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The widespread adaptation of a new generation of direct-acting antiviral agents (DAAs) unveils a superlative effect in the
eradication of the hepatitis C virus (HCV). However, this therapy has been reported to exhibit vigorous side effects that pose a
risk in fleet recovery. This study was conducted to investigate the efficacy of DAAs: sofosbuvir (SOF) and ribavirin (RBV), along
with black cumin (BLC) and ascorbate (ASC), as adjuvants on hematological parameters; oxidative stress markers such as total
antioxidant status (TAS), superoxide dismutase (SOD), reduced (GSH) and oxidized (GSSG) glutathione (GSH), gamma-
glutamyl transferase (GGT), and malondialdehyde (MDA); liver function markers such as aspartate transaminase (AST), alanine
aminotransferase (ALT), bilirubin, and alkaline phosphatase (ALP); and viral load with determined genotypes. HCV-infected
patients (n=30) were randomly divided into two equal groups: control group (n=15) and treatment group (n=15). The
control group was subjected only to SOF and RBV (400 mg each/day). Synergistically, the treatment group was administered
with adjuvant therapy of BLC (250 mg/day) and ASC (1000 mg/day) along with DAAs (400 mg each/day) for 8 weeks. All
selected patients were subjected to sampling at pre- and posttreatment stages for the assessment of defined parameters. The data
revealed that the BLC/ASC adjuvant therapy boosted the efficacy of DAAs by reducing the elevated levels of liver markers such
as AST, ALT, ALP, and bilirubin in the treatment group compared with those in the control group (P >0.05). The adjuvant
therapy synchronously showed an ameliorating effect on hematological parameters. The SOF/RBV with adjuvant therapy also
demonstrated an increasing effect in the activity of SOD, TAS, and GSH and a decreasing effect for GSSG, GGT, and
malondialdehyde (MDA; P > 0.05) followed by curtailing a RT-PCR-quantified viral load. Our findings provide evidence that
systemic administration of BLC/ASC efficiently alleviates hematological, serological, and antioxidant markers as well as the viral
load in hepatitis C patients. This highlights a potentially novel role of BLC and ASC in palliating hepatitis C.

1. Introduction ters about 2-3% of the world’s total population [2]. Yearly, an

estimated 3—4 million people are newly diagnosed with HCV
Hepatitis C is a major health issue with a massive health care worldwide [3]. In Pakistan, 10 million individuals are
burden worldwide [1]. Globally, 200 million individuals are ~ reported to be infected with HCV every year with a preva-
currently infected with hepatitis C virus (HCV), which char- ~ lence rate of 5% in the general population [4]. Persistent
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HCV infection induces liver fibrosis and cirrhosis. It also
leads to several metabolic alterations such as insulin and
interferon resistance, excess of iron, steatosis, and develop-
ment of hepatocellular carcinomas with a high mortality rate
[5].

In the past few decades, the recommended treatment for
hepatitis C infection was a combination therapy of PEGy-
lated interferon (PEG-IFN) and ribavirin (RBV) for 48
weeks. This combination was not effective enough for the
eradication of HCV infection and was reported to suppress
the infection by only 45-50% with vigorous side eftects [6].
Currently, HCV treatment has evolved rapidly, which has
led to the development of direct-acting antiviral agents
(DAAs) for PEG-IFN-free antiviral regimens. This has navi-
gated to a remarkable increase in sustained virological
response (SVR) rates (<90%) opening therapeutic options
for patients with contraindications or low SVR rates using
PEG-IFN-based antiviral therapy regimens [7].

Sofosbuvir (SOF) is a direct-acting antiviral agent devel-
oped as an oral treatment for hepatitis C infection. It is a
nucleotide analog that inhibits the polymerase enzyme that
plays a key role in RNA replication. Because of its structural
resemblance to a nucleotide, it competes with characteristic
nucleotides, and thus by blocking the target site, it ultimately
terminates viral replication within the host cell [8]. RBV is
also a guanosine-nucleoside analog and flaunts antiviral
activity against both RNA and DNA viruses. It is the main
part of HCV regimens for hepatitis C infection over the last
two decades. In the IFN-free period of hepatitis C treatment,
ribavirin still exhibits a significant position in the most favor-
able treatment of various difficult-to-cure subgroups of
HCV-infected patients. It escalates the SVR rate and
enhances the efficacy of PEG-IFN when used in combination
with other DAAs [9]. The combination of SOF and RBV is
used in Pakistan as a standard antiviral combination against
chronic hepatitis C infection.

