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Introduction
Skin, as the major interface with the external environment, serves as the first line of  defense against micro-
organisms, physical agents, and chemicals. Cutaneous homeostasis and skin defense are maintained by 
dynamic cellular communication between different cell types in the skin through interactions with various 
mediators, including growth factors, chemokines, and cytokines. Keratinocytes are the major cell type of  
the epidermis and are no longer considered components of  a passive physical barrier. Indeed, keratinocytes 
are highly active sentinel cells, expressing a range of  pathogen-associated molecular pattern (PAMP) recep-
tors and cytokine receptors; they are capable of  responding (as well as producing) a wide variety of  cyto-
kines, chemokines, and growth factors. Thus, keratinocytes contribute to many, if  not all, inflammatory 
skin disorders. Based on the diverse range of  inflammatory mediators produced by keratinocytes, they have 
justly been referred to as “cytokinocytes”(1). In this Review, we highlight the role of  keratinocytes in phys-
iologic immune responses and as central players in the pathophysiology of  inflammatory skin disorders.

Structure and function of the skin
Mammalian skin comprises different layers, providing functions for barrier integrity and host defense. The 
outermost layer, the epidermis, contains no blood vessels and is dependent on the dermis, where blood 
vessels and lymphatics reside, to provide access to nutrients and waste disposal. The epidermis consists 
primarily of  keratinocytes and can be divided into four layers based on keratinocyte cell morphology and 
position. These layers, from deep to superficial, are the basal cell layer (stratum basale), the spinous or 
squamous cell layer (stratum spinosum), the granular cell layer (stratum granulosum), and the cornified or 
horny cell layer (stratum corneum) (Figure 1). The epidermis on the palms of  the hand and soles of  the 
feet has an extra layer, named the clear or translucent layer (stratum lucidum), that can be seen between 

The skin serves as the primary interface between our body and the external environment and acts 
as a barrier against entry of physical agents, chemicals, and microbes. Keratinocytes make up the 
main cellular constitute of the outermost layer of the skin, contributing to the formation of the 
epidermis, and they are crucial for maintaining the integrity of this barrier. Beyond serving as a 
physical barrier component, keratinocytes actively participate in maintaining tissue homeostasis, 
shaping, amplifying, and regulating immune responses in skin. Keratinocytes act as sentinels, 
continuously monitoring changes in the environment, and, through microbial sensing, stretch, or 
other physical stimuli, can initiate a broad range of inflammatory responses via secretion of various 
cytokines, chemokines, and growth factors. This diverse function of keratinocytes contributes to 
the highly variable clinical manifestation of skin immune responses. In this Review, we highlight 
the highly diverse functions of epidermal keratinocytes and their contribution to various immune-
mediated skin diseases.
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the granular and the cornified layer (2). Keratinocytes originate in the basal layer. The epidermis also 
harbors other minor cell populations, including melanocytes, Langerhans cells, and occasionally lympho-
cytes and Merkel cells, of  which the latter are thought to act as mechanoreceptors for light touch sensa-
tion. The intermediate layer of  the skin is the dermis, which consists of  collagen, elastic tissue, and other 
extracellular components as well as blood and lymphatic vessels, nerve endings, hair follicles, and eccrine 
glands. Fibroblasts are the primary cell type within the dermis. Additionally, immune cells, such as mast 
cells, macrophages, and small numbers of  lymphocytes, also reside in the dermis. The dermis comprises 
the thickest skin layer, providing flexibility and strength, and aiding thermal regulation and sensation of  
various stimuli. The innermost layer is the hypodermis or subcutis, which stores fat as an energy reserve 
for the body, protects the inner organs as a shock absorber, and has an important role in thermoregulation.

Physical composition and differentiation of  the epidermis. The epidermis serves vital functions, including 
limiting passive water loss from the body, preventing absorption of  chemicals from the outside environ-
ment, and preventing microorganism entry. These functions rely on terminal differentiation, culminating in 
the formation of  the cornified layer (3, 4). An integral part of  differentiation is the calcium gradient of  the 
epidermis that peaks in the granular layer and contributes to the regulation of  keratinocyte differentiation 
(5). Each epidermis layer has distinct morphologic and biochemical features, suggesting different roles in 
skin barrier function. Keratinocytes in the basal layer are responsible for the regeneration of  the epidermis 
and are characterized by expression of  keratins 5 and 14 (KRT5 and KRT14). KRT1 and KRT10 are more 
prominently expressed in the spinous layer, which also has an abundance of  desmosomes that provide 
tissue stability to resist physical trauma. In the granular layer of  the skin, keratinocytes synthesize kera-
tohyalin granules, which contain the proteins profilaggrin and loricrin, along with lipid-enriched lamellar 
bodies. The granular layer is the site of  a series of  transformative processes required for development of  
the cornified layer, which involves loss of  keratinocyte nucleus and the cytoplasm, aggregation of  keratins 

