclei and
the ecogeographical origin of the wild barley accessions. Namely, accessions originating
from the xeric environments tended to have higher SCV for both SMTs/embryo and en-
dosperm tissues. This is analogous with the previous findings for Israeli accessions of
wild barley, in the context of genetic variability detected by molecular markers [56]. Many
studies have found endoreduplication more abundantly among plants that grow under
environmentally challenging conditions [21,22,27,57]. Increasing DNA content may be
integrated into the damage-induced oxidative stress-response systems, like for instance
pentose phosphate pathway [58]. In this system, endoreduplication may promote compen-
sation to damages by upregulation of gene expression involved in the overproduction of
metabolites [58]. On the other hand, endopolyploidy is thought to play significant roles in
plant physiology [21]. Altered phytohormone balances, changed after exposition to envi-
ronmental stressors, probably trigger organ-specific endopolyploidization [24]. This may
suggest an adaptive mechanism to an environmental gradient that results in differential
endopolyploidy [24]. With only ten accessions used in this study, the identification of an
obvious adaptive response to harsh environmental conditions is not conclusive. Therefore,
to identify a potential link between environmental gradient and seed endoreduplication
variation, future studies involving a larger number of genetically defined samples and
mapping causal genes are necessary.

5. Conclusions and Future Perspectives

Both diploid and triploid barley seed tissues undergo two endocycles. This study
of endoreduplication in wild barley seeds revealed a new level of variation appearing
within subsp. spontaneum. Wild barley had a higher endoreduplication level in endosperm
tissues comparing with the with cultivated one and the amount of endoreduplicated nuclei
tended to be higher in xeric accessions. We are currently aiming to better understand
how spatiotemporal seed endoreduplication patterns change under various stresses and
whether these stresses are linked to stress adaptation.
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