The molecular mechanism to probe HCV pathogenesis
and progression of liver disease to severe liver injuries is still
poorly understood. Oxidative stress acts as a key player in the
development and pathogenesis of chronic HCV [10-12]. In
addition to their high SVR rates, SOF and RBV exhibit
adverse side effects, including oxidative stress, which urge
us to explore new therapeutics and/or adjunct therapies with
a safer and more efficacious profile. Several options are avail-
able to manage the adverse effects of antiviral drugs and to
maintain liver protection, which may include natural agents
and or organic synthetic agents [13-19]. A combination of
ASC and BLC was used as an adjunct therapy in this study.
ASC (vitamin C analog) is abundant in a number of natural
products. It stipulates remarkable antiviral, anticancer, anti-
inflammatory, major antioxidant, and immune-regulatory
effects [20]. ASC has been reported to enhance constituents
of the human immune system such as lymphocyte prolifera-
tion, natural-killer cell activity, chemotaxis, and hypersensi-
tivity. It plays an important role in maintaining the balance
between the human body’s oxidant and antioxidant systems.
ASC has a direct antioxidant potential and is involved in the
protection of reactive nitrogen species and antioxidant oxy-
gen radicals during immune activation. It may defend neu-
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trophils from reactive oxygen species (ROS) generation
during phagocytosis [21] to avoid endogenous oxidative
injury to lymphocytes and DNA [22-24]. ASC has also
shown antiviral activity against influenza infection [25].

In common English, BLC is popularly known as black
seeds and small fennel. It is scientifically known as Nigella
sativa and belongs to the family Ranunculaceae. It is widely
cultivated as a medicinal plant in southwest Asia and in Mid-
dle Eastern countries [13]. It marks its usage in ancient com-
plementary medicines in conventional systems of medication
such as Ayurveda and those of other old civilizations [26, 27].
Its novel medicinal potential is attributed to the presence of a
phytochemical thymoquinone, which is considered its major
bioactive component [13]. The literature explains that BLC
contains fat, proteins, carbohydrates, crude fiber, and ash
with a small amount of vitamins and minerals such as P,
Cu, Fe, and Zn. The seeds exhibit carotenes and unsaturated
fatty acids: mainly oleic acid, linoleic acid, dihomolinoleic
acid, and eicosadienoic acid [28, 29]. The most important
active compounds are thymoquinone, dithymoquinone, thy-
mohydroquinone, and thymol. The black seeds also contain
other classes of compounds such as alkaloids (isoquinoline
alkaloids; e.g., nigellicimine-N-oxide and nigellicimine), pyr-
azole alkaloids (nigellidine and nigellicine), tannins, terpe-
noids, flavonoids, phenols, steroids, saponins, and a wide
range of several other organic compounds [28, 29]. The liter-
ature shows that BLC exhibits antioxidant, antihypertensive,
hepatoprotective, analgesics, anticancer, antiviral, diuretics,
antidiarrheal, antiparasitic, and antibacterial effects. It is also
used as a liver tonic, emmenagogue, appetite stimulant, and
immune-stimulating agent [13, 27, 30-34]. This study was
designed to probe the efficacy of BLC and ASC as adjuncts
along with DA As in hepatitis C patients. The potential ther-
apeutic effects of BLC and ASC in our study were to investi-
gate the antiviral effects. The study also highlights the
potential role of BLC and ASC in ameliorating hematological
parameters and serological and antioxidant markers.

2. Materials and Methods

2.1. Study Design. This clinical study was conducted in col-
laboration with the Department of Pathology and Depart-
ment of Medicine, Bakhtawar Amin Medical College and
Hospital, Multan, Pakistan. All experiments for this study
have been approved by the Ethics Committee of the Bio-
chemistry Department, Bahauddin Zakariya University Mul-
tan and Bakhtawar Amin Medical College (medical trial
approval/2017/203). All selected patients gave consent to
participate. The study was prospective and was randomized
with a meticulous follow-up to the study’s end that con-
formed to the ethics guidelines of the 1975 Declaration of
Helsinki.