Figure 1. Histology of the skin and the epidermis. The epidermis is a dynamic tissue where keratinocytes exist in various stages of differentiation. Stem 
cells reside in the basal layer (stratum basale) of the epidermis and move through the subsequent layers with different progression of differentiation in the 
spinous layer (stratum spinosum), before expressing keratohyalin granules in the granular layer (stratum granulosum [SG]) and terminal differentiation in 
the stratum corneum (SC). Hematoxylin and eosin staining is shown in the image on the left (original magnification, ×200). Langerhans cells (LCs) reside 
within the epidermis as part of their surveillance function. In the stratum granulosum keratinocyte synthesis keratohyalin granules contain filaggrin mono-
mers and lamellar granules contain lipids. Tight junctions are expressed in the granular layer. A pH gradient is maintained from the granular layer to the top 
of the stratum corneum, maintaining a pH of 4.5–5.3 at the surface of the skin. Adapted with permission from Journal of Clinical Investigation (158).
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into microfibrils, and replacement of  cell membrane with a cell envelope (CE) assembled by cross-linked 
proteins. The main structural components of  the CE keratohyalin granules contain loricrin, filaggrin, and 
involucrin, which are cross-linked by transglutaminase enzymes. Subsequently, the extracellular surface of  
the CE is extruded by lipids, from the lamellar bodies, to form the cornified lipid envelope (6). The CE and 
cornified lipid envelope are major contributors to skin barrier function. Tight junctions in the granular layer 
limit the passage of  solutes and water in the space between the keratinocytes (and loss to the environment) 
and, therefore, play an essential role in epidermal barrier formation (7). A contributor to this process is the 
aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that is abundantly expressed in 
all skin cells (8); it also contributes to this process and is critical for both epidermal differentiation (9) and 
modulation of  inflammatory responses (10).

Keratinocytes also contribute to the formation of  epidermal appendages, including hair follicles, seba-
ceous glands, and eccrine glands. Hair follicles originate from the epidermis during embryogenesis as 
downward-projecting epithelial buds, forming units with associated structures, including sebaceous glands 
and arrector pili muscle. Sebaceous glands produce sebum that contributes to skin acidity and impedes 
entry of  microbes. Sebum also has antibacterial effects at the external skin surface, further contributing to 
skin immune defense (11). Eccrine glands have transport sweat via secretory coils in the deep dermis that 
open up on the surface of  the skin, consisting of  two layers of  tubular epithelium. In addition to thermoreg-
ulation, eccrine glands also secrete several antimicrobial peptides (AMPs), such as dermcidin, which serve 
to control skin flora and prevent skin infections (12).

AMP production. AMPs are small cationic and amphipathic molecules that are expressed constitutively 
in the skin and provide broad protection against bacteria, fungi, and viruses (13). AMP expression can be 
upregulated by microbial stimuli, proinflammatory cytokines (i.e., IL-1β, TNF, IL-17, and IL-22) (14), as 
part of  keratinocyte differentiation (15), or during wound healing (16). These peptides play a vital role in 
normal skin homeostasis and epidermal resistance to infections (17). Keratinocytes are major producers of  
AMPs, including defensins, cathelicidin (LL37), psoriasin (S100A7), and the antimicrobial protein RNase7 
(18). AMPs are important for skin homeostasis, as demonstrated by diseases such as atopic dermatitis 
(AD) and psoriasis. Patients with AD are susceptible to recurrent microbial infections due to a relative 
decrease in expression of  cathelicidin and β-defensins (19), while, conversely, patients with psoriasis are 
more resistant to skin infections due to high AMP levels (20). In addition to direct antimicrobial killing, 
AMPs recruit immune cells and modulate cytokine and chemokine production (13, 21, 22). For example, 
human β-defensins and LL-37 promote recruitment of  leukocytes, including neutrophils, T cells, mast cells, 
and monocytes, to infection sites (13, 23). LL-37 can also promote epithelial cell proliferation (24). Fur-
thermore, antiviral proteins (AVPs), a subset of  AMPs, directly antagonize viral infections. The majority of  
AVPs are induced and amplified by IFNs, but not exclusively, as is seen with IL-27 induction of  AVPs in 
keratinocytes in the setting of  Zika virus infection (25).

Contribution of  pH to epidermal defenses. Human skin pH is tightly regulated and maintained at an acidic 
pH, ranging from pH 4–6. Sebum contributes to epidermal surface acidity, which helps regulate cutaneous 
microbial flora and protect against infection. For example, the acidity of  the skin is inhospitable for many 
pathogenic microorganisms, such as Staphylococcus aureus, but is permissive for commensal bacteria, such as 
Staphylococcus epidermidis (26). In addition to sebum, the barrier protein filaggrin also contributes to low skin 
pH due to the high content of  acidic amino acids among its breakdown products. Accordingly, decreases 
in filaggrin, as is seen in AD, result skin pH elevation, thereby contributing to predisposition for S. aureus 
carriage in patients with AD (27). Finally, pH influences skin barrier function by regulating enzymes of  
ceramide metabolism as well as function of  various proteases (28).