2.2. Patients. All HCV patients presenting to the department
were scaled for eligibility. Patients were screened for human
immunodeficiency virus (HIV), hepatitis B virus (HBV),
and hepatitis C virus (HCV) viral antibodies to diagnose
the infections. The patients” detailed history was taken, and
their previous test reports were examined thoroughly. The
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inclusion criteria included only HCV-RNA-infected patients
of both sexes from 18 to 50 years of age. The exclusion cri-
teria included patients with a history of anti-HCV treatment
with PEG-IFN and ribavirin (RBV) less than 6 months earlier
to enrolment, coinfection with hepatitis B virus (HBV) and
human immunodeficiency virus (HIV), and a history of anti-
cancer treatment 6 months before registration. Excluded
from the present study were patients addicted to cigarettes
or alcohol or who were taking any other antiviral drugs dur-
ing the examination; pregnant and lactating women; patients
diagnosed with hepatocellular carcinoma (HCC) or other
malignancies; patients suffering a major illness such as con-
gestive heart failure, renal failure, respiratory failure, or auto-
immune disease; or patients exhibiting noncompliance to
treatment. The recruited HCV-positive subjects (n=30)
were divided into two equal groups: control (n = 15, receiving
standard drugs) and treated (n = 15, receiving standard drugs
along with adjuvant therapy). The control group (n = 15) was
administered only the standard antiviral treatment SOF
(400 mg/day) and RBV (1000 mg/day), whereas the treat-
ment group (n=15) was treated with SOF (400 mg/day)
and RBV (1000 mg/day) with supplementation of the BLC
(250 mg/day) and ASC (1 000mg/day) for a period of 8
weeks.

2.3. Drugs and Adjuvant Therapy Administration. SOF and
RBV were supplied to the patients from the department
(Getz pharma and Hilton pharma, Pakistan). ASC tablets
and BLC capsules supplied were purchased (Abbott Pakistan
and Qarshi Pharma). Standard antiviral drugs SOF (400 mg)
[35] and RBV (1 000 or 1 200mg, in accordance with
patients’ weight; 1 000mg b.i.d. for patients with a body
weight < 75kg; and 1 200 mg b.i.d. for patients with a body
weight > 75kg) [36, 37] were administered for the treatment
of HCV, whereas treatment supplements BLC 250 mg [38,
39] and ASC 1000 mg [40, 41] were administered daily for
8 weeks. Patients were followed up every 2 weeks to assess
treatment adherence, tolerability, and incidence of adverse
reactions. All selected patients were subjected to sampling
at enrollment and after 8 weeks of therapy for the assessment
of defined parameters. The patients for HCV confirmation
were tested with both enzyme immunoassay (EIA) and RT-
PCR.

2.4. Laboratory Investigations

2.4.1. Blood Sample Collection. Blood samples (4-5mL) from
all patients were taken in the EDTA vials (Atlas Labovac, K3
EDTA) with the help of 10 mL syringes (Becton Dickinson
Company, Singapore) for total blood count (TBC). Approxi-
mately 3-4 mL blood samples were also taken in the gel vials
(Imu Med gel & clot activator) for a liver function test (LFT),
antioxidant markers, and quantitative viral detection. For a
fasting blood glucose (FBG) determination, the patients
included in the study were on overnight fasting (~8hrs).
Blood sampling of the patients was performed at baseline
and after the treatment period.

2.4.2. Serum Sample Preparation. Blood samples taken in gel
vials were left to clot for 10 minutes before centrifugation for

6 minutes at 60 000rpm using a centrifugation machine
(EBA 20, Hettich Zentrifugen, Germany). Approximately
2-3mL of serum was collected and stored at -20°C until
assayed for a LFT, antioxidant markers, and quantitative viral
detection.

2.4.3. Determination of Hematological Parameters and FBG
Level. TBC was carried out using an automated cell count
analyzer (Sysmex KX, Japan) by noncyanide hemoglobin
analysis. The autoanalyzer was capable of running several
parameters for each sample such as hemoglobin (Hb),
packed cell volume (PCV), red blood cells (RBC), mean cell
volume (MCV), mean corpuscular hemoglobin concentra-
tion (MCHC), mean corpuscular hemoglobin (MCH), plate-
lets, and white blood cell (WBC) counts. The equipment
sampling probe aspirated 20 yuL well-mixed blood samples,
and the analysis result was obtained accordingly. Similarly,
fasting blood sugar was measured using a blood sugar auto-
mated analyzer (Architect Ci8200 integrated system, USA)
by the hexokinase method.

2.4.4. Determination of Liver Function Markers. LFT was per-
formed using the Beckman Coulter, USA (Au480), capable of
autoanalyzing several serological markers such as aspartate
aminotransferase (AST), alanine aminotransferase (ALT),
alkaline phosphatase (ALP), and bilirubin levels.

2.4.5. Total Antioxidant Status (TAS). TAS at the serum level
was measured using an autoanalyzer (Hitachi) with a Randox
reagent kit (Cayman Chemicals, USA). Control samples were
run in parallel. The assay involved the reaction of ABTS (2,2-
azinodi-[3-ethylbenzthiazoline sulfonate]) with a peroxidase
(metmyoglobin) and H,0, to produce the radical cation
(ABTS+). Serum antioxidants suppress cations (ABTS+) to
a degree proportional to their concentrations. The men-
tioned cation gives a fairly stable blue-green color measured
at 600 nm.

2.4.6. Reduced and Oxidized Glutathione (GSH). Serum GSH
concentration was measured using an assay kit (Cayman
Chemicals, USA) and a microplate reader (Molecular
Devices, Sunnyvale, CA). The assay involved the reaction of
GSH with Ellman’s reagent (5,5 -dithiobis-2 nitrobenzoic
acid (DTNB)), which gives rise to a product quantified
through a spectrophotometer at 412 nm. This reaction mea-
sures the reduction of GSSG to GSH, predicting the rate of
reaction proportional to GSH and GSSG concentrations.

2.4.7. Gamma-Glutamyl Transferase (GGT). GGT at the
serum level was measured through an autoanalyzer (Thermo
Fisher Scientific, USA) using a reaction-specific kit (Cayman
Chemicals, USA). Control serum samples were run in paral-
lel to impose accuracy. The GGT promotes catalysis via the
transfer of y-glutamyl moiety of L-y-glutamyl-3-carboxy-4-
nitranilide to glycylglycine, leading to products of L-y-gluta-
myl glycylglycine+5-amino-2-nitrobenzoate. The formation
of the 5-amino-2-nitrobenzoate product serves as a measure
of GGT activity analyzed through spectrophotometry at
405 nm.



2.4.8. Superoxide Dismutase (SOD) and Malondialdehyde
(MDA). The SOD activity was investigated using the McCord
and Fridovich method [42]. MDA activity was evaluated by
modified thiobarbituric acid using TBA/TCA reagents as
described by Janero [43]. The antioxidant assay principle
depended on the determination of the antioxidative activity
by the reaction of antioxidants in the sample with a defined
amount of H,O, provided exogenously. The antioxidants
eliminated a quite certain amount of the H,O, provided.
The residual H,0, was determined colorimetrically by an
enzymatic reaction that involved the conversion of
3,5,dichloro-2-hydroxy benzene sulfonate to a colored prod-
uct. Total antioxidant activity was assessed using a TAC kit
from Bio-diagnostic and was measured spectrophotometri-
cally (Thermo Fisher Scientific, USA).

2.4.9. Viral Load Evaluation. HCV RNA was extracted using
an extraction kit (GF-1 viral nucleic acid extraction Kkit,
Vivantis, Malaysia). RT-PCR was performed on the ABI
7500 RT-PCR system using the ROBO GENE- HCV RNA
Quantification Kit (polymerase chain reaction (PCR) for
HCV (lower detection limit, <50 copies)). The results of the
PCR were also run on agarose gel.