Abnormal epidermal barrier function. AD is a chronic inflammatory skin disease characterized by altered 
keratinocyte differentiation in epidermal compartments, including the basal and spinous layers (6). A 2006 
study identified filaggrin gene mutations as a predisposing factor for AD (29). Filaggrin is expressed in the 
granular layer as a precursor protein, profilaggrin. Filaggrin is important for keratinization and is even-
tually metabolized into natural moisturizing factor, which maintains skin hydration by promoting water 
retention within the stratum corneum (30). AD has also been associated with decreases in other skin bar-
rier proteins, including filaggrin-2, corneodesmosin, desmoglein-1, desmocollin-1, and transglutaminase-3 
(31). Loss of  filaggrin and abnormal keratinocyte differentiation allows for a more permissive skin environ-
ment that promotes entry of  irritants, allergens, and microbes that may evoke immune responses, which 
then further promote progressive weakening of  the epidermal barrier, a phenomenon prominent in chronic 
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skin diseases, such as AD, and an emerging concept in autoimmune skin disease, such as cutaneous lupus 
erythematosus (CLE) (32).

The epidermis reacts to repetitive trauma or inflammatory stimuli by increased keratinocyte pro-
liferation, resulting in epidermal thickening. The thickened epidermis presents clinically as “lichenifi-
cation” or “psoriasiform hyperplasia.” This thickening is seen in psoriasis and promotes amplification 
of  inflammatory responses through a feed-forward mechanism (33). We recently demonstrated that 
IRAK2, a member of  the signaling complex downstream of  IL-1/IL-36, is important in this process as 
it primes the atopic and psoriatic epidermis for inflammation through promotion of  altered epidermal 
differentiation in a highly coordinated and regulated fashion (our unpublished observations).

Keratinocytes as sentinels in skin immune defense
Keratinocytes are able to detect a broad range of  PAMPs (34), such as LPS, lipopeptides, β-glucans, and 
single- and double-stranded RNA (dsRNA) and DNA, present on Gram-positive and Gram-negative bac-
teria, fungi, and viral species through various pattern recognition receptors (PRRs). Keratinocytes express 
several different types of  PRRs, including TLRs, nucleotide-binding oligomerization domain-like receptors 
(NLRs), RIG-I–like receptors (RLRs), and C-type lectin receptors (CLRs) (Table 1) (35–43). Spatial dis-
tribution these receptors is distinct and dependent on epidermis layer. For example, our recent single-cell 
analysis of  human skin revealed that mRNA expression of  RNA and DNA sensors (i.e., TLR3, STING, 
MDA5) is higher in the basal layers of  the epidermis, likely accounting for antiviral responses being most 
prominent in these layers (our unpublished data).

Keratinocytes express a variety of  TLRs (TLR1–TLR6, TLR9, and TLR10, which is human specific) 
(44). TLR1, TLR2, TLR4, TLR5, and TLR6 are found on the cell membrane, while TLR3, TLR7, TLR8, 
and TLR9 reside in intracellular compartments, such as endosomes and lysosomes (44). Recognition of  
their cognitive ligand by TLRs on keratinocytes initiates immune responses via activation of  downstream 
signaling cascades involving the MYD88 complex, with the exception of  TLR3 (35), and production of  
chemokines, cytokines, and AMPs. TLR2 recognizes components expressed by bacteria that can trigger 
the production of  proinflammatory cytokines, such as IL-8, TNF, and IL-6 (45, 46). TLR4 recognizes LPS. 
TLR5 recognizes bacterial flagellin, which can induce NF-κB translocation and IL-8 secretion (47). Intra-
cellular TLRs detect nucleic acid from viruses or bacteria that have been broken down and taken into cells 
(40). For example, TLR3 binds dsRNA that originates from viruses. TLR9 activation on keratinocytes by 
CpG-methylated DNA selectively induces production of  CXCL9, CXCL10, and type I IFNs (48).

NLRs are intracellular sensors of  bacterial infection and cellular damage and can be divided into three 
subfamilies: the NOD-containing, the NLRP, and the NLRC families (49). NOD1 and NOD2 are the 
best-characterized members of  the NOD-containing subfamily and are functional in human keratinocytes 
(50), where they respond to bacterial peptidoglycan fragments (50), such as γ-glutamyl-diaminopimelic 
acid and muramyl dipeptide. NOD1 induces expression and secretion of  CXCL8 (also known as IL-8) 
in keratinocytes (51). Other NLRP members are expressed in keratinocytes and activate inflammatory 
caspases (49).For example, dsRNA-mediated NLRP3 inflammasome activation can result in IL-1β and 
IL-18 release (52). Other NLRP3 activators, including UVB-induced DNA damage, house dust mite, and 
pesticides, have been reported in keratinocytes (53–55). Recently published data has suggested that NLRP1 
is the predominant NOD family member in keratinocytes and has a crucial role in UVB sensing and IL-1β 
and -18 secretion by human keratinocytes (49).