2.4.10. Genotyping. The amplicons obtained were first
hybridized with oligonucleotide sequences specific for vari-
ant HCV genotypes using nitrocellulose strips (GEN-C,
Reverse Hybridization Strip Assay, NLM, Italy). The bands
specific to variant HCV genotypes gained through labeling
the hybridizing sequences with specific probes were analyzed
to define genotypes.

2.5. Data Statistical Analysis. Statistical software (SPSS, ver-
sion 23.0; SPSS) was used for statistical analysis. A P value
was determined by a one-way ANOVA test, results were
expressed as the mean and standard deviation, and P < 0.05
was considered the level of significance.

3. Results

3.1. Hematological Parameters. Hematological functions var-
ied significantly after the adjuvant therapy. Our study’s
results showed that adjuvant therapy of BLC/ASC had an
ameliorating effect on the hematological parameters of hepa-
titis C patients. In the treated group, SOF/RBV, along with
BLC/ASC therapy, showed an increase in RBCs (P =0.32),
WBCs (P=0.67), platelet count (P=0.84), hemoglobin
(P=0.79), and neutrophils (P=0.18) compared with the
control group (P >0.05), which received only SOF/RBV.
Fasting blood glucose decreased significantly after treatment
in the treated group (P =0.001; Table 1).

3.2. Oxidative Markers. No significant (P > 0.05) difference
was observed on the level of oxidative markers in both the
control and treatment groups at baseline (Table 2).

3.3. Total Antioxidant Status (TAS). Our results obtained
reveal that TAS increased after treatment in both the control
(SOF+RBV) and treatment (SOF+RBV+BLC+ASC) groups.
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However, TAS was slightly higher in the treated group when
compared with the control (P > 0.05; Table 2).

3.4. Reduced Glutathione (GSH). Our findings show that
GSH increased slightly after treatment in both the control
and treated groups. However, the GSH level was slightly
higher in the group receiving adjuvant therapy than in the
control group (P > 0.05; Table 2).

3.5. Oxidized Glutathione (GSSG). Our findings demonstrate
that the GSSG level decreased after treatment in both the
control and treated groups but that the GSSG level was
slightly more decreased in the treated group than in the con-
trol (P > 0.05; Table 2).

3.6. Gamma-Glutamyl Transferase (GGT). The serum-level
GGT level was found to have decreased after treatment in
both the control and treated groups. However, adjuvant ther-
apy in the treated group showed better results in decreasing
the GGT level than in the control group (P > 0.05; Table 2).

3.7. Superoxide Dismutase (SOD) and Malondialdehyde
(MDA). Our results indicated an increasing effect on SOD
and a decreasing effect on MDA levels after treatment in both
the control and treated groups. However, BLC/ASC therapy
in the treated group showed slightly better results for the
increasing effect on SOD and a decreasing effect on MDA
than did the control (P > 0.05; Table 2).

3.8. Liver Function Markers. Our study findings revealed that
the administration of BLC/ASC in the treated group had a
decreasing effect on the elevated levels of liver function
markers AST, ALT, ALP, and T. bilirubin compared with
the control group (P > 0.05; Figure 1).

3.9. Quantitative RT-PCR. Findings of RT-PCR indicated
that during the 8 weeks, the therapy of SOF/RBV along with
BLC/ASC in the treated group and the solo therapy of
SOF/RBV in the control group had a maximum illustrious
effect on the inhibition of HCV replication and consequently
on the reduction in viral load. Thus, in both the control and
the treated groups, SOF/RBV alone and SOF/RBV in combi-
nation with BLC/ASC eradicated the viral load in all the
HCV patients. Figure 2 represents the PCR response at base-
line and after 8 weeks of treatment. Gel electrophoresis
results for the samples run are shown in Figure 3.

3.10. Genotyping. Genotyping results revealed a major trend
of genotype 3a in both the control and treated groups with
a minute frequency of 2b. Table 3 presents the genotyping
results.

3.11. Persistence of Side Effects. The side effects observed
decreased regarding the platelet level in the control group
after the treatment of SOF/RBV. However, this effect was
found to be ameliorated in the treated group receiving
BLC/ASC adjuvant therapy. A slight decrease in fasting
blood glucose levels was observed in both the control and
treated groups after treatment, but the treated group showed
a slightly lower decreasing effect on fasting blood glucose
levels compared to the control (Table 1).
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TaBLE 1: Effect of BLC/ASC along with SOF/RBV on hematological parameters.
e
RBC (1012/L) 5.98 +8.98 5.34+12.08 0.264 4.48 +0.43 6.65+0.57 0.325
WBC (10°/L) 8.13+1.70 8.23 +1.64 0.154 7.63+2.12 8.98 +2.02 0.67
Hb (g/dL) 12.93+1.44 13.1+£1.52 0.750 11.67 +£1.40 13.53+1.55 0.794
PCV (%) 42.11+4.13 41.72 +3.82 0.792 41.47 +3.14 44.31 +4.21 0.359
MCV (fL) 80.44 +17.64 100.15 + 8.65 0.320 76.48 +20.33 99.09 +6.14 0.128
MCH (pg) 28.71+6.13 26.61 +2.38 0.226 27.58 +2.88 27.69 + 3.66 0.926
MCHC (g/L) 32.23+0.66 31.91+0.51 0.704 31.57+1.38 31.99+1.44 0.701
Lymphocytes (%) 30.98+£1.43 30.41+£2.27 0.927 30.0 +£10.14 30.7 £9.69 0.234
Monocytes (%) 22+0.2 2.59+0.46 0.125 2.3+0.68 2.93+0.74 0.125
Eosinophils (%) 3.0+£0.32 3.63+0.59 0.365 3.6+1.06 4.13+£0.99 0.165
Platelets (10°/L) 271.67 +£14.23 270.13 £22.35 0.956 256.0 +29.66 292.0 +45.49 0.842
Neutrophils (%) 63.81+1.56 62.29 +2.09 0.574 60.43 +9.51 62.13+£9.21 0.183
FBG 103.03+13.4 105.03 £37.2 0.23 99.03+3.2 103.23 £23.3 0.001

Data were expressed as the mean + S.D. and compared using a one-way ANOVA test. RBC: red blood cells; WBC: white blood cells; Hb: hemoglobin; PCV:
packed cell volume; MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; FBG:

fasting blood glucose.

TaBLE 2: Level of oxidative stress markers in before and after treatment groups.

Pretreatment group

Posttreatment group

Parameters Control Treatment P value Control Treatment P value
TAS (mmol/L) 1.68 +£0.72 1.71+0.64 0.14 1.98 £0.02 2.01+0.52 0.52
GSH (pumol/L) 1.82+£0.58 1.79+0.48 0.41 2.20+0.18 2.84+0.38 0.44
GSSG (pmol/L) 0.18 £ 0.03 0.17 £ 0.08 0.11 0.16 £0.27 0.12+0.43 0.31
GGT (U/L) 18.99 +4.15 19.09 +4.16 0.24 13.19+£0.15 12.89 £ 3.05 0.18
SOD (U/mL) 296.25 +£10.28 29597 +14.13 0.34 327.34+8.19 343.79£9.18 0.12
MDA (nmol/mL) 7.93 +12.38 7.80+11.88 0.64 5.52+13.02 4.24+12.785 0.42

Values represent the mean + S.D. and compared using a one-way ANOVA test. TAS: total antioxidant status; GSH: reduced glutathione; GSSG: oxidized
glutathione; GGT: gamma-glutamyl transferase; SOD: superoxide dismutase; MDA: malondialdehyde.

4. Discussion

Hepatitis C is a complicated infectious disease of the liver.
This infection has attracted attention because of its conta-
gious, pervasive nature, large-scale burden, and novel thera-
pies [44]. Hepatitis C is a common source of chronic liver
disease (CLD), which is considered the main cause of mor-
bidity and mortality worldwide [45]. The antineoplastic,
antiviral, and anti-inflammatory effects of BLC and ASC
have been previously documented through in vitro and
in vivo studies [20, 46]. The present study explored whether
BLC/ASC in combination with SOF/RBV increased the effi-
cacy of antiviral agents in hepatitis C patients and showed a
rising trend in hematological parameters, oxidative stress,
liver markers, and viral load. Our results showed that
BLC/ASC as an adjuvant therapy increased the level of
RBC, WBC, PCV, Hb, and platelet count in the treated group
compared with the control group. A solo treatment of direct
antiviral therapy did not show a noteworthy effect on hema-