RLRs are crucial for host antiviral defense and sense dsRNA, resulting in type I IFN production. 
RIG-I (also known as DDX58) is a cytosolic PRR critical for recognizing viral antigens and activating type 
I IFN responses. Other RLRs include melanoma differentiation-associated protein 5 (MDA5) and LGP2 
(42). Keratinocytes efficiently respond to viral dsRNA by expressing RIG-I and MDA5 and promoting 
IRF3 activation (56). Other cytosolic DNA sensor-linked PRPs include absent in melanoma 2 (AIM2) and 
STING. AIM2 recognizes cytosolic DNA and triggers inflammasome activation and IL-1β production in 
keratinocytes, thereby contributing to psoriasis pathogenesis (57). STING also acts as a key component in 
DNA-mediated innate immunity, which can induce production of  type I IFNs (58).

The C-type lectin domain family 7 member A, or Dectin-1, is a receptor that recognizes fun-
gal antigens, such as β-glucan, and Mycobacterium ulcerans has recently been shown to induce Dec-
tin-1 expression in human keratinocytes in a TLR2-dependent manner (59). Additionally, curdlan, 
a water-insoluble linear β-1,3-glucan, enhances keratinocyte proliferation and migration through 
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Dectin-1 binding; therefore, therapeutic targeting of  Dectin-1 in keratinocytes has been proposed for 
therapeutic use in wound healing (43).

DOCK8, a guanine nucleotide exchange factor for Rho GTPases, plays a critical role in regulating 
immune cell trafficking and microbial-host interactions (60). Thus, DOCK8 deficiency in humans is associ-
ated with atopy and a notable increase in cutaneous viral colonization and infection (61).

Keratinocytes may also alter their surface phenotype to communicate with their surroundings. For 
example, upon IFN-γ exposure, keratinocytes have been shown to express MHC II molecules on their 
surface and act as an antigen-presenting cells for CD4+ and CD8+ memory T cells, consequently inducing 
functional responses (62). A recent study showed that keratinocyte-intrinsic MHC class II expression con-
trols commensal-induced Th1, but not Th17, responses, reflecting the important role of  keratinocytes in 
regulating the host-microbiota communication (63).

Beyond microbes, keratinocytes are also continuously exposed to, and sense, mechanical stimuli such 
as pressure and stretch. The effects of  mechanical stretching on keratinocyte immune response have been 
investigated in detail. Treatment of  keratinocytes with mechanical stimulation activates the secretion of  
inflammatory cytokines (IL-1α, IL-6, IL-23, and TNF) and chemokines (CXCL1 and CCL20) (64–66). 
Other studies have reported that mechanical stretching promotes keratinocyte proliferation and inhibits 
keratinocyte differentiation (65, 67, 68).

Keratinocytes: source and target of inflammatory mediators
Keratinocytes express and secrete a broad range of  cytokines that can affect and amplify inflammatory 
responses, induce keratinocyte proliferation, and promote migration of  leukocytes into skin (50, 69) (Fig-
ure 2). Here, we present a short overview of  several key cytokines and cytokine families implicated in 
keratinocyte immune responses.

The IL-1 cytokine family — IL-1, IL-36, and beyond. The IL-1 family of  cytokines is divided into three 
subfamilies: IL-1, IL-18, and IL-36 (70). Keratinocytes constitutively produce IL-1α and IL-1β, which 
bind to the same receptor complex and have similar biologic activity. Upon PRR stimulation, kerat-
inocytes release IL-1 to initiate a rapid immune response, leading to expression of  other cytokines, 
including IL-6, IL-8, and TNF (71). IL-1 also promotes keratinocyte proliferation (72). IL-1 subfamily 
member IL-33 is constitutively expressed in keratinocytes and signals via the ST2 receptor, resulting in 
Th2 cytokine induction (73). The IL-33/ST2 axis has been implicated in several skin diseases, includ-
ing AD and psoriasis (74).

Table 1. Expression of PRRs on human keratinocytes

PRRs PAMPs/activators
TLR1/TLR2 heterodimer Triacyl lipopeptides, peptidoglycan
TLR2 Zymosan
TLR3 dsRNA
TLR4 LPS
TLR5 Flagellin
TLR2/TLR6 heterodimer Diacyl lipopeptides
TLR9 CpG DNA
TLR10 Unknown
NOD1 iE-DAP
NOD2 MDP
NLRP1 Bacterial lethal toxin
NLRP3 Inflammatory stimuli, including bacterial toxin nigericin and LPS, 

environmental irritants, nanoparticles
RIG-I dsRNA
MDA5 dsRNA
Dectin-1 β-Glucan
STING Cytosolic DNA
AIM2 Cytosolic DNA

iE-DAP, γ-glutamyl-diaminopimelic acid; MDP, muramyl dipeptide.
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IL-18 is synthesized as an inactive precursor similar to IL-1β that requires processing into the 
mature molecule by the action of  IL-1β converting enzyme (75). IL-18 is produced by keratinocytes 
and can augment Th1 responses in the presence of  IL-12 by inducing IFN-γ production (75). IL-18 also 
enhances IFN-γ–induced production of  chemokines (CXCL9, CXCL10, and CXCL11) and MHC class 
I expression on keratinocytes (76). IL-1 family member IL-37 can interact with the IL-18 receptor, and 
IL-37 overexpression in human keratinocytes inhibits the production of  CXCL8, IL-6, and S100A7, 