tological parameters. A study reported that BLC seeds are
proficient in improving RBC, Hb, and PCV in the rabbit
model [47]. Our results are also in line with a study reporting
that BLC boosts the hematological parameters in hepatitis C
patients in a dosage of 450 mg three times a day when taken
as a sole antiviral treatment [48]. Another study showed that
ASC had an ameliorating effect on the hematological param-
eters with a dose of 200 mg/kg per day in the rat model
against deltamethrin toxicity and malathion-induced hepato-
toxicity [49, 50]. Thus, our findings show that BLC/ASC may
tend to ameliorate the hematological parameters in hepatitis
C patients. The results of our study also suggest that
BLC/ASC may modify Hb, RBC, and PCV to alleviate ane-
mia. Similarly, BLC/ASC therapy seems to reinstate fasting
blood glucose in a resting mode compared with the control
group.

Our study’s serological findings revealed that BLC/ASC
adjuvant therapy had a remolding effect on the levels of
ALT, AST, and ALP (U/L), which declined considerably
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toward normal in the treated group compared with the con-
trol group (Figure 1(a)). The level of total bilirubin decreased
in the treated group to a normal level compared with that in
the control group, which was shown to be chronic
(Figure 1(b)). The literature showed the alleviating effects of
BLC on AST and ALT in ethanol-induced liver injury in
the rat model [51]. However, a study showed that BLC had
no protective effects on liver enzymes but showed an amelio-
rating effect on the level of total bilirubin in hepatitis C
patients. Our findings are supported by previous studies con-
ducted in rat models that demonstrate that BLC seems to be
sufficiently efficient to normalize the level of liver markers

against deltamethrin and malathion toxicity [49, 50, 52].
Our study provides evidence that BLC and ASC may act as
novel immune potentiators at the hematological and serolog-
ical levels.

Oxidative stress has been proposed as a key regulatory
step in the development and progression of liver damage
[10]. A decreased antioxidant and an increased level of oxida-
tive stress in chronic hepatitis C patients have been reported
in the literature [53, 54]. The pathogenic mechanism through
which HCV may cause cell damage remains obscure; how-
ever, it has been demonstrated clearly that the oxidative stress
may play a pathogenic role in this chronic infection [55].
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FIGURE 3: Gel electrophoresis showing detection of HCV by PCR. Abbreviations: BP: base pairs; M: DNA marker; lanes 1-3: HCV samples
from the control group at baseline; lanes 4-6: HCV samples of the treatment group at baseline; lanes 7 and 8: HCV samples of the control
group following treatment; lanes 9 and 10: HCV samples from the treated group. Random sample selection was carried out to validate the

PCR results.

TaBLE 3: Genotyping frequencies of HCV positive patients in
control and treatment groups.

Groups HCV genotype Frequency (%)
Control 3a 14 (93.33)
Control 2b 1 (0.066)
Treatment 3a 13 (86.66)
Treatment 2b 2 (1.33)

Glutathione, or GSH, a nonenzymatic antioxidant present in
the cell, plays a key role in the defense against oxidative stress
in cell injury. Glutathione is present mainly in its reduced
form in cells, which can be converted to oxidized glutathione
(GSSG) with glutathione peroxidase (GSH-Px), which reverts
to a reduced form after reacting with glutathione reductase.
Cells also exhibit the enzymatic antioxidant mechanisms that
play an essential role in eliminating free radicals [56]. The
enzymatic antioxidant defense system of the humans may
include CAT, SOD, and GSH-Px. SOD has been reported
to protect a cell from toxic effects of superoxide radicals
[56]. GSH-Px decomposes H,O, and converts lipid perox-
ides to harmless molecules, protecting cells from the adverse
effects of lipid peroxidation [57]. Our data report that direct
antivirals and BLC/ASC adjuvant therapy may boost the level
of TAS, GSH, and SOD, and these treatments also reduce the
level of GSSG, GGT, and MDA. However, BLC/ASC therapy
showed a slightly increasing effect on TAS, GSH, and SOD
with a decreasing effect on GSSG, GGT, and MDA in the
treated group compared with the control group. Research
has shown that anti-HCV therapy in CHC patients increases
the effect on TAS, GSH, and SOD with a decreasing effect on
GSSG, GGT, and MDA [55]. Our results are also in line with
previous reports that ASC and BLC balanced the oxidative
stress and boosted the human antioxidant system in HCV
patients and in ethanol-induced oxidative stress rat models
[51, 58, 59]. Our findings suggest that BLC and ASC may
be used as potential antioxidant supplements to abate hepati-