Figure 2. Expression of various cytokines 
and chemokines in keratinocytes. The 
heatmap shows the induction of cytokines, 
chemokines, and various growth factors, via 
RNA sequencing, in human keratinocytes 
under various inflammatory conditions, 
including stimulation with IFN-α, IFN-γ, 
IL-13, IL-17A, TNF-α, IL-4, and IL-17A+ TNF-α. 
Keratinocytes have a dynamic response 
depending on the type of stimulation. The 
color gradient represents expression levels 
after normalization.
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suggesting that IL-37 may play an immunosuppressive role in psoriasis pathogenesis (77).
IL-36 subfamily cytokine expression is induced in keratinocytes by microbes and cytokines, including TNF, 

IL-17, and IL-22 (50, 78). IL-36 induces production of other proinflammatory cytokines and AMPs as well as 
its own expression in an autocrine manner (78, 79). IL-38 is the newest and least-characterized member of this 
family and is expressed in epithelia, including skin; however, its role in skin inflammation remains to be defined.

TNF. TNF has pleiotropic effects on a variety of  processes, including cell proliferation, differentiation, 
apoptosis, and inflammation, and exerts its biological effects through binding to either of  the 2 mem-
brane-bound TNF receptors, TNFR1 or TNFR2. Keratinocytes both produce (80) and respond (81) to TNF 
through TNFR1. TNFR1 signaling leads to activation of  several downstream transcription factors, includ-
ing NF-κB, AP-1, and CCAAT enhancer–binding protein-β (C/EPβ) (82). This activation leads to expres-
sion of  proinflammatory cytokines, chemokines, and adhesion molecules, such as IL-1, IL-6, CXCL8, 
CCL20, and ICAM-1 (83). Furthermore, TNF potently synergizes with other cytokines, such as IL-17A 
(84), IL-17C (85) and others, to amplify immune responses in keratinocytes (82).

IL-6 and IL-31. IL-6 is expressed by human keratinocytes and is reported to be overexpressed in many 
inflammatory skin diseases, such as psoriasis (79, 86), CLE (87), and lichen planus (88). IL-6 expression 
is induced by multiple stimuli, including UVB radiation, TLR stimulation, and various proinflammatory 
cytokines (89). IL-6 promotes keratinocyte proliferation and is prominent in diseases associated with epi-
dermal hyperplasia and tissue injury (90). IL-6 family member IL-31 is primarily secreted by activated T 
cells. The IL-31 receptor, a heterodimer of  IL-31 receptor α chain (IL-31RA) and oncostatin M receptor 
β chain (OSMR β), is expressed by immune cells and keratinocytes (91). IL-31 upregulates the expres-
sion levels of  various chemokines and AMPs in keratinocytes. In addition, IL-31 downregulates filaggrin 
expression and has been implicated in AD pathogenesis (91). Consistent with a role in AD, overexpression 
of  IL-31 in mouse skin induces severe pruritus and dermatitis (92).

IL-12 and IL-23. IL-12 and IL-23 influence the adaptive immune system, promoting Th1 and Th17 
responses, respectively. IL-12 is a heterodimeric cytokine formed by p40 and p35 subunits, which are 
expressed and released by human keratinocytes (93). IL-12 is involved in promoting Th1 responses and 
inducing IFN-γ production by T cells and NK cells (94). The common p40 and the unique IL-23p19 sub-
units constitute IL-23, which signals via a receptor complex composed of  the IL-23R and IL-12R-β1 recep-
tor units. Recently, keratinocytes were determined to express and secrete IL-23 (95). Keratinocyte-derived 
IL-23 can promote chronic IL-17–skewed skin inflammation and is regulated by TNF and Wiskott-Aldrich 
syndrome protein (N-WASP) (96). While keratinocytes secrete less IL-23 per cell than other cell types (such 
as DCs), the sheer number of  keratinocytes in skin make them an important IL-23 source in inflammatory 
skin conditions.

IL-20 cytokines. The IL-20 cytokine family consists of IL-19, IL-20, IL-22, IL-24, and IL-26. Among these, 
IL-19, IL-20, and IL-24 share the same receptor complex (IL-20RB/IL-20RA), while IL-20 and IL-24 can also 
bind the IL-20RB/IL-22RA1 heterodimer (97). Keratinocytes are a major target of IL-20 cytokines, where these 
cytokines act in an autocrine manner. IL-20 cytokines are induced by other leukocyte-derived proinflammatory 
cytokines, such as IL-22, IL-1, IL-17A, and TNF (98). IL-20 cytokines induce keratinocyte proliferation and 
promote production of inflammatory and immunomodulatory mediators through activation of STAT3 (99).

IL-7, IL-15, and TSLP. Keratinocytes are an important source of  IL-7 and IL-15, which function as 
T cell growth factors. Keratinocyte-derived IL-7 promotes adhesion of  epidermal T cells to laminin-5 
(100) in the basement membrane. In psoriasis, IL-7 promotes interactions between keratinocytes and 
T lymphocytes (101), while IL-15 enhances proliferation and activity NK cells and T cells. In addition, 
both IL-7 and IL-15 play important roles in the generation and maintenance of  memory T cells (102). 
Notably, hair follicle keratinocytes are prominent sources of  IL-7 and IL-15 and facilitate skin-resident 
memory T cell homeostasis (103). Thymic stromal lymphopoietin (TSLP) is an IL-7–like cytokine that 
was initially discovered as a stimulator of  B cell development from a murine thymic stromal cell line 
(104). TSLP binds to a heterodimeric receptor composed of  the TSLP receptor chain (TSLPR) and the 
IL-7 receptor α chain (105). TSLP is expressed by keratinocytes in response to certain microbial prod-
ucts, trauma, or inflammatory cytokines (106), and keratinocyte-derived TSLP helps promote Th2 cell 
differentiation and inflammation in allergic diseases (107).

IFNs. IFNs were first identified for their antiviral activities and have been classified into three major 
types: type I IFNs (IFN-α, IFN-β, IFN-ɛ, IFN-κ, IFN-τ, and IFN-ω), type II IFNs (IFN-γ), and type III 
IFNs (IFN-λ1, IFN-λ2, and IFN-λ3) (108). IFN-κ is the predominant type I IFN expressed by keratinocytes, 
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particularly in the basal layer, and is prominent in skin lesions of  CLE (109), although its expression has also 
been described in psoriasis (110). IFN-β is also expressed by keratinocytes after stimulation by UV light and 
TLR3 stimulation (111). Expression of  type III IFNs has been described in keratinocytes and is reported to 
be increased in cutaneous lupus lesions (112). Keratinocytes do not express IFN-γ.

Growth factors. Keratinocytes secrete a large number of  various growth factors, including EGF fam-
ily factors, TGF-β, FGF family members, GM-CSF, PDGF, and VEGF. Beyond its profibrotic effects, 
TGF-β controls keratinocyte proliferation and differentiation and accelerates wound-healing processes 
(113). TGF-α, a member of  EGF family, promotes keratinocyte migration and proliferation, suggesting 
a role in reepithelialization (114). Keratinocyte-derived GM-CSF stimulates keratinocyte proliferation 
in vivo and is essential for Langerhans cell maturation (115). Keratinocytes also secret VEGF, which 
promotes angiogenesis and endothelial cell migration, and PDGF, which enhances fibroblast prolifera-
tion and ECM component production (116). Nerve growth factor (NGF), a neurotrophic peptide, can be 
synthesized and released by human keratinocytes, promotes keratinocyte proliferation, and is increased 
in psoriatic keratinocytes (117).

Cytokine receptor expression in keratinocytes. Keratinocytes express a wide range of  cytokine receptors 
capable of  binding to cytokines released by either other epidermal cells or infiltrating leukocytes (Table 2) 
(71, 91, 97, 118–121), consistent with keratinocytes as a frequent target for inflammatory processes in skin. 
Thus, activation of  IL-17 and IL-22 receptors on keratinocytes amplifies inflammatory responses in diseas-
es such as psoriasis (44, 122). Keratinocytes also express receptors for Th2 cytokines, IL-4 and IL-13 (88), 
IL-1 and IL-36 (123, 124), and type I and type II IFNs (120). Therefore, keratinocytes are able to respond 
to almost the entire spectrum of  polarizing inflammatory signals, whether they are Th1-, Th2-, Th17- or 
autoinflammatory-driven responses. Interestingly, specific layers of  the epidermis may respond differently 
to particular inflammatory signals. In particular, spatial differences in immune responses can be seen for 
type I IFN responses, which are primarily seen in the basal keratinocytes (109), while IL-17 responses are 
most prominent in the spinous layer of  the epidermis (our unpublished observation).