tis C. It has been shown that levels of oxidative markers such
as MDA are correlated with the severity of chronic hepatitis
C [60]. Thus, our results suggest that antioxidants such as
BLC and ASC may be proposed as adjuvants along with stan-
dard antiviral regimens to ameliorate HCV pathogenesis.
The pattern of differences in the pathogenicity of genotypes
remains unclear, but the genotype has been proven one of
the key predictors of HCV with regard to antiviral therapy.
Because of genotypic-specific variations in response to the
new generation of antiviral drugs, HCV genotype examina-
tion may assist in the management of appropriate strategies,
particularly during treatment [61]. It can be hypothesized
that antioxidant supplements in patients with resistant geno-
types may bring more favorable outcomes, as our study
shows. Research has shown that supplementation with ascor-
bate, vitamin E, and selenium enhanced the antioxidant sta-
tus with no profound effect on the viral load [62]. Thus, the
effect of antioxidants on the viral load could be the subject
of future studies. Intriguingly, our data show that SOF and
ribavirin improved oxidative markers, but these are not anti-
oxidants. Their antiviral potential might reduce the viral load
and inflammation, and perhaps, this mechanism may reduce
virus-induced oxidative stress, a possible mechanism as
observed in our study in the amelioration of oxidative stress.
The statistical P value was found insignificant that could be
potentially due to smaller sample size in our study. The
hypothesis for smaller sample size has been well explained
by Lee [63], which entails that a statistically insignificant dif-
ference between two observed groups (the sample) does not
indicate that this effect does not exist in the population from
which the sample is taken. But it signifies nothing more than
the fact that the observed sample is too small to detect a pop-
ulation effect [63].

Hepatitis C patients can achieve SVR12 at week 4 of
treatment with the oral DAA-based therapy [64]. BLC has
shown a decline in the HCV-RNA after 12 weeks of treat-
ment in hepatitis C patients [48]. ASC with vitamin E has
been proven to exert antiviral effects against HIV [65]. Our



study shows that HCV-RNA was out of the detection limit
after 8 weeks of treatment in all 30 patients treated as well
as in the control group. Thus, our results suggest that new-
generation antiviral SOF, along with RBV, is absolutely
enough to eradicate HCV-RNA in HCV patients (Figure 3).
Though this study could not determine the effect of adjuvant
therapy on the viral load, we may postulate that BLC and
ASC may assist in demolishing the HCV-RNA load, which
has been well supported by other studies [48, 65]. Further-
more, the effect of BLC and ASC on the viral load removal
should be addressed in a shorter span to probe their actual
role for rectification. Overall, BLC and ASC, if tested for anti-
viral potency, may be akin to drugs that manage the disease
by modulating different markers or parameters involved at
the hematological and serological levels through a bridge of
antioxidant activity, as was reported in our results. We may
hypothesize that the administration of BLC and ASC has a
potentially useful effect in hepatitis C progression, which
can be attributed to their antioxidant, anti-inflammatory,
and immunomodulatory effects.

5. Conclusion

This study concludes that the systemic administration of
BLC and ASC as an adjuvant therapy considerably amelio-
rates hematological parameters, thus indirectly revamping
the immune-regulatory system through antioxidant activity.
It tends to normalize liver function markers efficiently and
thus may restrain the adverse effects of SOF and RBV. The
study also elaborates that SOF and RBV are quite effective
in diminishing the viral load. We believe that the current
findings should facilitate further research to explore whether
BLC and ASC could synergize with or substitute for immune-
regulatory drugs given at suboptimal doses for antiviral ther-
apy. Further studies with larger sample size are highly desir-
able for greater statistical power that could pave the way
toward initiating and adhering to BLC and ASC as an adju-
vant therapy.
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