Keratinocyte-derived chemokines. Keratinocytes are also a relevant source of  chemokines and chemokine 
receptors (17) (see Figure 2 and Table 2). Chemokines are small, secreted proteins that have chemotactic 
activity. They are divided into four main subfamilies, CC, CXC, C, and CX3C chemokines, which exert 
their biological effects via interaction with their cognate cell-surface chemokine receptors (125). Kerati-
nocytes synthesize many chemokines that attract distinct cells types into the skin during inflammatory or 
immune responses depending on the specific chemokines expressed (81). For example, keratinocyte-de-
rived chemokine ligands CXCL9 and CXCL10 bind CXCR3 and CCL27 to CCR10 to help T cells traffic 
into the skin in diseases such as psoriasis (126). Similarly, keratinocytes secrete CCR4 ligand CCL17, 
thereby promoting Th2 cell recruitment into AD skin (127). Keratinocytes upregulate CXCL1 and medi-
ate neutrophil trafficking into skin (17, 128, 129).

Keratinocyte proteases and protease inhibitors. Keratinocytes express and secrete various proteases and pro-
tease inhibitors. Under homeostatic conditions these proteases regulate processes related to epidermal dif-
ferentiation, but under inflammatory conditions they may contribute to both initiation and termination of  
inflammatory responses. Cathepsin S, a lysosomal cysteine protease that takes part in the degradation of  
damaged or unwanted proteins, has been identified as one of  the major IL-36γ–activating proteases in the 
skin (130), thereby initiating and amplifying skin-associated inflammatory responses. Recently, Billi et al. 
determined that epidermal kallikrein-related peptidase 6 (KLK6), a secreted serine protease, promotes devel-
opment of  psoriasis and psoriatic arthritis-like joint inflammation via protease-activated receptor 1–depen-
dent (PAR1-dependent) signaling (131).

Given their potent biological role in the skin, activity of these proteases is tightly regulated by protease inhibi-
tors. Keratinocytes express and secrete a wide variety of such inhibitors, including serine protease inhibitors (SER-
PINs), which are believed to be involved in the pathophysiology of various inflammatory skin diseases (132). 
For example, recently described loss-of-function variants in SERPINA3 associated with development of general-
ized pustular psoriasis. Thus, decreased production of serpin A3 weakens inhibition of neutrophil serine prote-
ase cathepsin G and therefore leads to unrestrained activity of cathepsin G and subsequent activation of IL-36 
family cytokines (133, 134). Moreover, SERPIN Kazal-type 5 (SPINK5, also known as LEKTI) is prominently 
expressed in epithelial and mucosal tissues. SPINK5 mutations result in activation of proteases, such as KLK5, 
KLK7, and KLK14, that produce skin desquamation and were identified as the cause of Netherton syndrome, 
which is characterized by congenital ichthyosis with hair shaft anomalies and atopic manifestations (135, 136).

https://doi.org/10.1172/jci.insight.142067


9insight.jci.org   https://doi.org/10.1172/jci.insight.142067

R E V I E W

Complement protein expression in keratinocytes. Keratinocytes are a source of  complement proteins, there-
by providing another line of  immunologic defense in the skin. Keratinocytes express several complement 
system components, including C3, C4, factor B, factor H, factor I, complement receptors (CR1, cC1qR, 
C5aR1, and CR2); cell-bound complement regulators (MCP, DAF, and CD59); and terminal complement 
components (C5–C9) (137, 138). Complement production in keratinocytes is regulated by a variety of  
cytokines. C3 synthesis is regulated by TNF, IFN-γ, and IL-1α. Factor B expression is induced by IFN-γ, 
IL-1α, and IL-6 (139), and IL-22 and TNF synergistically induce production of  complement C1r and C1s 
in primary human keratinocytes (140). IFN-γ and IFN-α have also been shown to upregulate complement 
fragment-3a receptor (C3aR) on keratinocytes (141).

Contribution of keratinocytes in inflammatory conditions
Psoriasis. Psoriasis is a chronic inflammatory skin disease characterized by keratinocyte hyperproliferation 
and immune cell infiltration in the dermis and epidermis (142). Accumulating evidence indicates that 
keratinocytes may play a greater role in psoriasis pathogenesis than previously thought. Thus, keratino-
cyte release of  the AMP LL-37 may be involved in triggering psoriasis (143). LL-37 conjugates with self-
DNA and self-RNA fragments, leading to activation of  TLR9 in plasmacytoid DCs to produce IFN-α and 
trigger psoriasis (143) and subsequent activation of  myeloid DCs and migration to skin-draining lymph 
nodes where they interact with naive T cells to promote expansion and differentiation of  Th17, Th22, and 
Th1 lymphocyte subsets (144, 145).

Table 2. Cytokine and chemokine receptors expressed on keratinocytes

Clarification Receptors
Cytokine receptors IL-1R1 and IL-1R2

IL-4R
IL-6R
IL-10R
IL-13R

IL-15RA
IL-17R
IL-18R

IL-20RA/IL-20RB heterodimer
IL20RB/IL-22RA1 heterodimer
IL-22RA1/IL-10RB heterodimer

IL-31RA
TNF-αR
EGF-R
KGF-R
IGF-1R
NGF-R
TGF-βR
LIF-R

IFN-α/βR
IFN-γR

Chemokine receptors CCR1
CCR3
CCR4
CCR5
CCR6
CCR9

CXCR1
CXCR2
CXCR3
CXCR4
CXCR5
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Cytokines such as IL-17A upregulate additional cytokines, chemokines, and AMPs in keratinocytes (146) 
and, with IL-22, promote keratinocyte proliferation (44, 147). Keratinocyte-derived cytokines such as IL-36 
influence DC function, induce secretion of  proinflammatory cytokines, and promote T cell proliferation 
(148). IL-6 promotes Th17 cell differentiation and keratinocyte proliferation (86), but, interestingly, anti–IL-6 
treatment has been shown to be ineffective for psoriasis (149). Moreover, keratinocytes produce chemokines 
that facilitate immune cell recruitment to the skin. CXCL8 acts as a chemoattractant for neutrophils, while 
CCL2, CCL5, and CXCL10 recruit monocytes and Th1 cells. CCL20 interacts with CCR6 and acts as a che-
moattractant for Th17 cells and DCs (150), thereby creating a self-sustaining cycle of  inflammation.

AD. In most cases, AD is considered to be an allergen-driven disease due to decreased filaggrin barrier 
function and presence of  antigen-presenting cells and effector Th2 cells (151). However, as the main constit-
uents of  the epidermis, keratinocytes are active participants and amplify immune responses associated with 
AD development (152). Keratinocyte-derived AD-associated inflammatory molecules have been identified, 
including TSLP, that are highly expressed in both acute and chronic lesions. TSLP activates DCs to pro-
duce Th2-recruiting chemokines and triggers production of  Th2 cytokines from CD4+ T cells (153). More-
over, skin-specific TSLP induction in transgenic mice causes an AD-like phenotype, with development of  
eczematous lesions, Th2 cell infiltration, and elevated serum IgE levels (154). Notably, keratinocytes from 
patients with AD exhibit an intrinsically abnormal chemokine production profile characterized by high 
expression of  CCL5, CCL27, CCL17, CCL22, and CCL18 (155).

Figure 3. Diverse role of keratinocytes in inflammatory responses. Keratinocytes express different microbial sensors and 
cytokine receptors, with highly variable expression in different layers of the epidermis. This likely accounts for type I IFN 
responses (antiviral) being most prominent in the basal layer of the epidermis but anti–IL-17 (antifungal) or antibacterial 
responses (as measured by expression of AMPs encoding genes) dominating in the top layer. In addition, keratinocytes 
express and secrete a variety of proinflammatory cytokines, including the IL-1 family members, IL20 family members, IL-12/
IL-23 cytokines, type I IFN, IFN-κ, and various others. In addition, keratinocytes secrete a variety of growth factors that 
influence epidermis growth and differentiation, vascular growth, fibroblast proliferation, and nerves. The various chemokines 
secreted by keratinocytes drive influx of various types of inflammatory cell subsets depending on the chemokine signal.
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Other inflammatory diseases and wound healing. CLE is a chronic inflammatory disease frequently associ-
ated with systemic lupus erythematosus. Keratinocyte apoptosis is considered to play a role in CLE patho-
genesis (83, 156), and increased type I IFNs are considered an important pathway in its pathogenesis (83). 
In particular, keratinocyte- produced IFN-κ promotes IFN responsiveness and photosensitivity in keratino-
cytes in CLE (109). In addition, type I IFNs (IFN-α and IFN-κ) are reported to amplify IL-6 production by 
lupus keratinocytes following TLR exposure and UV irradiation (87).

Wound healing is a dynamic and complex process that requires communication and coordination 
among diverse cell populations. Among them, keratinocytes play a significant role. Thus, during the 
wound-healing process, migration and proliferation of  keratinocytes are promoted to reepithelialize the 
wound surface. Growth factors from the EGF, FGF, and TGF-β families promote keratinocyte proliferation 
in wound healing (114). In addition, keratinocytes also contribute and produce cytokines, including IL-1, 
IL-6, and TNF, that can promote keratinocyte migration (157).

Summary
Keratinocytes are a highly dynamic cell type with functional roles that extend far beyond their participation 
as components of  the physical barrier of  the skin. Keratinocytes are equipped with molecular sensors to 
detect nearly any type of  microbe, from simple viruses to bacteria to fungi and parasites. Furthermore, kera-
tinocytes express and secrete a wide variety of  proinflammatory cytokines, chemokines, and growth factors, 
leaving them capable of  directing and activating almost any type of  polarized immune response, including 
Th1, Th2, Th17, and various autoinflammatory responses (Figure 3). These dynamic responses explain the 
diverse range of  clinical presentation of  inflammatory skin diseases that far exceeds that of  any other organ 
system. Future discoveries will extend our understanding of  the role of  the keratinocyte and its contribution 
to disease pathogenesis and will facilitate development of  new treatments for cutaneous disorders.
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